碳纤维表面处理

合集下载

碳纤维表面处理方法的探讨

碳纤维表面处理方法的探讨

碳纤维表面处理方法的探讨1 引言碳纤维在混凝土中的分散状态是碳纤维混凝土制备和应用过程中的关键问题,对其导电性能、电一力和力一电等效应具有重要的影响。

国内外学者对碳纤维的分散开展了大量研究工作,美國纽约州立大学布法罗分校的D.D.L.Chung最早采用甲基纤维素(MC)作为分散剂对纤维分散进行改善。

此外,她还提出对碳纤维进行表面改性的两种方法:一种是将碳纤维浸泡在强氧化剂溶液中或在臭氧中处理[1],在其表面形成具有亲水性的含氧官能团;另一种方法是将碳纤维浸泡在硅烷偶联剂溶液中,在纤维表面形成硅烷涂层而提高亲水性。

孙辉、孙明清等发现在水泥浆体中掺加羧甲基纤维素钠(CMC)和硅灰能显著改善碳纤维的分散性。

王闯等[2]使用甲基纤维素(MC)、羧甲基纤维素钠(CMC)、羟乙基纤维素(HEC)3种常用分散剂后发现分散剂对短碳纤维的分散效果为HEC>CMC>MC。

2 常用表面处理方法2.1 阳极氧化法阳极氧化法,又称为电化学氧化表面处理,是以碳纤维作为电解池的阳极,石墨作为阴极,在电解水的过程中利用阳极生产的“氧”,氧化碳纤维表面的碳及其含氧官能团,将其先氧化成羟基,之后逐步氧化成酮基、羧基和二氧化碳的过程。

阳极氧化法对碳纤维的处理效果不仅与电解质的种类密切相关,并且增加电流密度与延长氧化时间是等效的。

该表面处理方法可以通过改变反应温度、电解质浓度、处理时间和电流密度等条件进行控制。

通过此方法处理后,使碳纤维表面引入各种功能基团而改善纤维的浸润和黏接等特性,显著增加碳纤维增强复合材料的力学性能。

庄毅等[3]采用碳酸氢铵为电解质,对PAN基碳纤维进行阳极氧化处理后,测试发现复合材料的层间剪切断裂转变为张力断裂,使其ILSS提高了49%。

阳极氧化法的特点是氧化反应缓和,易于控制,处理效果显著,可对氧化程度进行精确控制,目前已得到广泛应用,是目前最具有实用价值的方法之一。

但是处理后残留电解质的洗净和干燥十分繁琐,需要连续的电化学处理设备,对处理后的碳纤维进行充分的水洗、烘干,会增加处理成本。

聚丙烯腈基碳纤维的制备-表面处理

聚丙烯腈基碳纤维的制备-表面处理

碳纤维表面处理碳纤维作为一种具有高强度高模量的先进材料,通常需要与其他基体材料进行复合制备成复合材料进行使用。

由于碳纤维本身经过1300℃以上的高温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具有较强的惰性,与高分子树脂等基体进行复合时,纤维与树脂的结合较差,影响纤维优异力学性能的发挥,并最终影响复合材料的性能。

因此在碳纤维制备过程中,通常需要对碳纤维进行表面处理,增加其表面的活性基团,增强与树脂等基体之间的结合。

5。

3.1 表面处理方法由于碳纤维表面处理对其复合材料性能提高的作用,因此表面处理方法的研究也是碳纤维制备技术研究的重点。

经过多年的研究,科研工作者开发了多种对碳纤维进行表面处理方法,表 5.11列出了可以对碳纤维进行表面处理的不同方法及其影响因素.在这些处理方法中,目前应用在工业化生产上的基本上都是电解氧化法.表5。

11 碳纤维表面处理方法和影响因素序号类型处理方法影响因素1 气相氧化O2、O3、NO2、NO、SO2、NH3、空气、水蒸气/空气、NO/空气时间、温度、浓度、流量2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O2/ H2SO4、NaClO3/ H2SO4、KMnO4/ H2SO4时间、温度、组成比例、3 电解氧化氨水、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、NaCl、Na2CO3、NH4NO3、NaHCO3等水溶液时间、电压、电流密度、电解质浓度4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝酸铋、钒酸盐、钼酸盐时间、温度、催化剂量5 电引发聚合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、醋酸乙烯、丙烯酰胺、乙烯基吡咯烷时间、电压、电流、溶剂、单体浓度6 聚合物电沉积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马来酸酐共聚物时间、电压、电流、溶剂、共聚物离子浓度7 表面涂覆PV A、PVC、PAN、硅烷物,硬性聚氨酯炭黑树脂组成含量、涂覆量8 高温气相沉积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、石墨晶须、碳温度、时间、载气、试剂含量9 表面聚合物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈—苯乙烯、丙烯腈、异氰酸酯时间、氧化程度、接枝量、浓度10 等离子体处理O2、NH3、Ar、N2、空气、SiC涂层、AN聚合时间、真空度、功率、流动速度5。

复合材料用碳纤维的表面硝酸液相处理

复合材料用碳纤维的表面硝酸液相处理

复合材料用碳纤维的表面硝酸液相处理作者:杨君张立先周莉等来源:《当代化工》2015年第10期摘要:碳纤维(CF)已经成为制备高性能复合材料的重要基体之一。

为了能制备性能更加稳定和高效的复合材料,需要对碳纤维表面进行处理和改性。

使用硝酸作为表面改性液相体系,分别在不同的处理温度和时间下通过表面电镜扫描(SEM),X射线衍射(XRD)和傅立叶红外光谱分析(FT-IR)表征处理结果。

通过分析表征综合结果得出:当温度在80 ℃,处理时间为30 min时,表面官能团分布最好,且微晶结构最好;当处理时间控制在120 min以内,处理温度在100 ℃左右,纤维表面既能变得粗糙又不使得表面被酸刻蚀破坏。

关键词:碳纤维;复合材料;硝酸处理中图分类号:TQ 028 文献标识码: A 文章编号: 1671-0460(2015)10-2289-05Surface Treatment of Carbon Fiber With Nitric AcidYANG Jun,ZHANG Li-xian,ZHOU Li,GONG Xiao-jie(Liaoning Shihua University, Liaoning Fushun 113001,China)Abstract: Carbon fiber (CF) has become one of important raw materials to prepare high performance composite materials. In order to prepare more stable and efficient performance composite materials, carbon fiber surface need be treated and modified. In this paper, nitrate was used as a surface modification liquid system to treat the carbon fiber under different temperatures and time,and then treated carbon fiber was characterized by SEM (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The results show that: when the temperature is 80 ℃, treatment time is 30min, the distribution of surface functional groups is the best, and the microcrystalline structure also is the best; when the processing time is within 120 min, treatment temperature is about 100 ℃, the fiber surface becomes rough ,but it cannot be destroyed by acid etching.Key words: Carbon fiber; Composites; Nitric acid treatment碳纤维已经成为最重要的增强材料之一,碳纤维复合材料(CFRP)的应用也日趋广泛,而CFRP的力学性能则是我们最为关心的一个指标。

碳纤维表面处理及其复合材料性能研究

碳纤维表面处理及其复合材料性能研究

2020年01月碳纤维表面处理及其复合材料性能研究张安花(厦门新凯复材科技有限公司,福建厦门361021)摘要:碳纤维具有耐高温、导电、导热、耐腐蚀等性能,可制作成各种复合材料产品,应用于不同领域中。

为提升航空复合材料强度,研究使用浓硝酸、浓硝酸超声处理碳纤维表面,经处理会影响碳纤维表面的微结构、表面化学组成,达到增强复合材料性能效果。

关键词:碳纤维;表面处理;复合材料性能碳纤维主要和树脂等材料复合,具有增强作用,可制造出更先进的复合材料。

但因类石墨结构其表面存在一定化学惰性,很难浸润树脂及化学反应,表面难与树脂结合,进而影响复合材料强度。

故需改变碳纤维表面性质,以增加碳纤维表面的极性官能团及表面活化,进而更容易浸润和发生化学反应,使复合材料界面更紧密连接而增加强度。

通常采用偶联剂涂层法、氧化法、等离子等处理方法.在航空领域因耐燃效果需求高使用酚醛树脂,而市面上的碳纤维较少有偶联剂涂层适用酚醛树脂,本文研究液相氧化法与超声协同处理碳纤维表面,达到增加酚醛树脂碳纤维复合材料强度。

1实验方法1.1碳纤维表面处理方法(1)碳纤维表面的上浆剂脱除选用PAN 基碳纤维,型号为Toray T700,使用乙醇/丙酮进行回流处理,其体积比为1:1,处理时间为48h ,将碳纤维表面的上浆剂(即偶合剂)脱除(2)脱浆后碳纤维再进行表面处理处理方法有两种:第一,在浓硝酸中浸泡,温度为60℃,处理时间为2h ;第二,浓硝酸超声处理2h ,浓度为65%,250E II 型超声波,功率和频率分别为250W 和40kHz 。

所有处理工作的结束后,去离子水清洗碳纤维,使其为中性,再在真空中烘干,温度为80℃,直到碳纤维恒重量为止。

1.2复合材料制备采用碳纤维与PF475酚醛树脂制成复合材料预浸布,酚醛树脂与异丙醇制成固成份70%的树脂,使用缠绕法进行制作预浸材,制成纤维含量FAW 100g/m 2,树脂含量RC%37%,用55度将溶剂烘烤至VC%1%以下的预浸材,再将预浸材进行积层堆叠成试片,采用成型温度160度,时间50min 进行加压固化,制成2mm 厚度复材试片。

碳纤维表面上浆处理

碳纤维表面上浆处理

• Chemical structure
• Surface enegy and wettability
• Thermal stability and IFSS
Results
A number of longitudinal streaks dispers on the C-1-sized carbon fibers surface, The longitudinal streaks in the C-2 and C-3-sized carbon fibers almost disappeared .A few granular substances appeared on C-3-sized carbon fibers .there was no bundle between C-2-sized carbon fibers, and the fiber bundle had uniform dispersibility. However, some C-3-sized carbon fibers adhered together which did not satisfactory processability and other workability for further application. As a result, we chose C-2 with the concentration of 0.5 wt % as the sizing agent for the following investigation. The results of this study revealed that sizing agent with thermoplastic PPEK resin improved carbon fibers surface and interfacial properties of carbon fiber composites. XPS results confirmed that the main component of sizing agent on T700M CF was PPEK resin. T700M CF performed better thermal stability than that of T700 CF. Because of more functional groups on surface, T700M CF showed higher polar component and surface energy than T700 and T700T carbon fibers. Surface energy of T700M CF was 49.96 mJ m-2, improving 59.26% compared to T700T CF. The wetting performance of T700M was best with the contact angle of 57.01°, and the values were 73.11° and 97.05° for T700 and T700T carbon fibers, respectively. IFSS of T700M CF/PPEK composite was 51.49 MPa and improved 30.32% compared to 700T CF/PPEK composite. Carbon fiber sizing with PPEK can distinctly improve their thermal stability, surface energy, wetting performance, and IFSS.

碳纤维表面改性

碳纤维表面改性

碳纤维表面处理改性
3 .碳纤维的表面处理 3.1 氧化处理 3.1.1 气相氧化法(图右为氧化示意图) 气相氧化使用的氧化剂有空气、氧气、臭氧等含氧 气体。氧化处理后,碳纤维表面积增大,官能基团 增多,可以提高复合材料界面的粘接强度和材料的 力学性能。如把碳纤维在450℃下空气中氧化1 0min,所制备的复合材料的剪切强度和拉伸强度 都有提高;采用浓度0.5~15mg/L的臭氧 连续导入碳纤维表面处理炉对碳纤维进行表面处理, 经处理后碳纤维复合材料的层间剪切强度可达7 8.4~105.8MPa;

3.2.3聚合物涂层 碳纤维经表面处理后,再使其表面附着薄层
聚合物,这就是所谓的上浆处理。这层涂覆 层即保护了碳纤维表面,同时又提高了纤维 对基体的浸润性。
3.2.4表面生成晶须法 在碳纤维表面,通过化学气相沉积生成碳化硅、硼 化金属、二氧化钛、硼氢化合物等晶须,能明显提 高复合材料的层间剪切强度,并且晶须质量只占纤 维的0.5% ~4%,晶须含量在3%~4%时 层间性能达到最大。生长晶须的过程包括成核过程 以及在碳纤维表面生长非常细的高强度化合物单晶 的过程。尽管晶须处理能获得很好的效果,但因费 用昂贵、难以精确处理,故工业上无法采用。
碳纤维表面改性
1121416028
一.定义 二.碳纤维表面结构 三.碳纤维的表面处理 1 氧化处理 2 表面电聚合 3 聚合物涂层 4 表面生成晶须法 5 等离子体处理 四.展望

碳纤维
定义 碳纤维是由有机纤维经碳化及石墨化处理 而得到的微晶石墨材料。碳纤维的微观结 构类似人造石墨,是乱层石墨结构,是一 种力学性能优异的新材料 。 碳纤维增强树脂基复合材料(CFRP) 由于具有密度小、比强度高、比模量高、 热膨胀系数小等一系列优异特性,在航天 器结构上已得到广泛的应用。其中碳纤维 是增强体,为主要的承力结构,树脂基体 起连接纤维和传递载荷的作用。

碳纤维表面处理对复合材料强度的影响

碳纤维表面处理对复合材料强度的影响

碳纤维表面处理对复合材料强度的影响【摘要】碳纤维增强复合材料由碳纤维与树脂基体共同组成,碳纤维与树脂基体的表面结合直接影响到复合材料的性能。

本文通过采用不同的碳纤维表面处理方法,对处理后的碳纤维表现进行分析,对复合材料的界面性能进行研究,并用实验测试复合材料的界面结合强度,结果表明,采用低电压,短时间的电化学处理较浓硝酸氧化处理,对复合材料的增强效果的影响更明显。

【关键词】碳纤维表面处理界面性能抗弯强度1 前言与传统金属材料相比,碳纤维增强树脂基复合材料具有耐高温、耐腐蚀、质量轻、机械强度高的优点,被广泛应用于航空航天、军事、汽车、体育等领域。

碳纤维是有机纤维在惰性气氛中经高温碳化和石墨化制成的纤维状碳,它具有乱层石墨结构,其密度仅为钢密度的1/4,具有优异的力学性能,热稳定性,是一种高性能的先进非金属增强材料。

尽管碳纤维性能优异,但,由于其属脆性材料,单独使用,许多性能无法得到充分的发挥。

只有与其它基体材料结合成复合材料,材料性能形成互补,才能有效发挥其优异的力学性能,因此,碳纤维在复合材料中被用作增强相。

用作复合材料的树脂基可分为两大类,一类是热固性树脂,另一类是热塑性树脂。

热固性树脂由反应性低分子量预聚体或带有活性基团的高分子量聚合物组成;成型时,在固化剂或热作用下进行交联、缩聚,形成具有网状交联体结构。

常见的有环氧树脂、双马来酰亚胺树脂、聚酰亚胺树脂以及酚醛树脂等。

热塑性树脂由线型高分子量聚合物组成,在温度超过熔点时熔融,具有流变性,属物理变化。

常见的有聚乙烯、尼龙、聚四氟乙烯等。

复合材料的界面由增强材料表面与基体材料表面相互作用形成的,它包含两相之间的过渡区域,界面相内的化学组成、分子排列、热性能、力学性能呈连续梯度性变化。

界面相的结构由增强材料与基体材料表面的组成及二者之间的反应性能决定的,因此纤维表现处理的结果将影响复合材料的性能。

通过纤维表面处理可以增强纤维表面的化学活性与物理活性,从而增加其与基体间的结合或粘结。

碳纤维表面处理技术分析

碳纤维表面处理技术分析

碳纤维表面处理技术分析随着近些年我国工业技术水平的不断提升,当前碳纤维材料的应用变得越来越广泛,且其相关的处理技术,也有这较为迅猛的发展趋势,进一步巩固了碳纤维材料在航空航天、建筑、化工、汽车等领域的应用成效。

为了强化相关人员的认识,本文通过对碳纤维表面处理技术的内容展开分析,希望能够起到一些积极的参考作用。

标签:碳纤维;表面处理;技术分析;探究在工业应用上,由于碳纤维材料具有较小的相对密度,且其比强较高、比模量高、热膨胀系数小等特点,所以其应用效果比着以往的材料更具优越性。

为了更好发挥碳纤维材料的作用,需要对其表面进行有效的处理,降低碳纤维表面的惰性,发挥其高性能的使用特点。

在调查中发现,针对碳纤维这种材料,国内外的表面改性研究都极为活跃,通过提升表面活性,能够强化碳纤维与基体树脂之间的界面性能,进而巩固复合材料层间剪切强度。

1 非氧化法1.1 气相沉积法针对碳纤维表面处理技术的内容,采用气相沉积法,可以对材料界面的黏结性能进行巩固,进一步增强复合材料的层间剪切强度。

在技术应用的过程中,主要可以采取两种方法:一种是对碳纤维材料进行加热,当其温度达到1200℃的时候,再利用相应的混合气体展开处理,甲烷等混合气体,会在碳纤维表面形成无定型碳的涂层,整个材料的剪切强度可以提升两倍;另一种是利用喹啉溶液来进行处理,同时经过干燥程序后,碳纤维复合材料层间的剪切强度能够提升2-3倍。

尽管这种方法能够提升复合材料的界面性能,但是其工艺条件比较苛刻,执行过程中具有一定的危险性,所以在工业化应用上并不是十分的广泛。

1.2 电聚合法在电场力的作用下,电聚合法可以令那些含有活性基团的单体,在碳纤维表面聚合为膜,进而对材料的表面形态、组成进行改善。

在对电聚合法进行应用的时候,主要采用一些热塑性的聚合物,但是由于这些聚合物自身不具备耐高温的性能,所以复合材料的高温层间剪切强度、湿态层间剪切强度,均会出现不同程度的下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维表面处理阅读报告
碳纤维是用分解温度低于熔融温度的纤维聚合物, 通过千度以上固相热解而制成的具有比强度高、比模量高、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能, 在航天、航空等高科技领域中被广泛用于碳纤维增强复合材料。

表面物理性能主要包括表面形貌、表面沟槽大小及分布、表面粗糙度、表面自由能等。

从表面形态上看, 碳纤维的表面有很多孔隙、凹槽、杂质及结晶, 这些对复合材料的粘结性能有很大影响。

碳纤维表面的化学反应活性与其活性基团的浓度密切相关,而这些活性基团主要为羟基、羧基和环氧基团等含氧官能团,故O/C比(氧元素与碳元素比值)可以间接反映碳纤维的化学活性
传统的粘合理论认为被粘物表面的不规则性有利于粘合剂的填入,固化后粘合剂和被粘物表面发生咬合而固定,同时表面粗糙的被粘物会增加真实的粘结面积,粘合强度亦随表面粗糙度的增加而增加,所以碳纤维表面沟槽状态和表面粗糙度可能对其界面强度有影响。

常用的表面处理方法有氧化法和非氧化法两大类。

氧化法
1.气相氧化法
气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等) 中, 在加温、加催化剂等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。

经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度(IFSS) 和层间剪切强度(ILSS) 等力学性能均可得到有效提高, 但材料的冲击强度降低较大。

此法按氧化剂的不同, 通常分为空气氧化法和臭氧氧化法。

采用空气氧化时, 氧化温度对处理效果有显著影响。

臭氧氧化法由于具有时间短、设备工艺简单、氧化缓和等特点, 也得到了广泛的应用。

近年来, 利用惰性气体氧化法进行表面处理,也得到了研究人员的关注。

2. 液相氧化法
液相氧化法是采用液相介质对碳纤维表面进行氧化的方法。

常用的液相介质有浓硝酸、混合酸和强氧化剂等。

液相氧化法相比气相氧化法较为温和, 一般不使纤维产生过多的起坑和裂解。

但是其处理时间较长, 与碳纤维生产线匹配难, 多用于间歇表面处理
3. 阳极氧化法
阳极氧化法, 又称电化学氧化表面处理, 是把碳纤维作为电解池的阳极、石墨作为阴极, 在电解水的过程中利用阳极生成的“氧”, 氧化碳纤维表面的碳及其含氧官能团, 将其先氧化成羟基, 之后逐步氧化成酮基、羧基和CO2的过程4等离子体氧化法
等离子体法主要是通过等离子体撞击碳纤维表面,从而刻蚀碳纤维表层,使其表面的粗糙度增加,表面积也相应增加。

由于等离子体粒子一般具有几个到几十个电子伏特的能量,使得碳纤维表面发生自由基反应,并引入含氧极性基团。

等离子体法还有可能使碳纤维表面微晶晶格遭到破坏,从而减小其微晶尺寸。

非氧化法
1. 表面涂层改性法
表面涂层改性法的原理是将某种聚合物涂覆在碳纤维表面, 改变复合材料
界面层的结构与性能, 使界面极性等相适应以提高界面粘结强度, 同时提供一个可消除界面内应力的可塑界面层。

活性涂层可显著改善复合材料的剪切性能, 而
且涂层浓度对性能的影响非常敏感。

碳纤维表面涂覆聚铝氧烷,在高温热处理,则碳纤维表面生成氧化铝涂层,使其抗氧化性能得到提高,可与金属复合制取碳纤维增强金属基复合材料。

2.气相沉积法
气相沉积技术对碳纤维进行涂覆处理是在高模量结晶型碳纤维表面沉积一层无定性碳来提高其界面黏接性能,增加复合材料的层间剪切强度。

气相沉积处理法是在碳纤维和树脂的界面引入活性炭的塑性界面区来松弛应力,从而提高了复合材料的界面性能。

3. 电聚合法
电聚合法是在电场力的作用下使含有活性基团的单体在碳纤维的表面聚合成膜,以改善其表面形态和组成经电聚合处理之后的碳纤维单丝的拉伸强度、拉伸模量、以及断裂伸长率都有明显提高,复合材料的层间剪切强度有了大幅度提高,冲击强度也有明显改善
4. 偶联剂涂层法
偶联剂涂层法所采用的偶联剂为双性分子,它的一部分官能团与碳纤维表面反应形成化学键,另一部分官能团与树脂反应形成化学键。

这样偶联剂就在树脂与碳纤维表面起到一个化学媒介的作用,将二者牢固地连在一起,从而达到提高界面强度的目的。

参考文献:
【1】石峰晖等,[J]碳纤维表面性质分析及其对复合材料界面性能的影响,航空材料学报,2010年,第30卷第3期,43-47.
【2】王赫等,[J]碳纤维表面处理技术的研究进展,合成纤维,2007年,No.1,29-32.
【3】季春晓等,[J]碳纤维表面处理方法的研究进展,石油化工技术与经济,2011年,第27卷,第2期,57-61.
【4】夏丽刚等,[J]碳纤维表面处理及其对碳纤维/树脂界面影响的研究,材料导报,2006年5月第20卷专辑Ⅵ,254-257。

相关文档
最新文档