天线原理与设计(王建)1PDF版

合集下载

天线原理与设计(王建)4PDF版

天线原理与设计(王建)4PDF版

可得

=
j Im [e− jβ R1 4πρ
+ e− jβ R2
− 2 cos(β l)e− jβr ]
(2.21) (2.22) (2.23)
再由麦氏方程 ∇ × H = jωε0E ,可得

=
jη0 I m 4πρ
[( z
ez + l)
R2
量法求辐射功率的表示相同,但其中的电磁场已经不同。
坡印亭矢量法中所用的电磁场是远区场,这里的积分面
在天线表面,式中的电磁场必须是近场。
式(2.26)中的电磁场矢量分别为 E = ρˆ Eρ + zˆEz和 H = ϕˆHϕ ,

E × H* = zˆEρ Hϕ* − ρˆ Ez Hϕ*
(2.27)
返回
=
Z0′2 Rr
(2.18)
链接
(6) 对称振子谐振长度的缩短现象
对称振子的谐振长度是其输入阻抗的虚部为零时的 长度。由前面图可见,Xin=0对应的电长度略小于0.25和 略小于0.5。这一现象称之为缩短效应。振子天线愈粗, 缩短愈多。所以,实际使用的半波振子全长是小于半个 波长的。产生缩短的原因大致有两点:
当ρ=a时,这三个近场分量就是振子圆柱表面的场。
2. 感应电动势法求辐射阻抗
假如我们把坡印亭矢量法中的大球面缩小,直到缩小
到天线的圆柱表面,通过这一封闭柱面的总功率表示为
Pr
=
1 2
�∫∫s E× H*ids
(2.26)
式中,s为圆柱表面,ds = nˆds ,nˆ 为圆柱表面的外法线单位 矢量,ds为积分面元。从形式上看,式(2.26)与坡印亭矢
⎪⎩β = ω L1C1

天线原理与设计—第一章天线参数

天线原理与设计—第一章天线参数

1.2 天线主要的特性参数
圆极化和椭圆极化
对于两个相互垂直的线极化波,当他们幅度相同 相位相差 90°是形成圆极化波,当他们幅度不同 的时候,则形成椭圆极化波。他们根据旋转方向 不同,又分为左旋和右旋。
1.2 天线主要的特性参数
天线的极化
• 当来波的极化方向与接收天线的极化方向不一致 时,接收到的信号都会变小,也就是说,发生极 化损失。 • 当接收天线的极化方向与来波的极化方向完全正 交时,例如用水平极化的接收天线接收垂直极化 的来波,或用右旋圆极化的接收天线接收左旋圆 极化的来波时,天线就完全接收不到来波的能量, 这种情况下极化损失为最大,称极化完全隔离。
辐射近场区的场以辐射场为主,但场随空间角度的分 布会随 R 的变化而变化,场的径向分量也有可能较大。 这一区域的范围一般定义为 (D > )。 当天线的尺寸与波长相比很小时,这一区域可能不存 在。对于聚焦于无穷处的天线,这一区域也称为菲涅 耳(Fresnel)区。 远场区则是我们最关心的区域,我们的测量几乎都必 须在这个区域内进行。
1.1 空间源产生的场
L=lambda/2
L=3*lambda/2
1.1 空间源产生的场
一般根据R的变化可以将空间分为感应近场区、辐射近 场 区 ( 菲 涅 耳 区 Fresnel ) 和 远 场 区 ( 夫 琅 和 费 Fraunhofer)三个区,如图所示。
1.1 空间源产生的场
感应近场区的场主要是感应场,其外边界一般定义 为 ,其中,D为天线的最大尺寸,为 工作波长。如果天线是非常短的偶极天线,其外边界 定义为 。。
1.2 天线主要的特性参数
主瓣宽度
场强从主瓣最大值下降到最大值的0.707倍或功率从 主瓣的功率最大值下降到主瓣功率最大值一半时两 点之间的角度 主瓣宽度通常指方向 图某个截面内的主瓣 宽度。如果天线方向 图不是旋转对称的 , 则各个截面内的主瓣 宽度不等。一般情况 下主要考虑 E 面和 H 面 内的主瓣宽度。

天线原理与设计3.2.2 T形天线、 Γ形天线及斜天线

天线原理与设计3.2.2 T形天线、 Γ形天线及斜天线
时,水平臂相当于对称振子 的一个臂,对高空有一定的辐射能力,此时对地面波、 天波 均有较强辐射,方向图如图3-2-17(c)所示。
图 3-2-18 h较低,l较长时Γ形天线水平平面方向图
(3) 当水平臂长l较长而h较低时,水平臂受其地面负镜像 的影响而对高空辐射弱,天线仍然沿地面方向辐射最强,但 与鞭状天线不同之处在于这种Γ 的方向性。其水平平面方向图如图3-2-18所示,垂直平面方 向图如图3-2-17(d)
且一般使l≥h,尽量让h高些。超长波T形天线的电高度 h/λ一般都小于0.15。T形天线电流分布如图3-2-11所示,直立 部分电流分布比较均匀,但水平部分两臂的电流方向则相反。
T形天线结构简单,架设也不困难,其高度h可以比普通 的鞭状天线高。为了提高T形天线的效率,其水平部分可用 多根平行导线构成,如图3-2-12所示,也可以附设地网来减
由于Ez与水平臂有一夹角,水平臂感应电动势将减小。故这 种Γ形天线在水平平面有一定的方向性,在使用时应注意。
若水平臂很短,其感应电动势很小,对水平平面方向性
图 3-2-10 T形天线
图3-2-11 T形天线的电流分布
图 3-2-12 宽T形天线
2. 把直立软天线倾斜架设就成为斜天线,如图3-2-13所示, 这种天线架设比较方便,把单导线一端挂在树木或其它较高
由于地面波传播中有波前倾斜现象(参考9.2节),因而在 水平平面内具有微弱的方向性, 如图3-2-14(a)所示。在垂直 平面内的30°~60°方向上有较明显的方向性,如图3-214(b)
3.2.2 T形天线、 Γ形天线及斜天线
T形天线、Γ形天线是超长波天线的基本形式。 1. T形天线 T形天线结构如图3-2-10所示,它由水平部分(称为顶容 线)、 下引线和接地线组成,由图可知,T形天线类似于加辐 射叶的鞭状天线,只是其顶部的辐射叶较长罢了。T形天线

天线原理与设计(王建)8PDF版

天线原理与设计(王建)8PDF版
0 0
4π | Fmax |2
(6.8)
2
W = ∫ dϕ ∫
0

π
0
π⎛ Z F (θ ) sin Z ⎞ 0 sin θ dθ = 2π ∫ ⎜ ⋅ ⎟ sin θ dθ 2 0 Fmax ⎝ sin Z 0 Z ⎠
2
4π Z 0 2 β L (ξ +1) / 2 sin Z 2 4π = ( ) ∫ ( ) dZ = g (Z0 ) β L ( ξ − 1) / 2 β L sin Z 0 Z βL
δ =π /N
(6.16)
当N=10时,正是如图中 红线所示的端射阵方向图, 这个方向图就是10单元强方 向性端射阵的方向图。
6.3.3 强方向性端射阵的方向性系数
由式(6.12) D = β L / g ( Z 0 ) ,取 g ( Z 0 ) = g min = 0.871 ,可得 强方向性端射阵的方向性系数为
(6.3) (6.4) (6.5) (6.6) (6.7)
链接
δ L = Nd , ξ = 1 + βd 端射阵方向图最大值出现在θ=0处,因此令 Z 0 = Z |θ =0 = β L(1 − ξ ) / 2 sin( Z 0 ) Fmax = Z0
由方向性系数公式
4π D = 2π = π 2 W d ϕ F ( θ )sin θ d θ ∫ ∫
βL 2π Nd Nd L De = = ⋅ = 7.213 ≃ 1.8 × (4 ) = 1.8D g ( Z 0 ) λ 0.871 λ λ
(6.17)
式中,D=4L/λ为普通端射阵的方向性系数。
6.3.4 强方向性端射阵的波瓣宽度
1. 主瓣零点宽度2θ0 由前面式(6.3),即

天线原理与设计(王建)3PDF版(优选.)

天线原理与设计(王建)3PDF版(优选.)

+
I1 I0
e− jβ r1 ]
r1
作远场近似:对幅度 1/ r1 ≃ 1/ r0
对相位 r1 = r0 − rˆ0izˆd = r0 − d cosθ
(1.89)
并设
I1 / I0 = me− jα
(1.90)
式中,m为两单元电流幅度比,α为两单元电流之间的相
位差,若α>0,则I1滞后于I0;若α<0,则I1超前于I0 ; 若α=0 ,则I1与I0同相位。式(1.89)可写作
(1.93)
合成相差
ψ = β d cosθ − α
(1.94)
由式(1.92)可见,二元阵总场方向图由两部分相乘而 得,第一部分f0(θ,φ)为单元天线的方向图函数;第二部 分fa(θ,φ)称为阵因子,它与单元间距d、电流幅度比值m、 相位差α和空间方向角θ有关,与单元天线无关。因此 得方向图相乘原理:
(1.106)
阵因子为
N −1
N −1
∑ ∑ = E0
e = E jn( β d cosθ −α ) 0
e jnψ = E0 fa (ψ )
n=0
n=0
+ 2 + e jβd sinθ sinϕ ]
=
j 60I r
e− jβ r
− jβ d sinθ sinϕ
f0 (θ ,ϕ )[e 2
+ e ] jβ d sinθ sinϕ 2
2
=
j 60I r
e− jβ r
f0


)4
cos2
(
βd 2
sinθsinຫໍສະໝຸດ )=j 60I r
e− jβ r

天线原理与设计(王建)6PDF版

天线原理与设计(王建)6PDF版

(1) 传输线模式
见图(b),由端口a-b或e-f向短路端看去的输入阻抗为
Zt = jZ0 tan(β l / 2)
(4.19)
式中,Z0是双线传输线的特性阻抗。b、e两点等电位, 则a-b两点的输入电流为
(2) 天线模式
U /2 It = Zt
(4.20)
见图(c),由于c、d两点同电位,g、h同
f0
f0
π
RA
(4.12)
由此式可见,对称振子的频带宽度与它的平均特性阻抗
Z'0有关。如果RA不变,那么Z'0愈小带宽就愈宽。由Z'0的
表示
Z0′
= 120[ln(
2l ρe
)
− 1]
(4.13)
可见,减小Z'0的有效途径是增大振子的截面半径。在中、 短波波段,广泛采用架设在地面上一定高度的水平对称
天线原理与设计
教师: 王建 电子工程学院二系
第四章 双极与单极天线
双极天线就是前面提到的对称振子天线,这种天线 从馈电输入端看去有两个臂。所谓单极天线,就是从输 入端看去只有一个臂的天线,如导电平板上的鞭天线, 垂直接地天线等。
4.1 近地水平与垂直半波天线
1、近地水平半波天线
近地水平半波振子天线广泛应用于短波(λ=10~100 米)通信中,其振子臂可由黄铜线、钢包线和多股软铜线 水平拉直构成,中间由高频绝缘子连接两臂,可由双线 传输线馈电,如下图所示。
链接
4.2 对称天线的频带宽度
天线的电气参量大多数都是频率的函数。当工作频 率偏离中心频率(设计频率)时,可能使方向图发生畸变, 增益下降,馈电传输线上驻波增大等。因此,工程上往 往要规定一个频率范围。在此频率范围内,天线的电特 性变化不影响工作,这个频率范围就是工作频带宽度。

天线设计原理

天线设计原理
为 yz 平面,H 面为 xz 平面。就八木天线来说,在最大辐射的 y 轴方向其辐
射电磁波的电场平行于圆柱振子长度方向,则其 E 面为 yz 平面,H 面为 xy 平面。
表 0-1 给出了这两个天线的 E 面和 H 面及其方向图函数表示。
表 0-1 图 0-3 所示的八木天线和角锥喇叭天线的 E 面和 H 面及其方向图函数表示
5
《天线原理与设计》讲稿
王建
(a) 极坐标幅度方向图
(a) 直角坐标幅度方向图
(c) 极坐标分贝方向图
(d) 直角坐标分贝方向图
图 0-2 七元八木天线xy平面(H面,θ=90o)内的二维场强幅度和分贝表示的归一化方向图
天线方向图一般呈花瓣状,称之为波瓣或波束。其中包含最大辐射方向的波
瓣称之为主瓣,其它的称为副瓣或旁瓣,并分为第一副瓣、第二副瓣等,与主瓣
■三维方向图
以图 0-1(a)所示的典型七元八木天线为例,其辐射电场幅度的球坐标三维方 向图和直角坐标三维方向图如图 0-1(b)(c)所示。它们是以天线上某点为中心,远 区某一距离为半径作球面,按球面上各点的电场强度模值与该点所在的方向角 (θ ,ϕ )而绘出的。三维场强方向图直观、形象地描述了天线辐射场在空间各个方 向上的幅度分布及波瓣情况。但是在描述方向图的某些重要特性细节如主瓣宽 度、副瓣电平等方面则显得不方便。因此,工程上大多采用二维方向图来描述天 线的辐射特性。
图数据并绘出方向图。大多线极化天线的远区辐射电磁场一般可表示为如下形式

=
E0
e− jβr r
f (θ ,ϕ )
(0.1)

=
Eθ η0
(0.2)
4
《天线原理与设计》讲稿

天线原理与设计(王建)9PDF版

天线原理与设计(王建)9PDF版

EsmW cos( β l cos θ ) − cos β l − jβ r H sθ = − j e π rη sin θ
(7.13)
缝隙天线产生的电场为 EsmW cos( β l cosθ ) − cos β l − jβ r Esϕ = − H sθη = j e (7.14) πr sin θ 式中,Esm是缝隙口面上电场腹点值,因是细缝(W<<λ), 在Esm处得电压V0= EsmW。 可见,理想缝隙的方向图与对偶的电振子的方向图 相同,只不过场的极化方向互换而已。 电振子电磁场为: Edθ 、Hdφ 缝隙电磁场为: Hsθ 、Esφ ■缝隙天线的方向图 )时,缝隙方向图如下图所示。 当为半波缝隙(2l=λ/2 /2)
天线原理与设计
教师: 王建
电子工程学院二系
第七章 开槽天线 (Slot Antennas)
开槽天线又叫缝隙天线。为了分析的方便,将用到 巴俾涅原理。利用巴俾涅原理在分析开槽(缝隙)天线时, 可将开槽天线用一互补的金属天线等效,若互补的金属 天线在空间的场能求得,则开槽天线的辐射场就能确 定,但要经过电磁对偶关系求得。因此,这章将先介绍 两个原理,一是电磁对偶原理,一是巴俾涅原理。
如果一个分析系统中既有电流 i e (伴随有电荷 ρ e ),也 有磁流 i m(或伴随有磁荷ρ m),则可分别求解由电流源产生 的场 Ee,He ( De = ε Ee,Be = µ He)和由磁流源产生的场 Em,Hm (D m = ε Em,B m = µ H m),则该系统的总场为
⎧E = E e + E m ⎨ ⎩H = H e + H m
⎧E d = E i + E sd ⎨ ⎩H d = H i + H sd
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
可见,天线方向图是在远区球面上的场强分布。
●归一化方向图
f (θ ,ϕ ) F (θ ,ϕ ) = f (θ m ,ϕ m )
(0.3)
式中,(θm ,φm)为天线最大辐射方向;
f (θm ,φm)为方向图函数的最大值。
由归一化方向图函数绘制出的方向图称为归 一化方向图。由式(0.1)和(0.2)可以看出,天线远 区辐射电场和磁场的方向图函数是相同的,因 此,由方向图函数和归一化方向图函数表示的方 向图统称为天线的辐射场方向图。
为便于分析和研究天线性能出发,天线可以分为如下 几大类:
(1~6)章 (1) 线天线(Wire Antennas) —— ——(1
(8~10章) (2) 口径天线(Aperture Antennas) —— ——(8
(3) 阵列天线(Array Antennas) —(1章部分,5章)
(4) 透镜天线(Lens Antennas) —(10章部分)
六十和七十年代是天线发展的鼎盛时期。这 个时期在天线理论方法方面以及各项技术的应用 方面都在突飞猛进的发展。
(1)在天线理论方法方面
■几何绕射理论 ■平面波谱展开法 ■时域有限差分法 ■天线近场测量理论 ■矩量法 ■有限元法 ■时域积分方程法 ■阵列分析与综合理论
这些理论方法为天线的工程设计奠定了坚实的基础, 随着计算机技术的发展大都形成了计算机仿真的电子自动 化设计软件。
■ HFSS软件 ■ CST软件 ■ FEKO软件
■ IE3D软件 ■ FIDELITY软件
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天线 的发展,出现了大型平面阵、卡塞格仑天线及各种反射面 天线馈源。 雷达制导、搜索、跟踪、预警技术的应用推动了单脉 冲雷达天线、相控阵天线,多波束天线的发展。 半导体技术的发展使无线电技术向毫米波、亚毫米波 甚至更高频率发展,对天线提出了小型化、集成化、宽带 化等一系列要求,出现了有源天线、微带天线和印刷天线、 印制板开槽天线、表面波天线、共形阵列天线等。 微带天线和印刷天线由于其具有小型化、低剖面、便 于集成,成本低、天线图案千变万化,所以至今仍在发 展,其方向包括阵列、极化、宽带、高效率、双频和多频 谐振等。
简言之:天线的功能主要有两点: (1)能量转换 (2)定向辐射或接收 无线电通讯线路中的辐射和接收天线示意:
发射系统等效电路:
天线等效电路中最主要的一个参数——辐射电阻Rr。 可以认为天线辐射的电磁波能量全部由Rr吸收。
发射天线空间辐射方向图。
●典型的空间三维方向图
●典型的二维方向图
各种各样的方向图是由各种各样的天线实现的。
0.4 天线的基本参数
天线性能需要一套电气指标来衡量,这些电 气指标由天线的特性参数来描述。这些参数包括: ■方向图形状 ■主瓣宽度 ■ 副瓣电平 ■ 增益 ■ 极化 ■ 输入阻抗 ■工作频率和频带宽度 ■天线有效长度、有效面积 ■口径效率和波束效率等
0.4.1 天线的方向图
0.4.1.1 方向图函数及方向图 天线方向图是指天线辐射特性与空间坐标之 间的函数图形。大多情况下,天线方向图是在远 场区确定的,所以又叫做远场方向图。 天线辐射特性包括辐射场强、辐射功率、相 位和极化。因此,天线方向图又分为: ■场强方向图 ■功率方向图 ■相位方向图 ■极化方向图
■辐射功率Pr 坡印亭矢量是功率密度矢量。取坡印亭矢量W 与一个面积元矢量ds的标积就是通过该面积元的 辐射功率dPr=W· ds ,沿包围天线的整个表面s的 积分就可得到天线的辐射总功率Pr。其公式为 1 * ˆ ds W s E H Pr = � ⋅ d = × ⋅n (0.6) ∫∫ s � ∫∫ s 2
(a)水平全向方向图
(b)笔形波束方向图
(c)余割ቤተ መጻሕፍቲ ባይዱ方波束方向图
0.4.2 辐射功率和辐射强度
■坡印亭矢量W 描述功率与电磁场的关系往往采用坡印亭矢 量,其定义为
1 W = E × H* 2
式中,W为坡印亭矢量,单位为瓦/m2;
(0.5)
E为电场强度矢量,单位为V/m; H 为磁场强度矢量,单位为 A/m ,上标 ‘ * ’ 号表示取复数共轭。 式 (0.5) 说明坡印亭矢量是电场和磁场强度矢 量的叉积,乘上因子1/2后,该式表示为坡印亭矢 量的时间平均值。
天线原理与设计
教师: 王建 电子工程学院二系
绪论
0.1 天线在无线电工程中的作用
一切无线电设备都离不开天线。 ▲无线电通讯 ▲无线电广播 ▲电视 ▲雷达 ▲导航 ▲制导
▲无线电探测等系统
天线的作用是:作发射时,它将电路中的高频电
流或传输线上的导行波转换为某种极化的空间电磁 波,向规定的方向发射出去;作接收时,则将来自 空间特定方向的某种极化的电磁波有效地转换为电 路中的高频电流或或传输线上的导行波。
有源天线的发展形成了现在非常先进的有源相控阵雷 达天线。二维有源相控阵已装备在最先进的猛禽F22第四 代战机上。值得一提的是相控阵天线,因为相控阵雷达技 术含量最高,功能最强。
到了80年代,由于电子计算机和超大规模集 成电路的发展,高功率固态发射机和各波段移相 器等日趋成熟及成本的大幅降低,以及数字波束 形成技术、自适应理论和技术、低副瓣技术以及 智能化理论和技术的不断发展,使得80年代成为 国际上相控阵雷达大发展的年代。先进国家研制 了多种不同用途的战略、战术相控阵雷达。我国 也不例外,到1993年,我国的相控阵雷达不仅在 军用国防及航空航天中得到广泛使用,而且已经 从军用扩展到了民用。
●天线方向图形式
{ 直角坐标方向图 {三维方向图 { 直角坐标方向图 球坐标方向图
二维方向图 ●绘制天线方向图的两个途径 ■由理论分析计算并绘制得到方向图; ●天线的方向图函数
极坐标方向图
幅度 分贝 幅度 分贝
■通过实验测得天线的方向图数据绘出方向图。 大多线极化天线的远区辐射电磁场一般可表示 为如下形式:
(5) 反射器天线(Reflector Antennas) —(11~12章)
(6) 微带天线(Microstrip Antennas) —(14章)
0.3 天线的发展
自1886年德国物理学家Hertz在实验室采用一 个长度为半波长的偶极子传送一个电火花脉冲, 并在附近的谐振圆环内检测,证实了Maxwell方 程以来,天线的发展已经历了120多年的时间。 但是,天线一直在新技术的推动下发展着。 在1940以前,天线的发展是在广播、电视和 通信技术的推动下发展的,那时候有关长波、中 波和短波线形天线的理论大体上已经成熟。一些 主要天线形式直到现在还在使用。 在第二次世界大战期间,随着电子技术和雷 达技术的发展,超短波与微波天线得到了飞速的 发展。如喇叭天线、反射面天线、透镜天线、介 质棒天线、波导缝隙天线、阵列天线等。
0.4.1.1 主瓣宽度
定义: 指方向图主瓣上两个半功率点 (或场强下降到 最大值的0.707倍处或分贝值从最大值下降 3dB处对 应的两点)之间的夹角。记为2θ0.5。 主瓣宽度又称为半功率波束宽度或 3dB波束宽度。 一般情况下,天线的E面和H面方向图的主瓣宽度不 等,可分别记为2θ0.5E和2θ0.5H 。 【例0.1】已知某天线的方向图函数为F(θ)=sinθ, 求其主瓣宽度。 解:方向图最大值F(θm)=1,其 方向角为θm=90o,见图。设方向 角为θ1时,F(θ1)=sinθ1=0.707, 得θ1=45o。 所以 θ0.5=θm- θ1=45o。 主瓣宽度为:2θ0.5=90o 。
按天线上电流分布分类
有行波天线、驻波天线。
按使用波段分类
有长波、超长波天线、中波天线、短波天线、超短波 天线、微波天线和毫米波天线。
按载体分
有车载天线、机载天线、星载天线,弹载天线等。
按天线外形分类
有鞭状天线、T形天线、Γ形天线、V形天线、菱形天 线、环天线、螺旋天线、波导口天线、波导缝隙天线、 喇叭天线、反射面天线等。 另外,还有八木天线,对数周期天线、阵列天线。阵 列天线又有直线阵天线、平面阵天线、附在某些载体表 面的共形阵列天线等。
链接
0.4.1.3 副瓣电平
定义:指副瓣最大值模值与主瓣最大值模值之比, 通常用分贝表示。即
| Ei max | SLLi = 20log | Emax |
(0.4)
链接
式中,Eimax为第i个副瓣的场强最大值, Emax为主瓣 最大值。这样,对于各个副瓣均可求得其副瓣电平 值。如前面图中的SLL1、SLL2 、SLL3和SLL4 。在工 程实际中,副瓣电平是指所有副瓣中最大的那一个 副瓣的电平,记为SLL。一般情况下,紧靠主瓣的 第一副瓣的电平值最高。 副瓣方向通常是不需要辐射或接收能量的方向。 因此,天线副瓣电平愈低,表明天线在不需要方向 上辐射或接收的能量愈弱,或者说在这些方向上对 杂散的来波抑制能力愈强,抗干扰能力就愈强。
E面:指通过天线最大辐射方向并平行于电场矢量的平面。 H面:指通过天线最大辐射方向并平行于磁场矢量的平面。
E面
H

H面
E面
表0-1 上图所示的八木天线和角锥喇叭天线的E面和H面 及其方向图函数表示
■ 七元八木天线的H面方向图
返回
(a) 极坐标幅度方向图
(b) 直角坐标幅度方向图
(a) 极坐标分贝方向图
不同用途要求天线有不同的方向图。例如,广 播电视发射天线,移动通讯基站天线等,要求在 水平面内为全向方向图,而在垂直面内有一定的 方向性以提高天线增益,见下图(a); 对微波中继通讯、远程雷达、射电天文、卫星 接收等用途的天线,要求为笔形波束方向图,见 下图(b); 对搜索雷达、警戒雷达天线则要求天线方向图 为扇形波束,见下图(c)。
第二次世界大战之后,无线电技术的发展更 加迅速,微波中继通信、散射通信、广播、电视 技术的发展对天线提出了许多新的要求。 上世纪五十年代提出了非频变天线理论,相 继出现了对数周期、等角螺旋、阿基米德螺旋等 宽带天线。 五十年代末人造卫星上天、洲际导弹出现 后,人类进入了宇宙空间时代,航空航天技术的 发展对天线的研究又提出了许多新的课题,这时 要求解决天线的高增益、圆极化、宽频带、快速 扫描和精密跟踪等问题。
相关文档
最新文档