第三讲 MATLAB预测(1)回归分析
用MATLAB求解回归分析

估
F值、与F对应的概率p
计
相关系数 r2 越接近 1,说明回归方程越显著;
.
(
缺
省显
时著
为性
0
水 平
05
)
F > F1-α(k,n-k-1)时拒绝 H0,F 越大,说明回归方程越显著;
与 F 对应的概率 p 时拒绝 H0,回归模型成立.
3、画出残差及其置信区间: rcoplot(r,rint)
例1 解:1、输入数据:
stats = 0.9702 40.6656
0.0005
1、回归:
非线性回 归
是事先用m-文件定 义的非线性函数
(1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,’model’, beta0)
估计出的 回归系数
残差 Jacobian矩阵
输入数据x、y分别为 n m矩阵和n维列向 量,对一元非线性回 归,x为n维列向量。
r2=0.9282, F=180.9531, p=0.0000
p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.
3、残差分析,作残差图: rcoplot(r,rint)
从残差图可以看出,除第二个数据外,其余数据的残
差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点.
2、预测和预测误差估计:
(1)Y=polyval(p,x)求polyfit所得的回归多项式在 x处 的预测值Y; (2)[Y,DELTA]=polyconf(p,x,S,alpha)求 polyfit所得的回归多项式在x处的预测值Y及预测值的 显著性为 1-alpha的置信区间Y DELTA;alpha缺省时为0.5
使用Matlab技术进行回归分析的基本步骤

使用Matlab技术进行回归分析的基本步骤回归分析是统计学中一种用于研究变量间关系的方法,可以用来预测和解释变量之间的相关性。
在实际应用中,使用计算工具进行回归分析可以提高分析效率和准确性。
本文将介绍使用Matlab技术进行回归分析的基本步骤,并探讨其中的一些关键概念和技巧。
一、数据准备在进行回归分析之前,首先需要收集和整理相关的数据。
这些数据通常包括自变量和因变量。
自变量是用来解释或预测因变量的变量,而因变量是需要解释或预测的变量。
在Matlab中,可以将数据保存为数据矩阵,其中每一列代表一个变量。
二、模型建立在回归分析中,需要建立一个数学模型来描述自变量和因变量之间的关系。
最简单的线性回归模型可以表示为:Y = βX + ε,其中Y是因变量,X是自变量,β是回归系数,ε是误差项。
在Matlab中,可以使用regress函数来进行线性回归分析。
三、模型拟合模型拟合是回归分析的核心步骤,它的目标是找到最佳的回归系数,使得预测值与实际观测值之间的差异最小。
在Matlab中,可以使用OLS(Ordinary Least Squares)方法来进行最小二乘法回归分析。
该方法通过最小化残差平方和来估计回归系数。
四、模型诊断模型诊断是回归分析中非常重要的一步,它可以帮助我们评估模型的合理性和有效性。
在Matlab中,可以使用多种诊断方法来检验回归模型是否满足统计假设,例如残差分析、方差分析和假设检验等。
这些诊断方法可以帮助我们检测模型是否存在多重共线性、异方差性和离群值等问题。
五、模型应用完成模型拟合和诊断之后,我们可以使用回归模型进行一些实际应用。
例如,可以使用模型进行因变量的预测,或者对自变量的影响进行解释和分析。
在Matlab中,可以使用该模型计算新的观测值和预测值,并进行相关性分析。
六、模型改进回归分析并不是一次性的过程,我们经常需要不断改进模型以提高预测的准确性和解释的可靠性。
在Matlab中,可以使用变量选择算法和模型改进技术来优化回归模型。
在MATLAB中进行分类和回归分析

在MATLAB中进行分类和回归分析在科学和工程领域,分类和回归分析是常见的数据分析方法。
而MATLAB作为一种功能强大的数据分析软件,提供了丰富的工具和函数,使得分类和回归分析变得更加简单和高效。
本文将介绍在MATLAB中进行分类和回归分析的方法和技巧,帮助读者更好地理解和应用这些技术。
一、背景介绍分类和回归分析是基于已知数据的模式进行预测和分类的统计方法。
分类分析用于将数据分为不同的类别,而回归分析则试图通过已知数据的模式预测未知数据的数值。
这些方法在各个领域都有广泛的应用,如金融、医疗、市场营销等。
二、数据准备在进行分类和回归分析之前,需要准备好相应的数据。
一般来说,数据应当包含自变量(也称为特征或输入)和因变量(也称为标签或输出)。
自变量是用来作为预测或分类的输入变量,而因变量是要预测或分类的目标变量。
通常情况下,数据应当是数值型的,如果包含分类变量,需要进行相应的编码或处理。
三、分类分析在MATLAB中进行分类分析,有多种方法和技术可供选择。
其中最常见的方法包括K最近邻算法(K-nearest neighbors)和支持向量机(Support Vector Machines)等。
这些方法都有相应的函数,可以用于在MATLAB中实现分类分析。
K最近邻算法基于训练样本和测试样本之间的距离,将测试样本分类为与其最近的K个训练样本所属的类别。
而支持向量机则试图找到一个超平面,将不同类别的样本分开,并使得分类误差最小化。
在MATLAB中,我们可以使用fitcknn和fitcsvm函数来实现K最近邻算法和支持向量机。
除了上述方法,还有其他的分类算法可以在MATLAB中使用,如决策树、随机森林等。
根据数据的具体情况和需求,选择适合的分类算法非常重要。
四、回归分析在进行回归分析时,我们需要首先选择适当的回归模型。
常用的回归模型包括线性回归、多项式回归、岭回归等。
根据数据的分布和特点,选择合适的回归模型能够提高分析的准确性。
MATLAB回归分析

MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。
在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。
简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。
在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。
该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。
例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。
函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。
返回的`p(1)`和`p(2)`分别是回归系数和截距。
返回的`p`可以通过`polyval`函数进行预测。
例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。
在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。
例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。
通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。
返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。
回归预测 matlab

回归预测 matlab回归预测是指利用已知的数据建立一个数学模型,然后使用该模型对未知数据进行预测。
在Matlab中,可以使用各种统计和机器学习工具来进行回归预测分析。
下面我将从多个角度来介绍在Matlab中进行回归预测的方法。
首先,Matlab中可以使用经典的线性回归模型来进行预测。
线性回归是一种常见的统计方法,可以用来建立自变量和因变量之间的线性关系。
在Matlab中,可以使用`fitlm`函数来拟合线性回归模型,并使用该模型来进行预测。
该函数可以处理单变量和多变量的线性回归分析,同时还可以考虑到误差项的自相关性和异方差性。
其次,Matlab还提供了支持向量机(SVM)和人工神经网络(ANN)等机器学习方法来进行回归预测分析。
使用`fitrsvm`函数可以构建支持向量机回归模型,而使用`fitrnet`函数可以构建人工神经网络回归模型。
这些方法在处理非线性关系和高维数据时表现出色,可以更准确地进行预测。
此外,在Matlab中还可以使用交叉验证等技术来评估回归模型的性能。
通过交叉验证可以更准确地评估模型的泛化能力,避免过拟合和欠拟合问题。
Matlab提供了`crossval`函数和`kfoldLoss`函数等用于交叉验证的工具,可以帮助用户选择最佳的回归模型。
最后,Matlab还提供了丰富的可视化工具,可以帮助用户对回归预测结果进行直观的分析和展示。
用户可以使用`plot`函数和`scatter`函数等绘图函数来展示观测数据和预测结果,从而更直观地了解模型的拟合情况和预测效果。
综上所述,Matlab提供了多种方法和工具来进行回归预测分析,用户可以根据自己的数据和需求选择合适的方法进行建模和预测。
通过合理选择模型和参数,并结合交叉验证和可视化分析,可以更准确地进行回归预测,并得到可靠的结果。
Matlab中的回归分析与时间序列预测

Matlab中的回归分析与时间序列预测引言:在现代数据分析中,回归分析和时间序列预测是两个重要且广泛应用的领域。
Matlab作为一款功能强大的数学软件,在回归分析和时间序列预测方面提供了丰富的工具和函数,使得实现这些分析变得更加简单和高效。
本文将介绍Matlab中回归分析和时间序列预测的相关知识和方法,并结合实例进行说明。
一、回归分析回归分析是通过寻找自变量与因变量之间的关系,来推测未来观测值的一种分析方法。
在Matlab中,可以通过使用regress函数进行回归分析。
该函数可以拟合线性回归模型,并返回各个回归系数的估计值以及回归模型的统计信息。
下面我们以一个简单的例子来说明如何使用Matlab进行回归分析。
实例1:房价预测假设我们有一组数据,其中包含了房屋的面积和对应的售价。
我们希望通过房屋的面积来预测未来房价。
首先,我们需要导入数据并进行预处理。
```matlabdata = load('house_data.csv'); % 导入数据X = data(:, 1); % 提取面积作为自变量y = data(:, 2); % 提取房价作为因变量```接下来,我们可以使用regress函数进行回归分析,并得到回归系数的估计值。
```matlab[B, BINT, R, RINT, STATS] = regress(y, [ones(size(X)) X]); % 回归分析```其中,B为回归系数的估计值,BINT为回归系数的置信区间,R为残差,RINT为残差的置信区间,STATS为回归模型的统计信息。
我们可以打印出回归系数的估计值,以及回归模型的统计信息。
```matlabdisp('回归系数的估计值:');disp(B);disp('回归模型的统计信息:');disp(STATS);```运行以上代码,我们可以得到回归模型的结果。
通过回归系数的估计值,我们可以得到回归方程为y = B(1) + B(2) * X,其中B(1)为截距,B(2)为斜率。
Matlab技术回归分析方法

Matlab技术回归分析方法简介:回归分析是一种常用的数据分析方法,用于建立变量之间的关系模型。
Matlab是一种功能强大的数值计算软件,提供了丰富的函数和工具包,用于实现回归分析。
本文将介绍几种常见的Matlab技术回归分析方法,并探讨其应用场景和优缺点。
一、线性回归分析:线性回归分析是回归分析的经典方法之一,用于研究变量之间的线性关系。
在Matlab中,可以使用`fitlm`函数来实现线性回归分析。
该函数通过最小二乘法拟合出最优的线性模型,并提供了各种统计指标和图形展示功能。
线性回归分析的应用场景广泛,例如预测销售额、研究市场需求等。
然而,线性回归假设自变量和因变量之间存在线性关系,当数据呈现非线性关系时,线性回归会失效。
为了解决非线性关系的问题,Matlab提供了多种非线性回归分析方法,如多项式回归、指数回归等。
二、多项式回归分析:多项式回归分析是一种常见的非线性回归方法,用于建立多项式模型来描述变量之间的关系。
在Matlab中,可以使用`fitlm`函数中的`polyfit`选项来实现多项式回归分析。
多项式回归在处理非线性关系时具有很好的灵活性。
通过选择不同的多项式次数,可以适应不同程度的非线性关系。
然而,多项式回归容易过拟合,导致模型过于复杂,对新数据的拟合效果不佳。
为了解决过拟合问题,Matlab提供了正则化技术,如岭回归和Lasso回归,可以有效控制模型复杂度。
三、岭回归分析:岭回归是一种正则化技术,通过添加L2正则项来控制模型的复杂度。
在Matlab中,可以使用`fitlm`函数的`Regularization`选项来实现岭回归分析。
岭回归通过限制系数的大小,减少模型的方差,并改善模型的拟合效果。
然而,岭回归不能自动选择最优的正则化参数,需要通过交叉验证等方法进行调优。
四、Lasso回归分析:Lasso回归是另一种常用的正则化技术,通过添加L1正则项来控制模型的复杂度。
在Matlab中,可以使用`fitlm`函数的`Regularization`选项来实现Lasso回归分析。
如何在MATLAB中进行统计回归分析

如何在MATLAB中进行统计回归分析统计回归分析是一种被广泛应用于数据科学和统计学领域的技术。
它被用来分析变量之间的关系,并预测一个或多个自变量对因变量的影响。
在MATLAB中,有许多强大的工具和函数可以帮助我们进行统计回归分析。
本文将讨论如何在MATLAB中使用这些功能进行统计回归分析。
1. 数据导入与预处理在进行回归分析之前,首先需要将数据导入到MATLAB中。
MATLAB支持多种数据格式,如CSV、Excel、文本文件等。
可以使用readmatrix或readtable等函数读取数据,根据数据的特点选择合适的函数。
在导入数据之后,通常需要对数据进行预处理。
这包括处理缺失值、异常值以及数据的标准化。
MATLAB提供了一系列函数来处理这些问题,如isnan、isoutlier和zscore等。
2. 单变量回归分析单变量回归分析是最基本的回归分析方法。
它用于分析一个自变量对一个因变量的影响。
在MATLAB中,可以使用fitlm函数进行单变量回归分析。
fitlm函数需要输入自变量和因变量的数据,然后可以对回归模型进行拟合,并得到回归系数、残差等统计信息。
使用plot函数可以绘制回归模型的拟合曲线,以及残差的散点图。
通过观察残差的分布,可以评估拟合模型的合理性。
3. 多变量回归分析多变量回归分析是在一个或多个自变量对一个因变量的影响进行分析。
在MATLAB中,可以使用fitlm函数或者fitlmulti函数实现多变量回归分析。
fitlm函数可以处理多个自变量,但是需要手动选择自变量,并提供自变量和因变量的数据。
fitlmulti函数则可以自动选择最佳的自变量组合,并进行回归拟合。
它需要提供自变量和因变量的数据矩阵。
多变量回归分析的结果可以通过查看回归系数和残差来解释。
还可以使用plot函数绘制回归模型的拟合曲面或曲线,以便更好地理解自变量对因变量的影响。
4. 方差分析方差分析是一种常用的统计方法,用于比较两个或多个因素对因变量的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ 489.2946 s t 2 65.8896 t 9.1329
方法二
化为多元线性回归:
t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
3
1
模型:记血压为 y ,年龄为 x1 ,体重指数为 x2 ,吸烟习惯为 x3 , 用Matlab将 y 与 x2 的数据做散点图,看出大致也呈线性关系,建立 模型: y 0 1 x1 2 x2 3 x3 由数据估计系数 0,2,3,4 ,也可看做曲面拟合(其实为 超平面)
T=[ones(14,1) t‘ (t.^2)'];
[b,bint,r,rint,stats]=regress(s',T); b,stats
得回归模型为 :
ˆ 9.1329 65.8896 s t 489.2946 t2
预测及作图
Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')
(二)多元二项式回归
命令:rstool(x,y,’model’, alpha)
nm矩阵
n维列向量
显著性水平
(缺省时为0.05)
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型): linear(线性): y 0 1 x1 m xm purequadratic(纯二次): interaction(交叉): y
其中 x=(x1,x2,„,xn) ,y=(y1,y2 ,„,yn) ; m m-1 p=(a1,a2,„,am+1)是多项式 y=a1x +a2x +„+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差.
(2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计: (1)Y=polyval(p,x)求polyfit所得的回归多项式在x处 的预测 值Y ; (2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit所得的回 归多项式在x处的预测值Y及预测值的显著性为 1-alpha的置信区间Y DELTA;alpha缺省时为0.05
例 1 观测物体降落的距离 s 与时间 t 的关系,得到数据如下表, ˆ a bt ct 2 . 求 s 关于 t 的回归方程 s
t s t s (s) (cm) (s) (cm) 1/30 11.86 8/30 61.49 2/30 15.67 9/30 72.90 3/30 20.60 10/30 85.44 4/30 26.69 11/30 99.08 5/30 33.71 12/30 113.77 6/30 41.93 13/30 129.54 7/30 51.13 14/30 146.48
78.7484 118.0683
0.5601 1.3864
7
结果整理为下表: 回归系数 回归系数估计值
98.4084 0.9732 F=23.2834
回归系数置信区间
[74.7484, 118.0683] [0.5601 1.3864]
0 1
R2=0.4540
p<0.001 s2=273.7137
0 1 2
3.0906
11.8246
[1.0530 5.1281]
[-0.1482 23.7973]
3
R2=0.6855
F=18.8906 p<0.0001 s2=169.7917
通过残差分析图可以得到第2个点和第10个点为异常点,删除后重 新进行回归分析,可以得到下面表:
11
回归系数
回归系数估计值
4
第三讲 MATLAB预测方法(1)回归分析
多元线性回归
y 0 1 x1 ... p x p
1、确定回归系数的点估计值:
b=regress( Y, X )
Y1 Y Y 2 ... Yn
ˆ 0 ˆ 1 b ... ˆ p
1 x11 1 x 21 X ... ... 1 x n1
x12 x 22 ... xn2
... x1 p ... x 2 p ... ... ... x np
对一元线性回归,取 p=1 即可
2、求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
1 j , k m
例2 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立回归模型,预测平均收入为1000、价格为6时 的商品需求量.
用上面的参数通过计算可以得到: 50岁,体重指数为25,吸烟的人的血压预测为:148.9525 置信度为0.95的置信区间为:[134.5951,163.3099]
12
多项式回归 (一)一元多项式回归 1、回归: y=a1xm+a2xm-1+…+amx+am+1
(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)
%已知的因变量数组
%已知的自变量数组 %已知的数据容量 %1与自变量组成的输入矩阵 %回归分析程序(显著性水平为0.05) %输出回归系数及其置信区间和统计量 %残差及其置信区间作图
输出结果为: b= 98.4084 0.9732 bint = s= 0.4540 23.2834 0.0000 273.7137
方法一
直接作二次多项式回归: t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90
85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为 :
先来看两个例子:
问题1 (血压与年龄)
为了了解血压随着年龄的增长而升高的关系,调查了30个成年人的血压, 如表所示,我们希望用这组数确定血压与年龄之间的关系,并且由此从年 龄预测血压可能的变化范围。 表 1
序号 1 2 3 4 5 6 7 8 9 10 血压 144 215 138 145 162 142 170 124 158 154 年龄 39 47 45 47 65 46 67 42 67 56 序号 11 12 13 14 15 16 17 18 19 20 血压 162 150 140 110 128 130 135 114 116 124 年龄 64 56 59 34 42 48 45 18 20 19 序号 21 22 23 24 25 26 27 28 29 30 血压 136 142 120 120 160 158 144 130 125 175 年龄 36 50 39 21 44 53 63 29 25 69
回 归 系 数 的 区 间 估 计 残 差 置 信 区 间 用于检验回归模型的统计量, 有三个数值:R2、F值、与F 对应的概率p、以及残差的方 差的估计值
R2 越接近 1,说明回归方程越显著;
( 缺 省显 时著 为性 水 平 )
F F1 (k , n k 1) 时,F 越大,说明回归方程越显著;
9
剔除第二个点后得到的结果: 回归系数 回归系数估计值
96.8665 0.9533 F=66.8358
回归系数置信区间
[85.4771, 108.2559] [0.7140, 1.1925]
0 1
R2=0.91.4305
对50岁的人血压进行预测,得到结果为: ˆ ˆ x 96.8665 0.9533 x 144.5298 ˆ0 y 0 1 0 0
模型:记血压为y,年龄为x,可以做出如上图所示的散点图,从图形 上直观的可以看出,y与x大致呈线性关系,即有:
y 0 1 x ˆ , ˆ 。 需要由数据确定系数 0 , 1 的估计值 0 1
此函数为一元线性函数!!
2
问题2 (血压与年龄,体重指数,吸烟习惯)
世界卫生组织颁布的“体重指数”的定义是体重(kg)除以身高(m)的平 方,下表给出了30个人的体重指数等数据,其中,0表示不吸烟,1表示吸 烟,怎么考虑吸烟这个因素,此因素对于血压升高有影响吗,并对体重指 数为25,50岁的吸烟者的血压做出预测。
从以下几点可以看出模型是有效的:参数的置信区间不含0 点;p小于显著性水平;用Matlab可以求出F1-α(1,n-2)=4.1960,显 然小于F值。 但是由于β1的置信区间过长,R2较小,说明模型的精度不 高!
8
残差图如图所示:
图中第二个点的残差置信区间中不包含0点,由于残差服从均值为0的正 态分布,因此可以认为这个点为异常数据,偏离数据整体的变化范围, 应该剔除,重新进行回归分析!! 残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一 定的规律性,如果是这样,就说明回归分析做得比较理想。
ˆ 0 u s, y ˆ0 u s] ,可以得到其置信度为0.95 根据预测区间 [ y 1 1
2 2
的置信区间为:[125.7887,163.2708].
10
同样方法做问题二 第一次做多元回归结果: 回归系数 回归系数估计值 45.3636 0.3604 回归系数置信区间 [3.5537 87.1736] [-0.0758 0.7965]
与 F 对应的概率 p 时回归模型成立,否则,则说明回归方程中 有多余的自变量,可以将这些多余的自变量从回归方程中剔除
0.05
3、画出残差及其置信区间:
rcoplot(r,rint)