【备课必备】2018-2019年最新人教版七年级下册数学全册精品教案【优质】

合集下载

2019年最新人教版七年级数学下册全册教案(含教学反思)

2019年最新人教版七年级数学下册全册教案(含教学反思)

5.1 相交线5.1.1 相交线1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)2.掌握对顶角相等的性质和它的推证过程;(重点、难点)3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.一、情境导入同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?二、合作探究探究点一:对顶角和邻补角的概念【类型一】对顶角的识别下列图形中∠1与∠2互为对顶角的是( )解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.【类型二】 邻补角的识别如图所示,直线AB 和CD 相交所成的四个角中,∠1的邻补角是________.解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.探究点二:对顶角的性质【类型一】 利用对顶角的性质求角的度数如图,直线AB 、CD 相交于点O ,若∠BOD =42°,OA 平分∠COE ,求∠DOE的度数.解析:根据对顶角的性质,可得∠AOC 与∠BOD 的关系,根据OA 平分∠COE ,可得∠COE 与∠AOC 的关系,根据邻补角的性质,可得答案.解:由对顶角相等得∠AOC =∠BOD =42°.∵OA 平分∠COE ,∴∠COE =2∠AOC =84°.由邻补角的性质得∠DOE =180°-∠COE =180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.【类型二】 结合方程思想求角度如图,直线AC ,EF 相交于点O ,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE =12∠EOC ,∠DOE =72°,求∠AOF 的度数.解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=12∠AOB=90°-32x.∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°.∴∠AOF=2x=72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.【类型三】应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.探究点三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n (n ≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n (n -1).故答案为n (n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.三、板书设计两条直线相交⎩⎨⎧⎭⎬⎫邻补角对顶角对顶角相等求角的大小本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展5.1.2 垂线1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线;(重点)2.掌握点到直线的距离的概念,并会度量点到直线的距离;3.掌握垂线的性质,并会利用所学知识进行简单的推理.(难点)一、情境导入大家都看到过跳水比赛,下面几幅图片中是几种不同的入水方式,你知道哪个图片中运动员获得的分数最高吗?在获得分数最高的图片中你知道运动员的身体和水面之间的关系吗?这节课我们将要学习有关这种关系的知识.二、合作探究探究点一:垂线的概念【类型一】利用垂直的定义求角的度数如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=150°,则∠3的度数为( )A.30° B.40° C.50° D.60°解析:先根据邻补角关系求出∠2=180°-150°=30°,再由CO⊥DO得出∠COD=90°,最后由互余关系求出∠3=90°-∠2=90°-30°=60°.故选D.方法总结:两条直线垂直时,其夹角为90°;由一个角是90°也能得到这个角的两条边是互相垂直的.【类型二】垂直与对顶角、邻补角结合求角的度数如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.解析:首先根据垂直的概念得到∠BOD=90°,然后根据∠1与∠3是对顶角,∠2与∠3互为余角,从而求出角的度数.解:由题意得∠3=∠1=30°(对顶角相等).∵AB⊥CD(已知),∴∠BOD=90°,(垂直的定义),∴∠3+∠2=90°,即30°+∠2=90°,∴∠2=60°.方法总结:解决本题的关键是根据垂直的概念,得到度数为90°的角,然后根据对顶角、邻补角的性质解决.探究点二:垂线的画法(1)如图①,过点P画AB的垂线;(2)如图②,过点P分别画OA、OB的垂线;(3)如图③,过点A画BC的垂线.解析:分别根据垂线的定义作出相应的垂线即可.解:如图所示.方法总结:垂线的画法需要三步完成:一落:让三角板的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角板,使其另一直角边经过所给的点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.探究点三:垂线的性质(垂线段最短)如图,是一条河,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.解析:根据垂线的性质可解,即过C作CE⊥AB,根据“垂线段最短”可得CE最短.解:如图所示,沿CE铺设水管能让路线最短,因为垂线段最短.方法总结:在利用垂线的性质解决生活中最近、最短距离的问题时,要依据“两点之间,线段最短”和“垂线段最短”来解决.探究点四:点到直线的距离如图,在△ABC中,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A.线段CA的长 B.线段CDC.线段AD的长 D.线段CD的长解析:根据点到直线的距离的定义:直线外一点到直线的垂线段的长度叫做点到直线的距离,可得点C到直线AB的距离是线段CD的长.故选D.方法总结:点到直线的距离是直线外一点到直线的垂线段的长度,而不是垂线段.三、板书设计垂线⎩⎪⎨⎪⎧垂线的定义 ⎭⎬⎫垂线的作法⎩⎨⎧一落二移三画垂线的性质:垂线段最短求最短距离本节课主要研究两条直线相交时的特殊情况——垂直,可类比前面两条直线相交时的一般情况学习新知识.经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,使每个学生在数学的学习上都能得到不同的发展5.1.3 同位角、内错角、同旁内角1.理解“三线八角”中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角;2.通过比较、观察、掌握同位角、内错角、同旁内角的特征;(重点)3.能在复杂图形中正确识别图形中的同位角、内错角和同旁内角.(重点、难点)一、情境导入上一节课中我们主要学习两条直线相交的情况,两条直线相交时,可以形成哪几种角?如果两条直线被第三条直线所截时,还能形成以上的角吗?是否还有其他类型的角呢?你能说出它们的名字吗?二、合作探究探究点一:识别同位角【类型一】 判断同位角及截线如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?解析:识别同位角要弄清哪两条直线被哪一条直线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.方法总结:①同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方向;②在表述“三线八角”中某种位置关系的角时,可用以下方法:“∠×和∠×是直线×和直线×被直线×所截形成的×角”.【类型二】在图形中判断同位角下列图形中,∠1和∠2不是同位角的是( )解析:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方向,是同位角,即在图中可找到形如“F”的模型;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C.方法总结:确定两个角的位置关系的有效方法——描图法:①把两个角在图中“描画”出来;②找到两个角的公共直线;③观察所描的角,判断所属“字母”类型,同位角为“F”型.【类型三】数同位角的对数如图,直线l1,l2被l3所截,则同位角共有( )A.1对 B.2对 C.3对 D.4对解析:图中同位角有:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,共4対.故选D.方法总结:数同位角的个数时,应从各个方向逐一观察,避免重复或漏数.探究点二:识别内错角、同旁内角如图,下列说法错误的是( )A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U”型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”型,内错角的边构成“Z”型,同旁内角的边构成“U”型.如图所示,直线DE与∠O的两边相交,则∠O的同位角是________,∠8的同旁内角是________.解析:直线DE与∠O的两边相交,则∠O的同位角是∠5和∠2,∠8的同旁内角是∠1和∠O.故答案为∠5和∠2,∠1和∠O.易错点拨:找某角的同位角、同旁内角时,应从各个方位观察,避免漏数.三、板书设计三线八角⎩⎨⎧同位角 “F ”型内错角 “Z ”型同旁内角 “U ”型本节课以学生交流、合作、探究贯穿始终,在教学过程中,给学生的思考留下了足够的时间和空间,由学生自己去发现结论.学生在经历发现问题、探究问题、解决问题的过程中,对“三线八角”的概念准确理解并掌握.培养学生动手、合作、概括能力,同时也提高思维水平和探究能力5.2 平行线及其判定5.2.1 平行线1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系;2.掌握平行公理以及平行公理的推论;(重点、难点)3.会用符号语言表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.(重点)一、情境导入数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.二、合作探究探究点一:平行线的概念下列说法中正确的有:________.(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直.解析:根据平行线的概念进行判断.线段不相交,延长后不一定不相交,(1)错误;同一平面内,直线只有平行和相交两种位置关系,(2)(4)正确,(5)错误;线段是有长度的,不平行也可以不相交,(3)错误.故答案为(2)(4).方法总结:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.探究点二:过直线外一点画已知直线的平行线如图所示,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解析:用两个三角板,根据“同位角相等,两直线平行”来画平行线,然后用量角器量一量l1与l2相交的角,该角与∠O的关系为相等或互补.解:(1)(2)如图所示;(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.易错点拨:注意∠2与∠O是互补关系,解答时容易漏掉.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线互相平行,正确;正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,两者区别在于:对于平行线公理中,必须是过直线外一点可以作已知直线的平行线,但过直线上一点不能作已知直线的平行线,垂线的性质中,无论点在何处都能作出已知直线的垂线.【类型二】应用平行公理的推论进行论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a ∥d .方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】 平行公理推论的实际应用将一张长方形的硬纸片ABCD 对折后打开,折痕为EF ,把长方形ABEF平摊在桌面上,另一面CDFE 无论怎样改变位置,总有CD ∥AB 存在,为什么?解析:根据平行公理的推论得出答案即可.解:∵CD ∥EF ,EF ∥AB ,∴CD ∥AB .方法总结:利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.三、板书设计平行线⎩⎨⎧概念两条直线的位置关系:平行或相交性质⎩⎨⎧平行公理平行公理的推论本节课以学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分.经历观察多媒体的演示和通过画图等操作,交流归纳与活动,进一步培养学生的空间想象能力5.2.2 平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a ∥c ,利用了平行公理,正确;B 选项中,若∠1=∠2,则a ∥c ,利用了“内错角相等,两直线平行”,正确;C 选项中,∠3=∠2,不能判断b ∥c ,错误;D 选项中,若∠3+∠4=180°,则a ∥c ,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】 根据平行线的判定方法,添加合适的条件如图所示,要想判断AB 是否与CD 平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB 与∠D ,如果∠EAB =∠D ,那么根据“同位角相等,两直线平行”,得出AB 与CD 平行;(2)可以测量∠BAC 与∠C ,如果∠BAC =∠C ,那么根据“内错角相等,两直线平行”,得出AB 与CD 平行;(3)可以测量∠BAD 与∠D ,如果∠BAD +∠D =180°,那么根据“同旁内角互补,两直线平行”,得出AB 与CD 平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.三、板书设计平行线的判定⎩⎨⎧⎭⎬⎫同位角相等内错角相等同旁内角互补两直线平行平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高第2课时平行线判定方法的综合运用1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有( )A.1个 B.2个 C.3个 D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°( ).又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB( ).(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ =∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为( )A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据5.3 平行线的性质5.3.1 平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.。

人教版初中数学七年级下册教案全册

人教版初中数学七年级下册教案全册

人教版初中数学七年级下册教案全册教案:人教版初中数学七年级下册一、教学内容1. 第1章:整式的加减2. 第2章:平行线与相交线3. 第3章:数据的收集与处理4. 第4章:概率初步5. 第5章:二元一次方程组6. 第6章:不等式与不等式组7. 第7章:函数的概念8. 第8章:平面图形的认识二、教学目标1. 学生能够掌握整式的加减运算方法,并能够灵活运用。

2. 学生能够理解平行线与相交线的性质,并能够运用到实际问题中。

3. 学生能够掌握数据的收集与处理方法,提高数据分析能力。

4. 学生能够理解概率的基本概念,并能够计算简单事件的概率。

5. 学生能够解决二元一次方程组的问题,并能够运用到实际问题中。

6. 学生能够理解不等式与不等式组的概念,并能够解决相关问题。

7. 学生能够理解函数的概念,并能够识别和运用函数解决实际问题。

8. 学生能够认识平面图形的基本性质,并能够运用到实际问题中。

三、教学难点与重点1. 教学难点:数据的收集与处理、概率的计算、函数的概念和平面图形的认识。

2. 教学重点:整式的加减运算、平行线与相交线的性质、二元一次方程组的解决方法、不等式与不等式组的解法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:笔记本、笔、尺子、量角器、剪刀、胶水。

五、教学过程1. 实践情景引入:通过实际问题引入整式的加减运算,让学生感受数学与生活的联系。

2. 例题讲解:讲解整式的加减运算的例题,让学生理解并掌握运算方法。

3. 随堂练习:布置随堂练习题,让学生巩固整式的加减运算。

4. 平行线与相交线的性质:通过实际问题引入平行线与相交线的性质,让学生理解并掌握。

5. 数据的收集与处理:讲解数据的收集与处理方法,让学生学会如何分析数据。

6. 概率初步:讲解概率的基本概念,让学生理解并能够计算简单事件的概率。

7. 二元一次方程组:讲解二元一次方程组的解决方法,让学生学会解决实际问题。

8. 不等式与不等式组:讲解不等式与不等式组的概念和解法,让学生理解并能够解决相关问题。

人教版七年级数学下册全册教学设计(完整版)教学设计

人教版七年级数学下册全册教学设计(完整版)教学设计

人教版七年级数学下册全册教学设计(完整版)教学设计一. 教材分析人教版七年级数学下册全册教学设计涵盖了第二章《整式的乘除》和第三章《因式分解》两章内容。

本册教材主要介绍整式的乘除运算和因式分解的方法,为八年级的学习打下基础。

二. 学情分析七年级的学生已经掌握了整数和分数的基本运算,具备一定的逻辑思维能力。

但是,对于整式的乘除运算和因式分解的方法,学生可能还不够熟悉,需要通过大量的练习来巩固。

三. 教学目标1.让学生掌握整式的乘除运算方法,能够熟练进行整式的乘除运算。

2.让学生掌握因式分解的方法,能够将多项式进行因式分解。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.整式的乘除运算方法。

2.因式分解的方法和技巧。

五. 教学方法采用讲授法、示范法、练习法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。

六. 教学准备1.教材和人教版七年级数学下册全册教学设计。

2.教学PPT。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入整式的乘除运算和因式分解的概念。

2.呈现(15分钟)讲解整式的乘除运算方法和因式分解的方法,通过示例让学生理解并掌握。

3.操练(20分钟)让学生进行一些整式的乘除运算和因式分解的练习,巩固所学知识。

4.巩固(15分钟)通过一些综合性的题目,让学生运用所学知识解决问题,巩固所学内容。

5.拓展(10分钟)讲解一些整式运算和因式分解的拓展知识,提高学生的数学素养。

6.小结(5分钟)对本节课的内容进行小结,让学生明确所学知识。

7.家庭作业(5分钟)布置一些整式的乘除运算和因式分解的练习题目,让学生巩固所学知识。

8.板书(5分钟)板书本节课的主要知识点和公式,方便学生复习。

本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,让学生掌握了整式的乘除运算和因式分解的方法。

在教学过程中,注意启发学生的思维,引导学生进行自主学习,提高了学生的学习效果。

人教版七年级数学下册全册教案(完整版)教案

人教版七年级数学下册全册教案(完整版)教案

人教版七年级数学下册全册教案(完整版)教案一. 教材分析人教版七年级数学下册全册教案,主要包括了代数、几何、概率和统计等多个方面的内容。

这一册教材旨在让学生掌握基本的数学知识,培养学生的数学思维能力和解决问题的能力。

在学习过程中,学生需要逐步理解并掌握各个知识点,为今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但是个别学生在数学学习上还存在一定的困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。

同时,要激发学生的学习兴趣,提高他们的学习积极性,帮助他们建立自信心。

三. 教学目标1.知识与技能:让学生掌握本册教材中的各个知识点,能够运用所学知识解决实际问题。

2.过程与方法:通过自主学习、合作学习、探究学习等方式,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,提高他们的学习积极性,培养他们具有良好的学习习惯和团队协作精神。

四. 教学重难点1.教学重点:教材中的各个知识点。

2.教学难点:理解并掌握各个知识点的应用,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,让学生在实际情境中感受数学知识的重要性。

2.启发式教学法:引导学生主动思考,发现问题的规律,培养学生的问题解决能力。

3.合作学习法:学生进行小组讨论,共同完成学习任务,培养学生的团队协作精神。

六. 教学准备1.教材:人教版七年级数学下册全册。

2.教具:黑板、粉笔、投影仪等。

3.课件:根据教学内容,制作相应的课件。

七. 教学过程1.导入(5分钟)利用课件或实物,创设生活情境,激发学生的学习兴趣,引导学生思考与本节课相关的问题。

2.呈现(10分钟)讲解本节课的知识点,通过举例、讲解、演示等方式,让学生理解并掌握各个知识点。

3.操练(10分钟)设计一些练习题,让学生在课堂上进行练习,巩固所学知识。

教师应及时给予反馈,指导学生纠正错误。

2018-2019秋季人教版七年级数学全册教案

2018-2019秋季人教版七年级数学全册教案

目录1.1 正数和负数 (3)1.2 有理数 (6)1.2.1 有理数 (6)1.2.2 数轴 (9)1.2.3 相反数 (12)1.2.4 绝对值 (15)第1课时绝对值 (15)第2课时有理数大小的比较 (18)1.3 有理数的加减法 (21)1.3.1 有理数的加法 (21)第1课时有理数的加法法则 (21)第2课时有理数加法的运算律及运用 (24)1.3.2 有理数的减法 (26)第1课时有理数的减法法则 (26)第2课时有理数的加减混合运算 (28)1.4 有理数的乘除法 (31)1.4.1 有理数的乘法 (31)第1课时有理数的乘法法则 (31)第2课时有理数乘法的运算律及运用 (34)1.4.2 有理数的除法 (38)第1课时有理数的除法法则 (38)第2课时有理数的加、减、乘、除混合运算 (42)1.5 有理数的乘方 (44)1.5.1 乘方 (44)第1课时乘方 (44)第2课时有理数的混合运算 (47)1.5.2 科学记数法 (49)1.5.3 近似数 (51)2.1 整式 (54)第1课时用字母表示数 (54)第2课时单项式 (58)第3课时多项式 (61)2.2 整式的加减 (64)第1课时合并同类项 (64)第2课时去括号 (67)第3课时整式的加减 (71)3.1 从算式到方程 (75)3.1.1 一元一次方程 (75)3.2 解一元一次方程(一)——合并同类项与移项 (82)第1课时用合并同类项的方法解一元一次方程 (82)第2课时用移项的方法解一元一次方程 (85)3.3 解一元一次方程(二)——去括号与去分母 (88)第1课时利用去括号解一元一次方程 (88)第2课时利用去分母解一元一次方程 (91)3.4 实际问题与一元一次方程 (95)第1课时产品配套问题和工程问题 (95)第2课时销售中的盈亏 (96)第3课时球赛积分表问题 (98)第4课时电话计费问题 (101)4.1 几何图形 (104)4.1.1 立体图形与平面图形 (104)第1课时认识立体图形与平面图形 (104)第2课时从不同的方向看立体图形和立体图形的展开图 (106)4.1.2 点、线、面、体 (109)4.2 直线、射线、线段 (112)第1课时直线、射线、线段 (112)第2课时线段长短的比较与运算 (115)4.3 角 (119)4.3.1 角 (119)4.3.2 角的比较与运算 (121)4.3.3 余角和补角 (125)1.1 正数和负数1.了解正数和负数的产生过程以及数学与实际生活的联系;2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点)3.理解数0表示的量的意义;4.能用正数、负数表示生活中具有相反意义的量.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗?二、合作探究探究点一:正、负数的认识【类型一】区分正数和负数下列各数哪些是正数?哪些是负数?-1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.解:在-1,2.5,+43,0,-3.14,120,-1.732,-27中,负数有:-1,-3.14,-1.732,-27,正数有:2.5,+43,120,0既不是正数也不是负数.故答案为:2.5,+4 3,120;-1,-3.14,-1.732,-27.方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.【类型二】对数“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.探究点二:具有相反意义的量【类型一】会用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m时水位变化记作+0.8m,那么水位下降0.5m时水位变化记作( )A.0m B.0.5m C.-0.8m D.-0.5m解析:由水位升高0.8m时水位变化记作+0.8m,根据相反意义的量的含义,则水位下降0.5m时水位变化就记作-0.5m,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外,通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】用正、负数表示误差的范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?解析:+30mL表示比标准容量多30mL,-30mL表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是500mL为标准容量,470~530(mL)是合格范围,503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.“+”方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,表示比标准多,“-”表示比标准少.【类型三】 和正、负有关的规律探究问题观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2015个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,…. 解析:(1)第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n. 解:(1)7,-8,9;第10个数为-10,第105个数是105,第2015个数是2015;(2)-7,18,-9;第10个数为110,第105个数是-105,第2015个数是-2015. 方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.三、板书设计正数和负数⎩⎨⎧正数、负数的定义具有相反意义的量0的含义本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要.数学与我们的生活密不可分;经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣;提升学生的能力;促进学生的发展.使每个学生在数学上都能得到不同程度的收获.1.2 有理数1.2.1 有理数1.理解有理数的概念,掌握有理数的分类方法;(重点)2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点)一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃,这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.二、合作探究探究点一:有理数的有关概念下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( ) A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数 解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D. 方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.探究点二:有理数的分类把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008…正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,334,3101,2,3.14,37,0.618,0.3080080008……};负数集合{-10,-712,-10%,-67,-1 …};整数集合{-10,8,2,0,-67,-1 …};分数集合{-712,334,-10%,3101,3.14,37,0.618,0.3080080008……}.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.三、板书设计1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.2.有理数的分类①按定义分类为:②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数零负整数分数⎩⎨⎧正分数负分数 有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程.避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.1.2.2 数轴1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的A、B、C、D、E、F各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A点表示:-4.5;B点表示:4;C点表示:-2;D点表示:5.5;E 点表示:0.5;F点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A、D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】数轴上两点间的距离问题数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是( )A.5 B.±5C.7 D.7或-3解析:与点A相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.1.2.3 相反数1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点)2.了解一对相反数在数轴上的位置关系;(重点)3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.一、情境导入1.让两个学生在讲台前背靠背站好(分左右),规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么?2.规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来.3.从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有什么特点?二、合作探究探究点一:相反数的意义【类型一】相反数的代数意义写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【类型二】相反数的几何意义(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A 和点B 分别表示互为相反数的两个数,点A 在点B 的左侧,并且这两个数的距离是12.8,则A =______,B =______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A 和点B 分别表示互为相反数的两个数,∴原点到点A 与点B 的距离相等,∵A 、B 两点间的距离是12.8,∴原点到点A 和点B 的距离都等于6.4.∵点A 在点B 的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】 相反数与数轴相结合的问题如图,图中数轴(缺原点)的单位长度为1,点A 、B 表示的两数互为相反数,则点C 所表示的数为( )A .2B .-4C .-1D .0 解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C 所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号化简下列各数.(1)-(-8)=________; (2)-(+1518)=________;(3)-[-(+6)]=________; (4)+(+35)=________.解:(1)-(-8)=8;(2)-(+1518)=-1518;(3)-[-(+6)]=-(-6)=6;(4)+(+35)=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.三、板书设计1.相反数(1)只有符号不同的两个数.(2)a的相反数是-a,0的相反数是0.(3)互为相反数的两个数和为0.2.多重符号的化简(1)偶数个“-”号,结果为正数.(2)奇数个“-”号,结果为负数.从具体的场景出发,利用数轴引导学生感受相反数的意义.通过教师的层层设问,充分展示学生的思维过程,让学生学会“理性”思考,从而归纳出互为相反数的意义.让学生意识到数学“源于生活,又高于生活”;在认识相反数的意义的过程中,通过数形结合,将数学文化灵活应用于教学中,旨在让学生领会归纳相反数意义的多样性、概括性.1.2.4 绝对值第1课时绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景.2.两只小狗它们所跑的路线相同吗?3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法【类型一】求一个数的绝对值-3的绝对值是( )A.3 B.-3 C.-13D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=-a.探究点二:绝对值的性质及应用 【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可知|a -3|≥0,|b -2015|≥0,则有|a -3|=|b -2015|=0. 解:由绝对值的性质得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0. 【类型二】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球 |-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a|.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=⎩⎨⎧a (a>0)0(a =0)-a (a<0)或|a|=⎩⎨⎧a (a≥0)-a (a<0)绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.第2课时 有理数大小的比较1.掌握有理数大小的比较法则;(重点)2.会比较有理数的大小,并能正确地使用“>”或“<”号连接;(重点) 3.能初步进行有理数大小比较的推理和书写.(难点)一、情境导入某一天我国5个城市的最低气温如图所示:(1)从刚才的图片中你获得了哪些信息?(2)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”). 广州______上海;北京______上海;北京______哈尔滨;武汉______哈尔滨;武汉______广州.二、合作探究探究点一:借助数轴比较有理数的大小 【类型一】 借助数轴直接比较数的大小画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小已知有理数a、b在数轴上的位置如图所示.比较a、b、-a、-b的大小,正确的是( )A.a<b<-a<-b B.b<-a<-b<aC.-a<a<b<-b D.-b<a<-a<b解析:由图可得a<0<b,且|a|<|b|,则有:-b<a<-a<b.故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小.探究点二:运用法则比较有理数的大小【类型一】直接比较大小比较下列各对数的大小:(1)3和-5;(2)-3和-5;(3)-2.5和-|-2.25|;(4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小.解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5;(3)因为|-2.5|=2.5,-|-2.25|=-2.25,|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|;(4)因为|-35|=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】有理数的最值问题设a是绝对值最小的数,b是最大的负整数,c是最小的正整数,则a、b、c三数分别为( )A.0,-1,1 B.1,0,-1C.1,-1,0 D.0,1,-1解析:因为a是绝对值最小的数,所以a=0,因为b是最大的负整数,所以b=-1,因为c是最小的正整数,所以c=1,综上所述,a、b、c分别为0、-1、1.故选A.方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.三、板书设计1.借助数轴比较有理数的大小:在数轴上右边的数总比左边的数大2.运用法则比较有理数的大小:正数与0的大小比较负数与0的大小比较正数与负数的大小比较负数与负数的大小比较本节课的教学目标是让学生掌握比较有理数大小的两种方法,教学设计主要是从基础出发,从简单到复杂,层层递进,让学生更加深刻地认识和掌握有理数大小比较的方法.通过本节的教学,大部分学生能够理解法则的内容,但真正掌握有理数的大小比较的方法还需要一定量的练习进行巩固.同时在教学中还要充分发挥学生的主体意识,让学生逐步解决所设计的问题,并能举一反三.1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312);(3)(-5.25)+51 4;(4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113;(3)(-5.25)+514=0;(4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】有理数加法在实际生活中的应用股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】和有理数性质有关的计算问题已知|a|=5,b的相反数为4,则a+b=________.解析:因为|a|=5,所以a=-5或5,因为b的相反数为4,所以b=-4,则a+b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.。

18版七下人教版教案

18版七下人教版教案

2019学年度第二学期七年级数学下册教案备课年级:七年级授课老师:杨全芳第五章相交线与平行线别公共点叫做这两条直线的交点对顶角的特点:①顶点相同;②角的两边互为反向延长线;③成对出现的:掌握对顶角的性质并会推导问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?求角的大小在获得分数最高的图片中你知道运动员的身体和水面之间的关系吗?这节课我们将要学习相关与b不垂直.垂直定义:当两条直线相交所成的四个角中,有一个角是直角它们的交点叫垂足.??垂线掌握其特点AB,CD是被截直线它们与截线及两条被截直线在位置上有什么特引导学生观察这些图形的特征,看它们都象哪一个字母?归纳:同位角形如字母“F”型.”型;同旁内角形如字母“U”型.理解三类角的区别和联系去掉多余的线去掉多余的线:能从复杂的图形中辨认同位角、内错角、同旁内角教科书P7例2):如图∠1与∠4各是什么关系的角3与∠4各是哪一条直线截哪两条直线而成的是什么角?三线八角以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系的平行线,能画几条?的平行线,它与过点B的平行线平行吗直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.7,能得出AB∥CD吗?写出你的推理过程.平行线的判定能使用上节课积累的方法实行说明吗?今天这节课我截出的同位角,求证∠难以找到能够作为依据的相关事实、依据,该怎再从错误的结论出发推出与截出的内错角.两直线平行定理与证明举出生活中的平移的现象:火车、电梯、飞机等,并用计算学生通过画图、度量实行猜测,得出下列结论.?平移第六章实数的算术平方根记为也能够写成使学生对符号“))即;();()算术平方根因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知究竟有多大大于那么是,大于,,这里能够从<得到是一个“无限不循环小数”要向学生详细说明的算术平方根,,);()(续表3和,和的大小-2)与)与);())(的算术平方根就是;(2)的平方等于,那么的算术平方根就是;则边长为米还有平方等于9,,49的其他数吗?又如:x2=,则x等于多少呢?6.16.1;(的算术平方根可用续表思考:),(.(1)1;(2)0.000 1;(3)(-4)2;(4)10-6;(5).±(1)()3=0.001;(2)()3=-;(3)()3=0;(1)27;(2)-27;(3);(4)0;(5)-0.064.续表用计算器计算,,中两个公式:;)+.记为“,,,,,),,,,,,,续表3.我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3,和-等,实数,=如,-,…2.5,-,-,0,,π-3.一个数的绝对值是,|x|=求满足≤的整数除数不为0)、乘方运任意一个实数能够实行开立方运算.在实行实数的运算(1)-32×3÷9×=9×3÷3=9;(2)×=±6;)-;(,)(+);+2.+)=-=+0=.+2)=5.续表+)·.2-5-(-5|-|+|1-|+|2-|.化简:-|b-a|-.实数第七章平面直角坐标系C)(-2,1)(D)(-2,2)的位置在点O的东南方向按下述路线移动:用粗线将小海龟经过的路线描出来,看一看是什么图形板书设计有序数对有序数对如何确定平面内点的位置呢?创建了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限的坐标是什么?x轴和y轴上的点的坐标有什么特点各象限内的点的坐标有什么特点?平面直角坐标系【探究二】活动3:如图,距35 n mile如何用方向和距离描述救生船相对于遇险船的位置变式一:救生船接到报警后准备前往救援如何用方向和距离描述遇险船相对于救生船的位置说明理由)变式二:如果B相对于点A的位置是南偏西β的位置是什么?结论:确定平面内一个物体的位置,然后用方位角和距离来表示物体的位置这样表示物体位置的方法称为方位角距离定位法续表板书设计用坐标表示地理位置一、利用平面直角坐标系表示地理位置的过程建立坐标系(定原点,定x轴,y轴正方向2.确定单位长度3.画点,写出点的坐标和名称二、用方位角和距离表示地理位置的过程定参照点;2.定方位角;3.定距离;4.下结论自学指点回想滑雪运动员在雪地上滑行、电梯上下、火车在铁轨上运动自学课本P75~77,回答问题:图形平移后的位置由哪些要素决定?图形平移前后,哪些方面是变化的?哪些方面是不变的?对应角有什么关系?观察对应点所连的线段有什么位置关系?有什么向右平移2 cm得到三角形DCF,如果三角形ABE的周长是 .能够得到三角形DEF,点B板书设计用坐标表示平移第八章二元一次方程组)) (D)(E)m= ,n= .3.已知是方程x-ky=1的解,那么k= .二元一次方程组,【例2】用代入法解方程组续表))2.已知方程组的解使等式2x+y=1成立,求a的值?已知解二元一次方程组上节课我们学习了用代入消元法解二元一次方程组,那么如何解方程组呢?我们知道,对于方程组能够用代入消元法求解.用加减法解方程组如果求出y=-后,把y=代入②也能够求出未知数x的值.解方程组(5)把求得未知数的值联立写成“”的形式.(1)消元方法 .)消元方法 . ))(3)(4)一周后又购进12头大牛和5头小得解这个方程组得板书设计利用二元一次方程组解决实际情况问题列方程组,解决问题。

最全面新人教版七年级数学下册优质教案全册精华版

最全面新人教版七年级数学下册优质教案全册精华版一、教学内容本节课,我们将深入新人教版七年级数学下册第五章“相交线与平行线”。

具体内容涉及5.1至5.3节,包括平行线判定、平行线性质以及相交线性质。

通过这些内容学习,学生将能更好地理解空间中几何关系。

二、教学目标1. 让学生掌握平行线判定方法,能准确地判断两条直线是否平行。

2. 让学生理解并运用平行线性质,解决实际问题。

3. 让学生掌握相交线性质,并运用其解决相关问题。

三、教学难点与重点教学难点:平行线判定与性质运用。

教学重点:平行线判定方法,平行线与相交线性质。

四、教具与学具准备1. 直尺、三角板、量角器等基本绘图工具。

2. 课堂练习册。

3. PPT展示相关图形。

五、教学过程1. 实践情景引入:通过展示校园中平行线与相交线实例,引导学生观察并描述生活中平行与相交现象。

2. 例题讲解:a) 通过讲解例题,引导学生学习平行线判定方法。

b) 分析例题,让学生理解并运用平行线性质。

c) 通过讲解相交线例题,让学生掌握相交线性质。

3. 随堂练习:让学生独立完成练习册上题目,巩固所学知识。

4. 小组讨论:学生分组讨论解题过程,分享解题方法,提高解决问题能力。

六、板书设计1. 平行线判定方法:a) 同位角相等。

b) 内错角相等。

c) 同旁内角互补。

2. 平行线性质:a) 同位角相等。

b) 内错角相等。

c) 对顶角相等。

3. 相交线性质:a) 对顶角相等。

b) 邻补角互补。

七、作业设计1. 作业题目:a) 判断下列各题中直线是否平行,并说明理由。

b) 运用平行线性质,解决实际问题。

c) 运用相交线性质,解决相关问题。

2. 答案:见附页。

八、课后反思及拓展延伸1. 课后反思:对本节课教学过程进行反思,针对学生掌握情况,调整教学方法与策略。

2. 拓展延伸:布置一道探究性题目,让学生在课后深入研究,提高学生探究能力。

通过本节课学习,我希望同学们能够掌握平行线与相交线相关知识,并能在实际生活中运用这些知识解决问题。

最全面新人教版七年级数学下册精品教案全册精华版

最全面新人教版七年级数学下册精品教案全册精华版一、教学内容本节课,我们将深入探讨新人教版七年级数学下册第五章《相交线与平行线》。

具体内容包括:平行线判定、平行线性质、相交线与平行线应用。

通过本章学习,使学生掌握基本几何知识,培养空间观念。

二、教学目标1. 知识目标:使学生理解并掌握平行线判定与性质,能够运用这些知识解决实际问题。

2. 能力目标:培养学生逻辑思维能力和空间想象力,提高学生运用几何知识解决实际问题能力。

3. 情感目标:激发学生对数学学习兴趣,培养学生合作学习、积极探索精神。

三、教学难点与重点1. 教学重点:平行线判定与性质,相交线与平行线在实际问题中应用。

2. 教学难点:平行线判定与性质推理过程,以及在实际问题中应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。

2. 学具:直尺、圆规、三角板、量角器等。

五、教学过程1. 实践情景引入:通过展示实际生活中常见平行线与相交线现象,引发学生对本章内容兴趣。

2. 例题讲解:详细讲解平行线判定与性质,结合例题使学生理解并掌握相关知识。

3. 随堂练习:设计针对性练习题,让学生巩固所学知识,并及时进行讲解与指导。

4. 小组讨论:分组讨论相交线与平行线在实际问题中应用,培养学生合作精神和解决问题能力。

六、板书设计1. 黑板左侧:平行线判定、性质。

2. 黑板右侧:例题、随堂练习题、解题步骤。

七、作业设计1. 作业题目:(2)已知AB ∥ CD,求证:∠ABC = ∠CDE。

(3)在三角形ABC中,AB ∥ CD,BD平分∠ABC,求证:DE∥ BC。

2. 答案:见附页。

八、课后反思及拓展延伸1. 反思:对本节课教学过程进行反思,查找不足之处,以便在今后教学中改进。

2. 拓展延伸:布置一道拓展题,让学生思考如何利用平行线与相交线性质解决更复杂问题,提高学生思维品质。

通过本节课学习,希望学生能够掌握平行线与相交线基本知识,培养空间观念和解决问题能力,为今后数学学习打下坚实基础。

2019人教版七年级数学下册全册教案(最新全套)

5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级下册数学教案全册

人教版七年级下册数学教案全册教案:人教版七年级下册数学一、教学内容本节课为人教版七年级下册数学第五章《数据的收集与处理》第一节《数据的收集》。

本节内容主要介绍如何通过调查、实验等方法收集数据,并利用图表对数据进行整理和展示。

具体内容包括:1. 数据的收集方法:调查法、实验法等。

2. 数据的整理方法:列表法、画图法等。

3. 数据的展示方式:条形图、折线图、饼图等。

二、教学目标1. 了解数据的收集方法,学会通过调查、实验等方式收集数据。

2. 学会利用图表对数据进行整理和展示,培养学生的数据分析能力。

3. 培养学生的合作意识,提高学生的动手操作能力。

三、教学难点与重点1. 教学难点:数据的收集方法,图表的制作和解读。

2. 教学重点:数据的收集方法,条形图、折线图、饼图的绘制和分析。

四、教具与学具准备1. 教具:电脑、投影仪、黑板、粉笔。

2. 学具:笔记本、尺子、圆规、橡皮擦。

五、教学过程1. 实践情景引入:教师展示一份调查问卷,让学生思考如何通过这份问卷收集数据。

2. 讲解数据的收集方法:教师讲解调查法、实验法等数据的收集方法,并举例说明。

3. 讲解数据的整理方法:教师讲解列表法、画图法等数据的整理方法,并举例说明。

4. 讲解数据的展示方式:教师讲解条形图、折线图、饼图等数据的展示方式,并举例说明。

5. 随堂练习:学生分组讨论,每组选择一种数据的收集方法,绘制相应的图表,并进行解读。

六、板书设计1. 数据的收集方法:调查法、实验法2. 数据的整理方法:列表法、画图法3. 数据的展示方式:条形图、折线图、饼图七、作业设计1. 作业题目:(1)列举两种你曾经参与的数据收集活动,说明你是如何收集数据的。

(2)根据你收集的数据,绘制一张条形图或折线图,并解释图表所反映的信息。

2. 答案:(1)略(2)略八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否存在不足之处,如何改进。

2. 拓展延伸:学生可以尝试利用网络资源,了解其他数据的收集和展示方法,如雷达图、散点图等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学下册全册教案第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等). 三、范例学习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l =40°变为∠2-∠1=40° 变式2:把∠1=40°变为∠2是∠l 的3倍 变式3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结学生活动:表格中的结论均由学生自己口答填出.五、布置作业:课本P3练习5.1.2垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛 2.了解垂直概念,能说出垂线的性质―经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线‖,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象? 在学生回答之后,教师指出:―垂直‖两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是直角是特殊情况.其特殊之处还在于:当∠a 是直角时,它的邻补角,对顶角都是直角,即a 、b 所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.师生分清―互相垂直‖与―垂线‖的区别与联系:―互相垂直‖指两条直线的位置关系;―垂线‖是指其中一条直线对另一条直线的命名。

如果说两条直线―互相垂直‖时,其中一条必定是另一条的―垂线‖,如果一条直线是另一条直线的―垂线‖,则它们必定―互相垂直‖。

4.垂直的表示法.角的名称特征性质 相同点不同点对顶角 ①两条直线相交面成的角 ②有一个公共顶点 ③没有公共边对顶角 相等 都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

邻补角 ①两条直线相交面成的角 ②有一个公共顶点 ③有一条公共边邻补角 互补垂直用符号―⊥‖来表示,结合课本图5.1-5说明―直线AB垂直于直线CD,垂足为O‖,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.5.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?四、布置作业:课本P7练习,P9.3,4,5,9.5.1.2垂线(第二课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离.教学重点:―垂线段最短‖的性质,点到直线的距离的概念及其简单应用.教学难点:对点到直线的距离的概念的理解.教学过程一、创设问题情境1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考.2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?学生说出:两点间线段最短.(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.使木条L 与a 相交,左右摆动木条a,L 与a 的交点A 随之变化,线段PA 长度也随之变化.PA 最短时,a 与L 的位置关系如何?用三角尺检验. 4.学生画图操作,得出结论. (1)画出直线L,L 外一点P; (2)过P 点出PO ⊥L,垂足为O;(3)点A1,A2,A3……在L 上,连接PA 、PA2、PA3……; (4)用叠合法或度量法比较PO 、PA1、PA2、PA3……长短. 5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短. 关于垂线段教师可让学生思考: (1)垂线段与垂线的区别联系. (2)垂线段与线段的区别与联系. 二、点到直线的距离1.师生根据两点间的距离的意义给出点到直线的距离命名.结合课本图形(图5.1-9),深入认识垂线段PO:PO ⊥L,∠POA=90°,O 为垂足,垂线段PO 的长度比其他线段PA1、PA2……中是最短的.按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图5.1-9中,PO 的长度是点P 到直线L 的距离,其余结论PA 、PA2……长度都不是点P 到L 的距离. 2、练习课本P6练习三、课堂小结:通过这节课,我们主要学习了什么呢? 四、布置作业:课本P8.6,P10.10,11,12,P10观察与猜想.5.1.3同位角、内错角、同旁内角教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角. 重点:同位角、内错角、同旁内角的概念与识别; 难点:识别同位角、内错角、同旁内角。

教学过程 一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。

二、同位角、内错角、同旁内角如图,直线a 、b 与直线c 相交,或者说,两条直线a 、b 被第三条直线c 所截,得到八个角。

我们来研究那些没有公共顶点的两个角的关系。

∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系? 在截线的同旁,被截直线的同方向(同上或同下). 具有这种位置关系的两个角叫做同位角。

同位角形如字母“F ”。

cba 43215 6 87∠3与∠2、∠4与∠6的位置有什么共同的特点? 在截线的两旁,被截直线之间。

具有这种位置关系的两个角叫做内错角. 内错角形如字母“Z ”。

∠3与∠6、∠4与∠2的位置有什么共同的特点? 在截线的同旁,被截直线之间。

具有这种位置关系的两个角叫做同旁内角. 同旁内角形如字母“U ”。

相关文档
最新文档