数字信号处理课后习题答案

合集下载

数字信号处理第三版西科大课后答案第6章

数字信号处理第三版西科大课后答案第6章

λp=1,
s
s p
4
(4) 求阶数N和ε。
N arch k 1
arch s
k 1
100.1as 1 100.1ap 1 1456.65
N arch 1456.65 3.8659 arch 4
为了满足指标要求, 取N=4。
100.1ap 1 0.2171
(3) 求归一化系统函数G(p)
3.2361p 1

G( p)
1
( p2 0.618 p 1)( p2 1.618 p 1)( p 1)
当然, 也可以先按教材(6.2.13)式计算出极点:
p ejπ
1 2
2k 1 2N
k
k 0,1, 2,3, 4
再由教材(6.2.12)式写出G(p)表达式为
G( p) 4 1
( p pk )
p1
ch0.5580 sin
π 8
j
ch0.5580 cos
π 8
0.4438
j1.0715


p2 ch0.5580sin 8 j ch0.5580 cos 8 1.0715 j0.4438
p3
ch0.5580 sin
5π 8
j
ch0.5580 cos
5π 8
1.0715
j0.4438
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到

数字信号处理课后答案

数字信号处理课后答案

k = n0

n
x[ k ]
(B) T {x[n]} =

x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞


《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}

数字信号处理课后答案课件

数字信号处理课后答案课件
傅里叶变换具有线性、对称性、时移性、频移性等性质,这些性质 在信号处理中具有重要应用。
傅里叶变换的性质
线性性质
若离散信号x(n)和y(n)的 傅里叶变换分别为 X(e^jωn)和Y(e^jωn), 则对于任意实数a和b,有 aX(e^jωn) + bY(e^jωn) 的傅里叶变换等于 aX(e^jωn)和bY(e^jωn) 的傅里叶变换之和。
从而实现信号的分离、抑制或提 取。
滤波器分类
根据不同的特性,滤波器可分为 低通、高通、带通和带阻滤波器,
每种滤波器都有各自的应用场景 和特点。
滤波器原理
滤波器的原理是基于频率响应, 即不同频率的信号经过滤波器后, 其幅度和相位会发生不同的变化。
IIR滤波器设计
IIR滤波器概述
IIR滤波器设计方法
IIR滤波器稳定性
在设计IIR滤波器时,需要考虑其稳定 性。如果系统函数的极点位于单位圆 外,则系统不稳定,可能会导致无穷 大的输出。因此,在设计过程中需要 进行稳定性分析。
FIR滤波器设计
FIR滤波器概述
FIR(Finite Impulse Response)滤 波器是一种具有有限冲击响应的数字 滤波器,其系统函数可以表示为有限 项之和。
插值法
对于非周期性的连续时间信号,可以通过插值法得到离散时间信号。常用的插值方法包括 线性插值、多项式插值、样条插值等。
傅里叶变换法
对于任何连续时间信号,可以通过傅里叶变换将其转换为频域表示形式,然后对频域表示 形式进行采样,得到离散时间信号。再通过逆傅里叶变换将其转换回时域表示形式。
05 第五章 信号的分 析与合成
抽样定理的充分性
对于任何连续时间信号,如果其最高频率分量小于等于fmax,则可 以通过其抽样信号无失真地重建出原信号。

现代数字信号处理课后习题解答

现代数字信号处理课后习题解答

习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。

证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。

证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案

x(n
− m)sin
2π 9
+
π 7
即 T [x(n − m)] = y(n − m)
∴系统是移不变的
T [ax1(n) + bx2 (n)]
=
[ax1
(n)
+
bx2
(n
)]sin(
2π 9
+
π 7
)
即有 T [ax1(n)+ bx2 (n)]
= ay1(n) + by2 (n)
∴系统是线性系统
(1) T [ x(n)] = g(n)x(n) (2) (3) T [ x(n)] = x(n − n0 ) (4)
(c)
x (n )
=
e
j
(
n 6
−π )
分析:
序列为 x (n ) = A cos( ω 0n + ψ ) 或 x(n) = A sin( ω 0n +ψ ) 时,不一定是周期序列,
①当 2π / ω 0 = 整数,则周期为 2π / ω 0 ;
7
②当 2π = P ,(有理数 P、Q为互素的整数)则周期 为 Q ; ω0 Q
(3) y(n) = δ (n − 2) * 0.5n R3(n) = 0.5n−2 R3(n − 2) (4) x(n) = 2n u(−n −1) h(n) = 0.5n u(n)
当n ≥ 0 当n ≤ −1
∑ y(n) = −1 0.5n−m 2m = 1 ⋅ 2−n
m = −∞
3
y(n) = ∑n 0.5n−m 2m = 4 ⋅ 2n
∴所给系统在 y(0) = 0 条件下是线性系统。
6.试判断:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(修正:此题有错,
(3)系统的单位脉冲响应 而改变,是两个复序列信号之和)
(4)
(修正: 随上小题答案
(修正:此图错误,乘系数应该为 0.5,输出端 y(n)应该在两个延迟器 D 之间)
1-25 线性移不变离散时间系统的差分方程为
(1)求系统函数 ; (2)画出系统的一种模拟框图; (3)求使系统稳定的 A 的取值范围。 解:(1)
(2)
(3)
解:(1)
(2)
(3)
1-7 若采样信号 m(t)的采样频率 fs=1500Hz,下列信号经 m(t)采样后哪些信号不 失真? (1) (2) (3) 解:
(1)
采样不失真
(2)
采样不失真
(3)

采样失真
1-8 已知
,采样信号 的采样周期为 。
(1) 的截止模拟角频率 是多少?
(2)将 进行 A/D 采样后, 如何?
(3)最小阻带衰减 5-4
由分式(5.39)根据 A 计算 ,如下: 由表 5.1 根据过度带宽度 计算窗口:
单位脉冲响应如下:
单位脉冲响应如下:
其中 为凯泽窗。 5-5 答:减小窗口的长度 N,则滤波器的过度带增加,但最小阻带衰减保持不变。 5-6:图 5.30 中的滤波器包括了三类理想滤波器,包括了低通,带通和高通,其响应的单位
(1)

(2)
1-18 若当 时
;时
(1)
,其中
(2) 证明:
,收敛域
,其中 N 为整数。试证明: ,
(1) 令 其中
,则 ,
(2)
,
1-19 一系统的系统方程及初时条件分别如下: ,
(1)试求零输入响应 ,零状态响应 ,全响应 ; (2)画出系统的模拟框图 解: (1)零输入响应

,得 零状态响应
1-1 画出下列序列的示意图 (1) (2) (3)
(1)
(2)
(3) 1-2 已知序列 x(n)的图形如图 1.41,试画出下列序列的示意图。
图 1.41 信号 x(n)的波形
(1)
(2)
(3)
(4)
(5)
(6)
(修正:n=4 处的值为 0,不是 3) 样点)
(修正:应该再向右移 4 个采
1-3 判断下列序列是否满足周期性,若满足求其基本周期
直接Ⅰ型
直接Ⅱ型
用一阶和二阶直接Ⅱ型的级联型
用一阶和二阶直接Ⅱ型的并联型
4-3 已知模拟滤波器的传输函数
成数字传输函数 解:
。(设采样周期 T=0.5)
,试用脉冲响应不变法将
转换
4-4 若模拟滤波器的传输函数为
转换成数字传输函数 解:
。(设采样周期 T=1)
,试用脉冲响应不变法将
4-5 用双线性变换法设计一个三阶的巴特沃滋数字低通滤波器,采样频率
(1) 解:
非周期序列;
(2)
解: (3)
为周期序列,基本周期 N=5;
解:

,取
为周期序列,基本周期

(4)
解:
,取

则 为周期序列,基本周期 N=40。
其中 , 为常数 ,取
1-4 判断下列系统是否为线性的?是否为移不变的?
(1)
非线性移不变系统
(2)
非线性移变系统 (修正:线性移变系统)
(3)

,将双线性变换应用于模拟
4-9 试用双线性变换法设计一低通数字滤波器,并满足:通带和阻带都是频率的单调下降函
数,而且无起伏;频率在 解:
处的衰减为-3.01dB;在
处的幅度衰减至少为 15dB。

,则:

通带:
,即
阻带:
Байду номын сангаас
,即
阶数:
, 查表得二阶巴特沃滋滤波器得系统函数为
双线性变换实现数字低通滤波器
至频率

解:
,截
,
4-6 用双线性变换法设计一个三阶的巴特沃滋数字高通滤波器,采样频率
频率

解:

,归一化

,截至
4-7 用双线性变换法设计一个三阶的巴特沃滋数字带通滤波器,采样频率
下边带截至频率分别为


解:

,上


4-8 设计一个一阶数字低通滤波器,3dB 截至频率为
巴特沃滋滤波器。 解:
一阶巴特沃滋
(1)
(2)
(3) (4) 22-11 证明:
2-12 解:(1)对差分方程求 Z 变换得:
(2)图见电子版 (3) 2-15 (1)载波信号为 1 处信号
(即为矩形窗的幅度谱)
(2)
2-13 证明: 设
(1) (2) (3)
由式(1)(2)(3),
令上式中 原题得证。
2-14 证明:
2-18 解: 对差分方程求 Z 变换
, (2)
, (3)

1-16 若存在一离散时间系统的系统函数
,根据下面的收敛
域,求系统的单位脉冲响应 ,并判断系统是否因果?是否稳定?
(1) 解:
,(2)
, (3)
(1)

,因果不稳定系统
(2)

,非因果稳定系统
(3)

,非因果非稳定系统
1-17 一个因果系统由下面的差分方程描述
(1)求系统函数 及其收敛域; (2)求系统的单位脉冲响应 。 解:
(1)令循环卷积
不变;
变化,变的更加逼近
(2)
其余
其余
(3)
其余
其余 (4) 补一个零后的循环卷积
3-3 解:
其余
,即可分辨出两个频率分量 本题中的两个频率分量不能分辨
3-4 解: 对它取共轭:

比较,
可知:1,只须将
的 DFT 变换
求共轭变换得

2,将
直接 fft 程序的输入信号值,得到

3,最后再对输出结果取一次共轭变换,并乘以常数 ,即可求出 IFFT 变换的
设加矩形窗
后得到的信号为

对应的短时离散频谱:
电子图 3-10 解:
, ,
, ,
(1) (2) (3) 3-11 解: (1) (2) (3)
考虑对称位置取 考虑对称位置取
考虑对称位置取
(4) 3-12
3-13 解: (1)离散信号值: (2)
3-14 解:
镜像为 镜像为 镜像为
镜像为
至少需要 2000 点个信号值
全通系统
为常数,即
求导,其导数应为 0。
也为常数。可对
即:
或 题中要求
取 2-19 解:(1)
(2)
(3)当输入信号是实正弦信号,为
系统输出
(5) 当
时,

不是因果系统
(6)
2-20 解: 设取样器的输出为
设压缩器的输出为 由 b 图中两系统等效可列出如下等式:
等式两边约简可得:
课程简介 教学团队 教学资料 课程录像 习题与参考答案 思考分析题 课外阅读 教学研究
系数
.
信号
=
=
2-3
解: (1)

(2)
图见电子版
(3)
当系统是线性移不变系统时,若输入信号为实正弦信号,输出信号也
是一个具有相同频率的正弦信号,但该信号的幅度和相位都发生了
变化.表达式如下:
系统函数为
,输入信号
,输出信号

时,
2-4
解: (1) 零点
极点
(2)
(4)
图见电子版
2-5
解: 系统是 LSI 系统,
的数字角频率 与 的模拟角频率 的关系
(3)若 解:
,求 的数字截止角频率 。
(1)
(2)
(3)
1-9 计算下列序列的 Z 变换,并标明收敛域。
(1)
(2)
(3) (5) 解: (1) (2) (3) (4) (5)
(4) ,
,收敛域不存在
1-10 利用 Z 变换性质求下列序列的 Z 变换。 (1)
,则
, , 则
(2)系统模拟框图
1-20 若线性移不变离散系统的单位阶跃响应
,
(1)求系统函数 和单位脉冲响应 ;
(2)使系统的零状态
,求输入序列 ;
(3)若已知激励 解:
,求系统的稳态响应 。
(1)
激励信号为阶跃信号


(2)若系统零状态响应

(3) 若 为:
,则从
可以判断出稳定分量
1-21 设连续时间函数 的拉普拉斯变换为 ,现对 以周期 T 进行抽样 得到离散时间函数 ,试证明 的 Z 变换 满足:
, 其中
2-6
证明:
(1) (1 的离散时间傅立叶变换为 则
, )即,
(2) 令
(3)
(4)
2-7
解:
,当且仅当
时有值
2-8 解:
, ,
,
区间的幅度谱: 区间内三种采样频率下的幅度谱
2-9
解:
2-10 解:首先观察四种情况都满足 Nyquist 采样定理, 因此,采样后的信号的频谱将 是原连续信号频谱以 为周期的延拓。
的值。
3-5 解: 可以; 证明:设

其中 的关系如下:

在单位圆上的 Z 变换,

在频域上的 N 点的采样,与
的关系如下:
3-6 解:
相当于是
在单位圆上的 Z 变换的 N 点采样。
相关文档
最新文档