圆内接四边形习题

合集下载

【专题】圆的内接四边形

【专题】圆的内接四边形
又 AOC ABC ,
AOC 120 .
D 60 ,
故选: B .
D.120
3. 如图,四边形 ABCD 是 O 的内接四边形, AD BC .若 BAC 45 , B 105 ,则下列等式成立的是 (
)
9
针对训练
强化提高
A. AB 1 CD 2

39. 如图,在 O 的内接四边形 ABCD 中, AB AD , C 110 .若点 P 为 AB 上,求 P 的度数.
40. 如图,已知四边形 ADBC 是 O 的内接四边形, AB 是直径, AB 10cm , BC 8cm , CD 平分 ACB .
(1)求 AC 与 BD 的长; (2)求四边形 ADBC 的面积.
32. 如图,四边形 ABCD 内接于 O , AB 9 , AD 15 ,BCD 120 ,弦 AC 平分 BAD ,则 AC 的长是 ()
A. 7 3 C.12
B. 8 3 D.13
33. 在圆内接四边形 ABCD 中,ACB ACD 60 ,对角线 AC 、BD 交于点 E .已知 BC 3 2 ,CD 2 2 ,
9. 如图,四边形 ABDC 内接于 O , BAC 60 , AD 平分 BAC 交 O 于点 D ,连接 OB 、 OC 、 BD 、 CD .
(1)求证:四边形 OBDC 是菱形; (2)若 ABO 15 , OB 1 ,求弦 AC 长.
10. 已知四边形 ABCD 是圆内接四边形, 1112 ,求 CDE .
则 CBE 度.
36. 如图, O 的内接四边形 ABCD 中,AB BC ,D 72,则 BAC

7

圆内接四边形的性质定理及其推论习题课件 2023—2024学年鲁教版(五四制)数学九年级下册

圆内接四边形的性质定理及其推论习题课件 2023—2024学年鲁教版(五四制)数学九年级下册

AD∶BD=1∶3, AE=DE=2,则半圆O的半径长为
()
A. 5
B.2 2
C.3 D.2 3
【点拨】
∵四边形 BCED 是半圆 O 的内接四边形, ∴∠AED=∠B,∠ADE=∠C. ∴△ADE∽△ACB.∴DBCE=AADC. ∵AE=DE=2,∴∠A=∠ADE. ∴∠A=∠C.∴AB=BC. 连接 BE,∵BC 为直径,∴∠BEC=90°,即 BE⊥AC.
(2)连接OE,交CD于点F,若OE⊥CD,求∠A的度数. 解:∵∠A=∠AEB,∴△ABE是等腰三角形. 又∵EO⊥CD,∴CF=DF. ∴EO是CD的垂直平分线.∴ED=EC. ∵DC=DE,∴DC=DE=EC. ∴△DCE是等边三角形.∴∠AEB=60°. ∴△ABE是等边三角形.∴∠A=60°.
又∵OA=OC,AC=4,∴OA=2 2.
∴⊙O 的半径为 2 2. 【答案】 B
3 如图,四边形ABCD内接于⊙O,DE是⊙O的直径, 连接BD,若∠BCD=120°,则∠BDE的度数是 () A.25° B.30° C.32° D.35°
【点拨】 连接BE.∵四边形ABCD内接于⊙O, ∴∠BAD+∠BCD=180°. 又∵∠BCD=120°,∴∠BAD=60°. ∴∠BED=∠BAD=60°. ∵DE是⊙O的直径,∴∠DBE=90°. ∴∠BDE=90°-∠BED=90°-60°=30°.
【点拨】 由题意可知∠AEF=∠ABC.
又∵∠A=∠A,∴△AEF∽△ABC.∴AAEB=EBFC=35. ∵BC 为直径,∴∠BEC=90°.∴∠BEA=90°. ∴cos∠BAC=AAEB=35.易得 sin∠BAC=45.
∴在 Rt△ ABE 中,BE=AB·sin∠BAC=6×45=254.

圆内接四边形的性质-北京习题集-教师版

圆内接四边形的性质-北京习题集-教师版

圆内接四边形的性质(北京习题集)(教师版)一.选择题(共5小题)1.(2019秋•西城区期末)如图,四边形ABCD内接于O,若80∠的度数是()∠=︒,则ABCADCA.40︒B.80︒C.100︒D.120︒2.(2019秋•海淀区校级月考)如图,四边形ABCD内接于O,过B点作BH AD⊥于点H,若135AB=,BCD∠=︒,4则BH的长度为(A.2B.22C.32D.不能确定3.(2017秋•门头沟区期末)如图,DCE∠的度∠=︒,那么BADDCE∠是圆内接四边形ABCD的一个外角,如果75数是()A.65︒B.75︒C.85︒D.105︒4.(2017•朝阳区一模)如图,四边形ABCD内接于O,E为DC延长线上一点,50∠的度数为(∠=︒,则BCEA)A.40︒B.50︒C.60︒D.130︒5.(2016•顺义区二模)如图,四边形ABCD 内接于O ,110A ∠=︒,则BOD ∠的度数是( )A .70︒B .110︒C .120︒D .140︒二.填空题(共6小题)6.(2019•丰台区模拟)如图,四边形ABCD 内接于O ,AB 为O 的直径,C 为弧BD 的中点,若40DAB ∠=︒,则ADC ∠= .7.(2019•海淀区校级一模)如图,点A 、B 、C 、D 、E 在O 上,且AOE ∠的度数为50︒,则B D ∠+∠的度数为 .8.(2019•西城区二模)如图,点A ,B ,C ,D 都在O 上,C 是BD 的中点,AB CD =.若50ODC ∠=︒,则ABC ∠的度数为 ︒.9.(2018•通州区三模)如图,点A ,B ,C ,D 是O 上的四个点,点B 是AC 的中点.如果60ABC ∠=︒,那么ADB ∠= .10.(2018秋•西城区校级月考)如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是 .11.(2017秋•东城区期末)O 是四边形ABCD 的外接圆,AC 平分BAD ∠,则正确结论的序号是 . ①AB AD =; ②BC CD =; ③AB AD =; ④BCA DCA ∠=∠; ⑤BC CD =.三.解答题(共4小题)12.(2019秋•海淀区校级月考)如图,四边形ABCD 内接于O ,2OC =,22AC = (1)求点O 到AC 的距离; (2)求ADC ∠的度数.13.(2017秋•朝阳区期末)如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒.求O 半径的长.14.(2015秋•北京校级期中)如图, 四边形ABCD 内接于O ,40OAC ∠=︒,求ABC ∠的度数 .15.(2012秋•东城区期末)如图,点A ,B ,C ,D 在O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,求OAD OCD ∠+∠的度数.圆内接四边形的性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2019秋•西城区期末)如图,四边形ABCD 内接于O ,若80ADC ∠=︒,则ABC ∠的度数是( )A .40︒B .80︒C .100︒D .120︒【分析】根据圆内接四边形的对角互补列式计算即可. 【解答】解:四边形ABCD 内接于O , 180100ABC ADC ∴∠=︒-∠=︒,故选:C .【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.2.(2019秋•海淀区校级月考)如图,四边形ABCD 内接于O ,过B 点作BH AD ⊥于点H ,若135BCD ∠=︒,4AB =,则BH 的长度为(A 2B .22C .32D .不能确定【分析】首先根据圆内接四边形的性质求得A ∠的度数,然后根据斜边长求得等腰直角三角形的直角边长即可. 【解答】解:四边形ABCD 内接于O ,135BCD ∠=︒, 18014545A ∴∠=︒-︒=︒,BH AD ⊥,4AB =, 2222BH ∴===,故选:B .【点评】本题考查了圆内接四边形及勾股定理的知识,解题的关键是从题目中得到等腰直角三角形,难道不大.3.(2017秋•门头沟区期末)如图,DCE∠的度∠=︒,那么BADDCE∠是圆内接四边形ABCD的一个外角,如果75数是()A.65︒B.75︒C.85︒D.105︒【分析】根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角即可解答.【解答】解:四边形ABCD内接于O,BAD DCE∴∠=∠=︒,75故选:B.【点评】此题考查了圆内接四边形的性质,熟记圆内接四边形的外角等于它的内对角是解题的关键.4.(2017•朝阳区一模)如图,四边形ABCD内接于O,E为DC延长线上一点,50∠的度数为(∠=︒,则BCEA)A.40︒B.50︒C.60︒D.130︒【分析】根据圆内接四边形的任意一个外角等于它的内对角求解.【解答】解:四边形ABCD内接于O,BCE A∴∠=∠=︒.50故选:B.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.5.(2016•顺义区二模)如图,四边形ABCD内接于O,110∠的度数是()∠=︒,则BODAA.70︒B.110︒C.120︒D.140︒【分析】依据圆内接四边形的性质求得C ∠的度数,然后再求得BOD ∠的度数即可. 【解答】解:四边形ABCD 内接于O , 180A C ∴∠+∠=︒. 18011070C ∴∠==︒-︒=︒. 2140BOD C ∴∠=∠=︒.故选:D .【点评】本题主要考查的是圆内接四边形的性质、圆周角定理的应用,求得C ∠的度数是解题的关键. 二.填空题(共6小题)6.(2019•丰台区模拟)如图,四边形ABCD 内接于O ,AB 为O 的直径,C 为弧BD 的中点,若40DAB ∠=︒,则ADC ∠= 110︒ .【分析】连接AC ,根据圆周角定理得到1202CAB DAB ∠=∠=︒,90ACB ∠=︒,计算即可.【解答】解:连接AC , 点C 为弧BD 的中点, 1202CAB DAB ∴∠=∠=︒,AB 为O 的直径,90ACB ∴∠=︒, 40DAB ∠=︒, 140DCB ∴∠=︒,1409050DCA ∴∠=︒-︒=︒, 1802050110ADC ∴∠=︒-︒-︒=︒,故答案为:110︒.【点评】本题考查的是圆周角定理的应用、圆内接四边形的性质,掌握半圆(或直径)所对的圆周角是直角是解题的关键.7.(2019•海淀区校级一模)如图,点A 、B 、C 、D 、E 在O 上,且AOE ∠的度数为50︒,则B D ∠+∠的度数为 155︒ .【分析】连接AB 、DE ,先求得25ABE ADE ∠=∠=︒,根据圆内接四边形的性质得出180ABE EBC ADC ∠+∠+∠=︒,即可求得155B D ∠+∠=︒.【解答】解:连接AB 、DE ,则ABE ADE ∠=∠, AOE ∠的度数为50︒, 25ABE ADE ∴∠=∠=︒,点A 、B 、C 、D 在O 上,∴四边形ABCD 是圆内接四边形,180ABC ADC ∴∠+∠=︒, 180ABE EBC ADC ∴∠+∠+∠=︒,180********B D ABE ∴∠+∠=︒-∠=︒-︒=︒.故答案为:155︒.【点评】本题考查了圆周角定理和圆内接四边形的性质,作出辅助线构建内接四边形是解题的关键.8.(2019•西城区二模)如图,点A ,B ,C ,D 都在O 上,C 是BD 的中点,AB CD =.若50ODC ∠=︒,则ABC ∠的度数为 100 ︒.【分析】先根据AB CD =.C 是BD 的中点,得到AB CD BC ==,再由圆周角定理得到11(180502)4022A ACB COD ∠=∠=∠=⨯︒-︒⨯=︒,最后根据三角形内角和定理计算即可.【解答】解:C 是BD 的中点,AB CD =.∴CD BC AB ==,50ODC ∠=︒,111(1802)(180502)40222A ACB COD ODC ∴∠=∠=∠=⨯︒-∠=⨯︒-︒⨯=︒,180180402100ABC A ACB ∴∠=︒-∠-∠=︒-︒⨯=︒.故答案为:100.【点评】本题考查了圆的有关性质.解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(2018•通州区三模)如图,点A ,B ,C ,D 是O 上的四个点,点B 是AC 的中点.如果60ABC ∠=︒,那么ADB ∠= 60︒ .【分析】根据圆内接四边形的性质得出ADC ∠的度数,进而解答即可. 【解答】解:点A ,B ,C ,D 是O 上的四个点,60ABC ∠=︒, 120ADC ∴∠=︒,点B 是AC 的中点. 60ADB ∴∠=︒,故答案为:60︒【点评】此题考查圆内接四边形,关键是根据圆内接四边形的性质得出ADC ∠的度数.10.(2018秋•西城区校级月考)如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是 75︒ .【分析】直接利用圆内接四边形的任意一个外角等于它的内对角求解可得. 【解答】解:四边形ABCD 是O 的内接四边形,且75DCE ∠=︒, 75BAD DCE ∴∠=∠=︒,故答案为:75︒.【点评】本题主要考查圆内接四边形的性质,解题的关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).11.(2017秋•东城区期末)O 是四边形ABCD 的外接圆,AC 平分BAD ∠,则正确结论的序号是 ②⑤ . ①AB AD =; ②BC CD =; ③AB AD =; ④BCA DCA ∠=∠; ⑤BC CD =.【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.【解答】解:①ACB ∠与ACD ∠的大小关系不确定,AB ∴与AD 不一定相等,故本结论错误; ②AC 平分BAD ∠,BAC DAC ∴∠=∠,BC CD ∴=,故本结论正确;③ACB ∠与ACD ∠的大小关系不确定,∴AB 与AD 不一定相等,故本结论错误; ④BCA ∠与DCA ∠的大小关系不确定,故本结论错误; ⑤AC 平分BAD ∠,BAC DAC ∴∠=∠,∴BC CD =,故本结论正确.故答案为②⑤.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 三.解答题(共4小题)12.(2019秋•海淀区校级月考)如图,四边形ABCD 内接于O ,2OC =,22AC = (1)求点O 到AC 的距离; (2)求ADC ∠的度数.【分析】(1)连接OA ,作OH AC ⊥于H ,根据勾股定理的逆定理得到90AOC ∠=︒,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出B ∠,根据圆内接四边形的性质计算,得到答案. 【解答】解:(1)连接OA ,作OH AC ⊥于H ,228OA OC +=,28AC =,222OA OC AC ∴+=,AOC ∴∆为等腰直角三角形, 122OH AC ∴==,即点O 到AC 的距离为2; (2)由圆周角定理得,1452B AOC ∠=∠=︒, 四边形ABCD 内接于O ,18045135ADC ∴∠=︒-︒=︒.【点评】本题考查度数圆内接四边形的性质、圆周角定理、勾股定理的逆定理,掌握圆内接四边形对角互补是解题的关键.13.(2017秋•朝阳区期末)如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒.求O 半径的长.【分析】根据圆周角定理得90ABC ∠=︒,然后在Rt ABC ∆利用勾股定理计算即可.【解答】解:AC 是O 的直径,90ABC ∴∠=︒,45ADB ∠=︒,45ACB ADB ∴∠=∠=︒,2AB =,2BC AB ∴==,2222AC AB BC ∴=+O ∴2【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.14.(2015秋•北京校级期中)如图, 四边形ABCD 内接于O ,40OAC ∠=︒,求ABC ∠的度数 .【分析】先根据圆内接四边形的性质推出180ADC x ∠=︒-,再根据圆周角定理推出3602AOC x ∠=︒-,然后根据等腰三角形的性质及三角形内角和定理即可得出结论 .【解答】解:四边形ABCD 内接于O ,180ADC ABC ∴∠+∠=︒,设ABC x ∠=,180ADC x ∴∠=︒-,23602AOC ADC x ∴∠=∠=︒-.OA OC =,OAC OCA ∴∠=∠, 1(180)402OAC AOC ∴∠=︒-∠=︒, 130x ∴=︒,130ABC ∴∠=︒.【点评】本题主要考查圆内接四边形的性质、 圆周角定理、 等腰三角形的性质及三角形内角和定理 .15.(2012秋•东城区期末)如图,点A ,B ,C ,D 在O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,求OAD OCD ∠+∠的度数.【分析】由四边形OABC 为平行四边形,根据平行四边形对角相等,即可得B AOC ∠=∠,由圆周角定理,可得2AOC ADC ∠=∠,又由内接四边形的性质,可得180B ADC ∠+∠=︒,即可求得120B AOC ∠=∠=︒,60ADC ∠=︒,然后又三角形外角的性质,即可求得OAD OCD ∠+∠的度数.【解答】解:四边形ABCD 是圆内接四边形,180B D ∴∠+∠=︒.四边形OABC 为平行四边形,AOC B ∴∠=∠. 又由题意可知2AOC ADC ∠=∠.180360ADC ∴∠=︒÷=︒.连接OD ,可得AO OD =,CO OD =.OAD ODA ∴∠=∠,OCD ODC ∠=∠.60OAD OCD ODA ODC D ∴∠+∠=∠+∠=∠=︒.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.。

圆内接四边形的性质判定定 理习题及答案

圆内接四边形的性质判定定    理习题及答案

17.已知:如图所示,平分. (1)求AC和DB的长; (2)求四边形ACBD的面积.
18.在锐角三角形ABC中,AD是BC边上的高,为垂足. 求证:E、B、C、F四点共圆.
19.如图,矩形ABCD中,AD=8,DC=6,在对角线AC上取一点O,以OC为半径 的圆切AD于点E,交BC于点F,交CD于点G. (1)求⊙O的半径; (2)设,请写出之间关系式,并证明.
12.如图,AB为半圆O的直径,C、D为半圆上的两点,,则 .
三、解答径,⊙O交AB、AC于D、
E,求证:.
14.求证:在圆内接四边形ABCD中,. 15.在等边三角形ABC外取一点P,若,求证:P、A、B、C四点共圆.
16.如图,⊙O的内接四边形ABCD中,M为CD中点,N为AB中点,于点 E,连接ON、ME,并延长ME交AB于点F.求证:.
角平分线AD和CE相交于H,∠B=60°,F在AC 查四点共圆的判定方
上,且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF.
法及利用四点共圆的
性质证明角相等问题. 2.处理过程:第(1)小题
只要证明四边形BDHE
的内对角互补即可,但
该小题的的难点恰在
于如何证明内对角互
5.圆内接四边形ABCD中,BA与CD的延长线交于点P,AC与BD交于点E,则
图中相似三角形有
A.5对 B.4对 C.3对 D.2对
6.如图,已知圆内接四边形ABCD的边长为,则四边形ABCD面积为
A. B.8 C. D.
T6
T7
T12
7.如图,在以BC为直径的半圆上任取一点P,过弧BP的中点A作于D.连接

共圆问题,引导学生作

圆内接四边形练习

圆内接四边形练习

(一)选择题1.如图,把正△ABC 的外接圆对折,使点A 与劣弧BC 的中点M 重合,折痕分别交AB 、AC 于D 、E ,若BC=5,则线段DE 的长为()335.3310.310.25.D C B A2.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A.3232.232.323.23.ππππ----D C B A3.如图所示,△ABC 是⊙O 的内接正三角形,四边形DEFG 是⊙O 的内接正方形,EF ∥BC ,则∠AOF 为( C )A.125°B.130°C.135°D.140°4.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB ,CD 过圆心O ,且AB⊥CD,则图中阴影部分的面积是( )2..2.4.ππππD C B A5.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC∥QR,则∠AOQ=( )A.60°B.65°C.72°D.75°6.如图,在半径为R 的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )R RD RC RB A n n n n 11)22.()21.()21.()22.(--(二)解答题 1.如图,ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P ,求证:AD•DC=PA•BC .2.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为(1)求证:△CDE∽△CBA;(2)求DE的长.3.已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF(1)求证:AB=AC;(2)若AC=3cm,AD=2cm,求DE的长.4.已知△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于E,(1)如图①,若AB=6,CD=2,求CE的长;(2)如图②,当∠A为锐角时,使判断∠BAC与∠CBE的关系,并证明你的结论;(3)若②中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图③,CA的延长线与圆O相交于E.请问:∠BAC与∠CBE的关系是否与(2)中你得出的关系相同?若相同,请加以证明,若不同,请说明理由.5.已知:如图,圆内接四边形ABCD,过C点作对角线BD的平行线交AD的延长线于E点.求证:DE•AB=BC•CD.6.如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.8.(1)已知:如图1,四边形ABCD内接于⊙O,延长BC至E.求证:∠A+∠BCD=180°,∠DCE=∠A.(2)依已知条件和(1)中的结论:①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系;②如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系.9.如图,⊙O为四边形ABCD外接圆,其中=,其中CE⊥AB于E.(1)求证:AB=AD+2BE;(2)若∠B=60°,AD=6,△ADC的面积为,求AB的长.。

中考数学总复习 圆内接四边形专项练习题

中考数学总复习 圆内接四边形专项练习题

中考数学总复习圆内接四边形专项练习题例题1:如图,已知四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°.求∠OCB及弧DC的度数.练:如图,四边形ABCD是⊙O的内接四边形,AB∥DC,∠BAD的平分线交⊙O于点P,交DC的延长线于点E,若∠BAD=86°,则∠PCE= °,⌒ADC的度数为例题2,如图,四边形ABCD是⊙O的内接四边形,弧AB=弧AD,∠BCD=120°,连接AC,DE⊥AC于点E,连接BE,若∠BED=150°,AC=37 ,求DE的长.练:如图,四边形ABCD是⊙O的内接四边形,AB=BD,BM⊥AC于点M,已知AC=11,CD=7,求CM的长.例3.如图,在△ABC中,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD,CD,CD与AP交于点E. 求证:∠1=∠2.练:如图,在△ABC内有一点D,使得DA=DB=DC,若∠DAB=20°,则∠ACB= °.例题2,如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F.求证:EF=DE.练:如图,锐角△ABC中,BD,CE是高线,DG⊥CE于点G,EF⊥BD于点F.求证:FG∥BC6.如图,已知△ABC,∠C=90°,将△ABC绕点A顺时针旋转x度(α为锐角),得到△ADE,连接BE,CD,延长CD交BE于点F.(1)用含有x的代数式表示∠ACD的度数为;(2)求证:点B,C,A,F四点共圆.(3)求证:点F为BE的中点.7.如图,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2.求AD的长度,课后习题:1.如图,⊙O内接四边形ABCD中,点E在BC延长线上,∠A+∠BOD=150°,则∠DCE= °2.如图,四边形ABCD是⊙O的内接四边形,∠A与∠C的度数之比为2:3,且弧AD的度数为100°,则弧AB的度数°3,如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且DB=DC.AC是直径,若∠ACB=52°,则∠DAE= °4.如图,在平行四边形ABCD中,AD=2,∠A=120°,CF⊥AB于F,连接DF交CB延长线于E,连接AE,则△AEF的面积为5.如图,已知P为长方形内一点,S△P AB=5, S△PBC=12, 则S△PBD=6.如图,在菱形ABCD中,∠A=110°,点E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()7.已知如图,四边形ABCD中,AB∥CD,AB=AC=AD=5,BC=6,求BD的长.8.如图,已知△ABC中,AH是高线,AT是角平分线,且TD⊥AB于点D,TE⊥AC于点E.求证:∠AHD=∠AHE.。

圆内接四边形综合题

圆内接四边形综合题

例2:如图,正方形ABCD的面积为5,E、F分别为CD、DA的中点,BE、CF相交于P,求AP的长
例3、如图,四边形ABCD内接于⊙O,CB=CD=4,AC与BD相交于E,AE=6,线段BE和DE 的长都是正整数,求BD的长
E
A
B D
P
F
E
D C
B
A
例5:如图,P 是⊙O 外一点,PA 与⊙O 切于点A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,
求证: ::.PB BD PC CD
例6:如图,直线AB 、AC 与⊙O 分别相切于B 、C 两点,P 为圆上一点,P 到AB 、AC 的距
离分别为6cm 、4cm ,求P 到BC 的距离
例7: 在半⊙O 中,AB 为直径,一直线交半圆周于C 、D ,交AB 延长线与M (MB<MA ,
AC<MD ),设 K 是△AOC 与△DOB 的外接圆除点O 外的另一个交点, 求证:∠MKO=90°
例8:如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=a,求:四边形ABCD的面积(用a表示)。

圆内接四边形的性质精选题36道

圆内接四边形的性质精选题36道

圆内接四边形的性质精选题36道一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°2.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°3.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°4.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°5.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=()A.30°B.50°C.70°D.80°6.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.27.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°11.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°12.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°二.填空题(共14小题)13.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB =.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.15.如图,点A、B、C、D、E在⊙O上,且的度数为50°,则∠E+∠C=°.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB =40°,则∠ABC=.17.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.18.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=度.19.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=.20.如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连接AE,若AE=4,则四边形ABCD的面积为.21.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=°.22.如图,已知四边形ABCD是圆O的内接四边形,∠BOD=80°,则∠BCD=.23.如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=°.24.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=°.25.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.26.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=.三.解答题(共10小题)27.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.28.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.29.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.30.已知:如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=5cm,AD=3cm,求DE的长.31.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB =45°.求⊙O半径的长.32.如图,四边形ABCD内接于⊙O,BD为直径,AC平分∠BCD.(1)若BC=5cm,CD=12cm,求AB的长;(2)求证:BC+CD=AC.33.如图,四边形ABCD内接于⊙O,OC=2,AC=2(1)求点O到AC的距离;(2)求∠ADC的度数.34.已知四边形ABCD是⊙O的内接四边形,∠DAB=120°,BC=CD,AD=4,AC=7,求AB的长度.35.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,连接BD交AC于点P.(1)求∠EDC的度数;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.36.已知四边形ABCD内接于⊙O,∠DAB=90°.(1)如图1,连接BD,若⊙O的半径为6,AD=AB,求AB的长;(2)如图2,连接AC,若AD=5,AB=3,对角线AC平分∠DAB,求AC的长.圆内接四边形的性质精选题36道参考答案与试题解析一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.3.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选:C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,解题的关键是灵活应用所学知识解决问题.4.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.【解答】解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.5.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=()A.30°B.50°C.70°D.80°【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故选:C.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.6.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.7.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°【分析】根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选:A.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∴∠C=180°﹣40°=140°.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).11.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,如图所示,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°【分析】根据平行线的性质求出∠B,根据圆内接四边形的性质求出∠D,根据圆周角定理解答.【解答】解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.二.填空题(共14小题)13.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB =70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ADB=∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=215°.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.15.如图,点A、B、C、D、E在⊙O上,且的度数为50°,则∠E+∠C=155°.【分析】连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.【解答】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB =40°,则∠ABC=70°.【分析】连接AC,根据圆周角定理得到∠CAB=∠DAB=20°,∠ACB=90°,计算即可.【解答】解:连接AC,∵点C为弧BD的中点,∴∠CAB=∠DAB=20°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC=70°,故答案为:70°.【点评】本题考查的是圆周角定理的应用、圆内接四边形的性质,掌握半圆(或直径)所对的圆周角是直角是解题的关键.17.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.【点评】此题主要考查了圆内接四边形的性质,关键是熟练掌握圆内接四边形的性质定理.18.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=38度.【分析】由已知我们可以将点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,从而根据同弧所对的圆周角等于圆心角的一半求得即可.【解答】解:∵AB=AC=AD,∴点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,∴∠CBD是弧CD对的圆周角,∠CAD是弧CD对的圆心角;∵∠CAD=76°,∴∠CBD=∠CAD=×76°=38°.【点评】本题利用了同弧对的圆周角是圆心角的一半的性质求解.19.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=60°.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故答案为:60°.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.20.如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连接AE,若AE=4,则四边形ABCD的面积为8.【分析】如图,连接AC,BD.由△ABC≌△ADE(SAS),推出∠BAC=∠DAE,AC=AE =4,S△ABC=S△ADE,推出S四边形ABCD=S△ACE,由此即可解决问题;【解答】解:如图,连接AC,BD.∵∠BCD=90°,∴BD是⊙O的直径,∴∠BAD=90°,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,∵AB=AD,BC=DE,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,AC=AE=4,S△ABC=S△ADE,∴∠CAE=∠BAD=90°,∴S四边形ABCD=S△ACE=×4×4=8.故答案为8.【点评】本题考查圆内接四边形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.21.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=130°.【分析】先根据圆周角定理求出∠A的度数,再由圆内接四边形的性质即可得出结论.【解答】解:∵∠BOD=100°,∴∠A=50°.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣50°=130°.故答案为:130.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.22.如图,已知四边形ABCD是圆O的内接四边形,∠BOD=80°,则∠BCD=140°.【分析】根据已知条件利用圆周角定理求出∠BAD的度数,再根据圆内接四边形对角互补即可求出∠BCD的度数.【解答】解:∵∠BAD为所对的圆周角且∠BOD=80°,∴∠BAD===40°,又∵四边形ABCD是圆O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣∠BAD=180°﹣40°=140°,故答案为:140°.【点评】本题考查圆周角定理以及圆内接四边形的性质,熟练掌握圆周角定理与圆内接四边形对角互补的性质是解题的关键.23.如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=80°.【分析】直接根据圆内接四边形的性质求解即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣100°=80°.故答案为:80.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.24.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=140°.【分析】先根据圆内接四边形的性质求出∠C的度数,再由圆周角定理即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠A=110°,∴∠C=180°﹣∠A=180°﹣110°=70°,∴∠BOD=2∠C=140°.故答案为:140.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.25.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.26.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=80°.【分析】根据圆内接四边形的性质得到∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF=∠A=50°,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF=∠A=50°,∴∠EDC+∠FBC=180°,∴∠E+∠F=360°﹣180°﹣50°﹣50°=80°,故答案为:80°.【点评】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互、圆内接四边形的任意一个外角等于它的内对角是解题的关键.三.解答题(共10小题)27.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【分析】(1)根据圆内接四边形的性质得到∠A=∠DCE,证明△ABD≌△DCE,根据全等三角形的性质证明结论;(2)过点D作DM⊥BE于M,根据等腰三角形的性质求出BM,进而求出CM,根据正切的定义求出DM,根据正切的定义计算,得到答案.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.【点评】本题考查的是圆内接四边形的性质、解直角三角形、全等三角形的判定和性质,掌握圆内接四边形的对角互补、锐角三角函数的定义是解题的关键.28.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.【点评】此题主要考查了弧长公式应用以及圆周角定理等知识,根据题意得出∠DCB的度数是解题关键.29.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.【分析】(1)根据角平分线的定义、圆内接四边形的性质解答;(2)过点A作AG⊥BD,分别证明Rt△AED≌Rt△AGD和Rt△AEC≌Rt△AGB,根据全等三角形的性质计算.【解答】(1)证明:∵AD平分∠BDF,∴∠ADF=∠ADB,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ADF=∠ABC,∵∠ACB=∠ADB,∴∠ABC=∠ACB,∴AB=AC;(2)解:过点A作AG⊥BD,垂足为点G.∵AD平分∠BDF,AE⊥CF,AG⊥BD,∴AG=AE,∠AGB=∠AEC=90°,在Rt△AED和Rt△AGD中,,∴Rt△AED≌Rt△AGD,∴GD=ED=2,在Rt△AEC和Rt△AGB中,,∴Rt△AEC≌Rt△AGB(HL),∴BG=CE,∵BD=11,∴BG=BD﹣GD=11﹣2=9,∴CE=BG=9,∴CD=CE﹣DE=9﹣2=7.【点评】本题考查的是圆内接四边形的性质、全等三角形的判定和性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.30.已知:如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=5cm,AD=3cm,求DE的长.【分析】(1)由圆内接四边形的性质,可求得∠ABC=∠2;由于∠1=∠2=∠3=∠4,故∠ABC=∠4,由此得证.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出AE及DE的值.【解答】(1)证明:∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3,∴∠ABC=∠4,∴AB=AC;(2)解:∵∠3=∠4=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB,∴,∵AB=AC=5cm,AD=3cm,∴AE==,∴DE==(cm).【点评】本题综合考查了角平分线,相似三角形,圆内接四边形的性质,是中学阶段的常规题目.31.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB =45°.求⊙O半径的长.【分析】根据圆周角定理得∠ABC=90°,然后在Rt△ABC利用勾股定理计算即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠ADB=45°,∴∠ACB=∠ADB=45°,∵AB=2,∴BC=AB=2,∴AC=,∴⊙O半径的长为.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.32.如图,四边形ABCD内接于⊙O,BD为直径,AC平分∠BCD.(1)若BC=5cm,CD=12cm,求AB的长;(2)求证:BC+CD=AC.【分析】(1)先利用圆周角定理得∠BAD=∠BCD=90°,则根据勾股定理可计算出BD =13cm,再证明△ABD为等腰直角三角形,然后根据等腰直角三角形的性质得到AB的长;(2)把△ABC绕点A逆时针旋转90°得到△ADE,如图,根据旋转的性质得到∠CAE =∠BAD=90°,CA=CE,∠ABC=∠ADE,再证明E点在CD的延长线上,于是可判断△ACE为等腰直角三角形,所以CE=AC,从而得到结论.【解答】(1)解:∵BD为直径,∴∠BAD=∠BCD=90°,在Rt△BCD中,BD===13(cm),∵AC平分∠BCD,∴∠ACB=∠ACD,∴AB=AD,∴△ABD为等腰直角三角形,∴AB=BD=cm;(2)证明:把△ABC绕点A逆时针旋转90°得到△ADE,如图,则∠CAE=∠BAD=90°,CA=CE,BC=DE,∠ABC=∠ADE,∵∠ABC+∠ADC=180°,∴∠ADE+∠ADC=180°,∴E点在CD的延长线上,∴△ACE为等腰直角三角形,∴CE=AC,而CE=CD+DE=CD+CB,∴BC+CD=AC.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理和旋转的性质.33.如图,四边形ABCD内接于⊙O,OC=2,AC=2(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)连接OA,作OH⊥AC于H,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B,根据圆内接四边形的性质计算,得到答案.【解答】解:(1)连接OA,作OH⊥AC于H,OA2+OC2=8,AC2=8,∴OA2+OC2=AC2,∴△AOC为等腰直角三角形,∴OH=AC=,即点O到AC的距离为;(2)由圆周角定理得,∠B=∠AOC=45°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣45°=135°.【点评】本题考查度数圆内接四边形的性质、圆周角定理、勾股定理的逆定理,掌握圆内接四边形对角互补是解题的关键.34.已知四边形ABCD是⊙O的内接四边形,∠DAB=120°,BC=CD,AD=4,AC=7,求AB的长度.【分析】根据圆周角定理得出∠DAC=∠CAB,进而利用勾股定理得出AF的值以及三角函数解答即可.【解答】解:作DE⊥AC,BF⊥AC,∵BC=CD,∴,∴∠CAB=∠DAC,∵∠DAB=120°,∴∠DAC=∠CAB=60°,∵DE⊥AC,∴∠DEA=∠DEC=90°,∴sin60°=,cos60°=,∴DE=2,AE=2,∵AC=7,∴CE=5,∴DC=,∴BC=,∵BF⊥AC,∴∠BF A=∠BFC=90°,∴tan60°=,BF2+CF2=BC2,∴BF=AF,∴,∴AF=2或AF=,∵cos60°=,∴AB=2AF,当AF=2时,AB=2AF=4,∴AB=AD,∵DC=BC,AC=AC,∴△ADC≌△ABC(SSS),∴∠ADC=∠ABC,∵ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ADC=∠ABC=90°,但AC2=49,,AC2≠AD2+DC2,∴AB=4(不合题意,舍去),当AF=时,AB=2AF=3,∴AB=3.【点评】此题考查圆内接四边形的性质,关键是根据圆周角定理和勾股定理以及三角函数解答.35.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,连接BD交AC于点P.(1)求∠EDC的度数;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.【分析】(1)由圆周角定理得出∠ADC=90°,结合平角的定义可求解;(2)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值;(3)过点O作OG⊥BD于点G,由垂径定理可得BG=DG,利用PD2+PB2=8,可求半径为2,即可求解.【解答】解:(1)∵AC是⊙O的直径,∴∠ADC=90°,∵∠ADC+∠EDC=180°,∴∠EDC=90°;(2)∵∠CAE+∠E=90°,∠CAE+∠ACD=90°,∴∠E=∠ACD,又∠ACE=∠ADC=90°,∴△ACE∽△ADC,∴,即AC2=AD•AE.设DE=x,则AC=x,即(x)2=AD(AD+x).整理,得AD2+AD•x﹣20x2=0.解得AD=4x或AD=﹣5x(舍去).∴DC==2x.∴tan∠ABD=tan∠ACD==2;(3)如图,过点O作OG⊥BD于点G,由垂径定理,得BG=DG,设BG=DG=m,则PD=m+PG,PB=m﹣PG,∵PD2+PB2=8,∴(m+PG)2+(m﹣PG)2=8,整理,得2m2+2PG2=8,即m2+PG2=4.∵∠DPC=45°,∴OG=PG.∴OD2=DG2+OG2=m2+PG2=4,∴⊙O的半径为2.∴AC=4.【点评】本题是圆的综合题,考查了圆周角定理,圆内接四边形的性质,相似三角形的判定与性质,勾股定理等知识,根据题意表示出AD,DC的长是解题关键.36.已知四边形ABCD内接于⊙O,∠DAB=90°.(1)如图1,连接BD,若⊙O的半径为6,AD=AB,求AB的长;(2)如图2,连接AC,若AD=5,AB=3,对角线AC平分∠DAB,求AC的长.【分析】(1)如图1,先利用圆周角定理得到BD为直径,即BD=12,再证明△ABD为等腰直角三角形,然后根据等腰直角三角形求出AB;(2)如图2,作BH⊥AC于H,先利用圆周角定理得到BD为直径,利用勾股定理计算出BD=,再证明△CDB为等腰直角三角形得到BC=BD=,接着在Rt△ABH中计算出AH=BH=,然后在Rt△BCH中计算出CH=,从而得到AC 的长.【解答】解:(1)∵∠DAB=90°∴BD是直径,∴BD=12,∴2AB2=144,∴AB=;(2)如图2,连接BD,∵∠DAB=90°,AD=5,AB=3,∴BD=,∵AC平分∠DAB,∴∠DAC=∠CAB,∴=,∴DC=CB,∵四边形ABCD内接于⊙O,∵∠DAB=90°,∴∠DCB=90°,∴BC=,作BH⊥AC,∵∠CAB=45°,∴AH=BH=,CH=,∴AC=.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理和等腰直角三角形的判定与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆内接四边形一 、引入新课1. 如图(1),△ABC 叫⊙O 的____________三角形,⊙O 叫△ABC 的_ ____ _圆。

2. 如上图(1),若的度数为1000,则∠BOC=_______,∠A=__________.3. 如图(2)四边形ABCD 中, 若∠B 与∠1互补,AD 的延长线与DC 所夹∠2=600,则∠1=___,∠B=___.二、探索交流如图(3),四边形ABCD 的各顶点都在⊙O 上,所以四边形ABCD 是⊙O 的_____________四边形,⊙O 叫四边形ABCD 的________________圆.(1)如图3,在⊙O 的内接四边形ABCD 中,∠A 与∠C,∠B 与∠D 分别是它的两组对角,∠A 所对的弧是_______________, ∠C 所对的弧是________________.(2)∠A 与∠C 所对的两条弧的度数之和是________________度,由此你发现∠A 与∠C 有怎样的数量关系_______________,∠B 与∠D 呢_______________。

得到定理: ________________________ ___________________. (3)如右图,延长BC 到点E ,得到∠DCE, ∠DCE 是四边形ABCD 的一个 外角,∠A 称∠DCE 的内对角,它两个的大小有什么关系___________. 得到推论: __________________三、练一练(一)1、四边形ABCD 内接于⊙O ,则∠A+∠C=___________,∠B+∠ADC=____________;若∠B=800, 则∠ADC=___________ ∠CDE=___________(图1)、四边形AB CD 内接于⊙O ,∠BOD=1000,则∠BAD=___________,∠BCD=___________(图2)3、梯形ABC D 内接于⊙O,AD ∥BC, ∠B=750,则∠C=______________(图3)21ED CBAOC B AODABC图3图2图1OEDCB A1题图3题图2题图4、四边形ABCD 内接于⊙O ,∠A:∠C=1: 3,则∠A=_______________,5、圆内接平行四边形必为( )A.菱形B.矩形C.正方形D.等腰梯形 6、、在⊙O 中,∠CBD=30°, ∠BDC=20°,求∠A四 、 练习1、已知如图,在圆内接四边形ABCD 中,∠B=30°,则∠D= _____ . 2、已知四边形ABCD 内接于⊙O ,且∠A :∠C=1:2,则∠BOD= 度.3、如图,AB 是半圆O 的直径,C 、D 是AB 上两点,∠ADC=120°,则∠BAC 的度数是 度.4、如图,在⊙O 的内接四边形ABCD 中,∠BCD=110°,则∠BOD= 度.5、如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为6、如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是7、如图,四边形ABCD 内接于⊙O ,若∠C=36°,则∠A 的度数为8、圆内接四边形ABCD 中,若∠A :∠B :∠C=1:2:5,则∠D 等于 9、如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别 在两圆上,若∠ADB=100°,则∠ACB 的度数为1题图3题图4题图5题图6题图7题图10、如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为23.(1)求证:△CDE∽△CBA;(2)求DE的长.11、已知:如图,两个等圆⊙O1和⊙O2相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:(1)四边形EFDC是平行四边形;(2)弧CE = 弧DF巩固加深一、 选择题1. 下列关于圆内接四边形叙述正确的有①圆内接四边形的任何一个外角都等于它的内对角;②圆内接四边形对角相等;③圆内接四边形中不相邻的两个内角互补;④在圆内部的四边形叫圆内接四边形. 个 个 个 个2.圆内接四边形ABCD 中,//AD BC ,AC 与BD 交于点E ,在下图中全等三角形的对数为 对 对 对 对3.圆内接四边形ABCD 中,39,25,60,52AB BC CD DA ====,则圆的直径为PT2 T4 T54.如图,四边形ABCD 为圆内接四边形,AC 为BD 的垂直平分线,60,ACB ABa ∠==o,则CD =A.3a B.2a C.12a D.13a 5.圆内接四边形ABCD 中,BA 与CD 的延长线交于点P,AC 与BD 交于点E,则图中相似三角形有 对 对 对 对6.如图,已知圆内接四边形ABCD 的边长为2,6,4AB BC CD DA ====,则四边形ABCD 面积为A.163 C.323D.DT6 T7 T127.如图,在以BC 为直径的半圆上任取一点P,过弧BP 的中点A 作AD BC ⊥于D.连接BP 交AD 于点E,交AC 于点F,则:BE EF =:1 :2 :1 D.以上结论都不对8.直线370x y +-=与20kx y --=与两坐标轴围成的四边形内接于一个圆,则实数k = 二、填空题9.圆内接四边形ABCD 中,cos cos cos cos A B C D +++= . 10.三角形三边长为5,12,13,则它的外接圆圆心到顶点的距离为 . 11.圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠= .12.如图,AB 为半圆O 的直径,C 、D 为半圆上的两点,20BAC ∠=o,则ADC ∠= . 三、解答题13.如图,锐角三角形ABC 中,60A ∠=o,BC 为圆O 的直径,⊙O 交AB 、AC 于D 、E ,求证:2BC DE =.14.求证:在圆内接四边形ABCD 中,AC BD AD BC AB CD ⋅=⋅+⋅.15.在等边三角形ABC 外取一点P,若PA PB PC =+,求证:P 、A 、B 、C 四点共圆.16.如图,⊙O 的内接四边形ABCD 中,M 为CD 中点,N 为AB 中点,AC BD ⊥于点E ,连接ON 、ME ,并延长ME 交AB 于点F.求证:MF AB ⊥.BABC17.已知:如图所示,10,8,AB cm BC cm ==CD 平分ACB ∠. (1)求AC 和DB 的长; (2)求四边形ACBD 的面积.18.在锐角三角形ABC 中,AD 是BC 边上的高,,,,DE AB DF AC E F ⊥⊥为垂足. 求证:E 、B 、C 、F 四点共圆.BC19.如图,矩形ABCD 中,AD=8,DC=6,在对角线AC 上取一点O,以OC 为半径的圆切AD 于点E,交BC 于点F,交CD 于点G.(1)求⊙O 的半径R ;(2)设,BFE GED αβ∠=∠=,请写出,,90αβo之间关系式,并证明.(参考答案)一、 选择题1-5 BBCAB 6-8 DAB 二、填空题9. 0 10.13211.90o 12.110o三、解答题13.法一:302ABE ABE AB AE ∠=⇒∆=o在Rt 中, 12AD AE DE ADE ACB AC AB BC ∆∆⇒===∽ 法二:连接BE,»30ABE DE∠=⇒o 的度数为60o 60DOE ⇒∠=o 即ODE ∆为正∆ OD DE ⇒=14.在AC 上取点E,使1,23ADE ∠=∠∠=∠又AE BCADE BDC AE BD AD BC AD BD⇒∆∆⇒=⇒⋅=⋅∽ ①1ADE ADB CDE ABD ACD ABD ECD∠=∠⇒∠=∠∠=∠∆∆又得∽AB BDBD EC AB CD EC CD⇒=⋅=⋅即 ② ①+②即可15.延长PC 至D,作CAD BAP ∠=∠,并取AD=AP ,则ADP ABP ABP ACD ∆≅∆⇒∠=∠⇒P 、A 、B 、C 四点共圆16.,DE EC DM MC EM DM ⊥=⇒= MDE DEM ⇒∠=∠90EAF AEF MDE AEF DEM MEC ⇒∠+∠=∠+∠∠=∠+∠=o17.(1)6,AC BD ==AC(2)49ACB ADB ABCD S S S ∆∆=+=四边形18.法一:连结EF,,9090180DE AB DF AC AED AFD ⊥⊥⇒∠+∠=+=ooo⇒A 、E 、D 、F 四点共圆DEF DAF BEF C ⇒∠=∠⇒∠+∠90180BED DEF C DAF C =∠+∠+∠=+∠+∠=oo法二: A 、E 、D 、F 四点共圆DEF DAF ⇒∠=∠ 9090AEF DEF DAF C ⇒∠=-∠=-∠=∠oo19.(1)10156104OE AO R R AEO ADC R CD AC -∆∆⇒=⇒=⇒=∽ (2)90EFB EGC βα∠=∠⇒+=o。

相关文档
最新文档