精编复变函数-积分变换-场论期末复习--1(定稿).ppt
合集下载
【精品】复变函数总复习PPT课件

其中 是由 c 与 c k 组成的复合闭路
3、牛顿-莱不尼茨公式
设函数 f ( z ) 在单连通区域D内解析,G ( z )
为 f ( z ) 的一个原函数,则
z2 z1
f(z)dzG(z2)G(z1)
4、柯西积分公式
设函数 f ( z ) 在区域D内处处解析,C为D
内任意一条正向简单闭曲线,它的内部完全属
第一章:复数与复变函数
❖ 复数的概念 ❖ 复数的运算 ❖ 复数的几何表示 1、复平面 1)复数 zxyi用平面上的点( x , y )表示;
2)复数 zxyi用平面上的向量 O z 表示
3)复数的三角表示式及指数表示式
zz(cos(argz)isin(argz))(三角式)
zeiargz
(指数式)
(1i)i e e iLni()1 i[ln 1 i iA(1 r ig )]
e e i12ln24i2ki
42ki12ln2
e 4 2k c o 1 2lsn 2 isi 1 2 n ln 2
其 k 0 , 1 中 , 2 , . 故 (1 i)i的 辐 角 的 主 值 为 1 ln 2 .
函数 f(z) u (x ,y) iv (x ,y )在点 z xiy 处的 导数公式:
f(z) u i v u i u v i v v i u x x x y y x y y
定理2 设函数 f(z) u (x ,y) iv (x ,y )在区域D
内有定义,则 f ( z ) 在D内解析 u( x , y )与 v ( x , y )
1、 f(z)dz f(z)dz
c
c
2、 ckf(z)dzkcf(z)dz
3、 c [f(z ) g (z )] d z cf(z )d z cg (z )d z
复变函数与积分变换PPT_图文_图文

x y=-3
§1.4 复数域的几何模型---复球面
N
0
对复平面内任一 点z, 用直线将z 与N相连, 与球面 相交于P点, 则球 面上除N点外的 所有点和复平面 上的所有点有一 一对应的关系, 而N点本身可代 表无穷远点, 记 作.
这样的球面称作 x1
复球面.
x
x1
x3
除了复数的平
面表示方法外,
加减法与平行四边形 法则的几何意义:
乘、除法的几何意义
:
,
,
,
定理1 两个复数乘积的模等于它们的模的乘积, 两个复 数乘积的幅角等于它们幅角的和.
几何上 z1z2 相 当于将 z2 的 模扩大 |z1| 倍 并旋转一个角
度Arg z1 .
0
1
等式 Arg(z1z2)=Arg z1+Arg z2, 的意思是等式的两 边都是无限集合, 两边的集合相等, 即每给定等式左边 的一个数, 就有等式右边的一个数与之对应, 反之亦然 .
复变函数与积分变换PPT_图文_图文.ppt
引言
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次
方程
时引进了复数。他发现这个方程没有根,并
把这个方程的两个根形式地表为
。在当时,
包括他自己在内,谁也弄不清这样表示有什麽好处。事实上,
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并 被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,
解:
设 z = x + i y , 方程变为
y
O
x
-i
几何上, 该方程表示到点2i和-2的距离相等的点的轨 迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直
复变函数与积分变换课堂PPT课件

完全类似在此基础上,也可以得出类似于微积分学中的 基本定理和牛顿-莱布尼兹公式。先引入原函数的概念。
第45页/共104页
定义 即
如果函数 , 则称
在区域D内的导数等于 f (z), 为 f (z)在区域B内的原函数。
定理二表明
是 f (z)的一个原函数。
• 容易证明,f (z)的任何两个原函数相差一个常数。
,因此有
或
第48页/共104页
有了原函数、不定积分和积分计算公式,复变函数
E'
E
C
B'
B
C1
即 或
第30页/共104页
上式说明如果将 C 及 沿C逆时针, 沿
看成一条复合闭路G, 其正向为: 顺时针, 则
上式说明在区域内的一个解析函数沿闭曲线的积分, 不 因闭曲线在区域内作连续变形而改变它的值, 只要在变 形过程中不经过函数
D
f (z)不解析的点。这 一重要事实,称为 闭路变形原理。
今后讨论积分,如无特别说明,总假定被积函数是连续 的,曲线C是按段光滑的。
第10页/共104页
例1 计算
, 其中C为原点到点3+4i的直线段。
[解]直线的方程可写作
或 在C上,
。于是
又因
第11页/共104页
容易验证,右边两个线积分都与路线C无关,所以 的值,不论C是怎样的连接原点到3+4i的曲线,
第27页/共104页
在上一节中,讨论了柯西-古萨定理是在单连通域
里,现将柯西-古萨基本定理推广到多连通域的情况。
设函数 f (z)在多连通域D内解析,C为D内的任意一条
简单闭曲线,当C的内部不完全含于D时,沿C的积分 就不一定为零。
第45页/共104页
定义 即
如果函数 , 则称
在区域D内的导数等于 f (z), 为 f (z)在区域B内的原函数。
定理二表明
是 f (z)的一个原函数。
• 容易证明,f (z)的任何两个原函数相差一个常数。
,因此有
或
第48页/共104页
有了原函数、不定积分和积分计算公式,复变函数
E'
E
C
B'
B
C1
即 或
第30页/共104页
上式说明如果将 C 及 沿C逆时针, 沿
看成一条复合闭路G, 其正向为: 顺时针, 则
上式说明在区域内的一个解析函数沿闭曲线的积分, 不 因闭曲线在区域内作连续变形而改变它的值, 只要在变 形过程中不经过函数
D
f (z)不解析的点。这 一重要事实,称为 闭路变形原理。
今后讨论积分,如无特别说明,总假定被积函数是连续 的,曲线C是按段光滑的。
第10页/共104页
例1 计算
, 其中C为原点到点3+4i的直线段。
[解]直线的方程可写作
或 在C上,
。于是
又因
第11页/共104页
容易验证,右边两个线积分都与路线C无关,所以 的值,不论C是怎样的连接原点到3+4i的曲线,
第27页/共104页
在上一节中,讨论了柯西-古萨定理是在单连通域
里,现将柯西-古萨基本定理推广到多连通域的情况。
设函数 f (z)在多连通域D内解析,C为D内的任意一条
简单闭曲线,当C的内部不完全含于D时,沿C的积分 就不一定为零。
《复变函数与积分变换》PPT课件

z = z1 + t(z2 z1 ),
(0 ≤ t ≤ 1)
(2)过两点 z1 和z2的直线L的参数方程为
z = z1 + t(z2 z1 ),
(∞ < t < +∞)
(3)z1、z2,z3 三点共线得充要条件为
z3 z1 = t, z2 z1
(t为 非 实 ) 一 零 数
浙江大学
例: 考察下列方程(或不等式)在平面上所描绘的几何图形。 (1) z 2i = z + 2 该方程表示到点2i和-2距离相等的点的轨迹,所以方程 表示的曲线就是连接点2i 和-2的线段的垂直平分线, 它的方程为y = -x。
复变函数与积分变换
贾厚玉 mjhy@
浙江大学
第一章 复数与复变函数 第二章 解析函数 第三章 复变函数的积分 第四章 级数 第五章 留数 第六章 保角映射 Laplace变换 第七章 Laplace变换
浙江大学
第一章 复数与复变函数
复数及其代数运算 复数的表示 复数的乘幂与方根 复平面点集与区域 复变函数 复变函数的极限与连续
浙江大学
例:已知正三角形的两个顶点为 求三角形的另一个顶点。
z1 = 1, z2 = 2 + i
y
z3 z1 = (z2 z1 )e 3 1 3 = (1+ i)( + i) 2 2 1 3 1 + 3 i = + 2 2
3 3 1+ 3 z3 = i + 2 2
i
π
z3
z2
x
O
z1
3 + 3 1 3 ′ z3 = i + 2 2
Re z 2 ≤ 1
z 2 = (x + iy)2 = (x2 y2 ) + 2ixy
复变函数与积分变换PPT课件

11 2i (2 i )( 5i) 11 2i 5 10i 25 5i (5i) 25 25
16 8 i 25 25
所以
16 8 Re z , Im z 25 25
16 8 16 8 64 zz ( i)( i) 25 25 25 25 125
1. 复数的乘幂 设 n 为正整数, n 个非零相同复数 z 的乘 z 的 n 次幂,记为 z n ,即 积,称为
z n z z z
n个
若 z r(cos i sin ) ,则有
z n r n (cos n i sin n )
当 r 1 时,得到著名的棣莫弗公式 (cos i sin ) n cos n i sin n
所以 r z ( 1) 2 ( 3) 2 2 设 arg z, 则
3 tan t 3 1
又因为 z 1 i 3 位于第II象限 2 所以 arg z 3 于是
2 2 z 1 i 3 2(cos i sin ) 3 3
y arctan x , z在第一、四象限 y y arg z arctan , z在第二象限 其中 arctan 2 x 2 x y arctan x , z在第三象限
说明:当 z 在第二象限时, arg z 0 2 2 y y arctan tan( ) tan( ) tan
z0
25
开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称D 为闭集. 连通集 设是 D 开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集.
16 8 i 25 25
所以
16 8 Re z , Im z 25 25
16 8 16 8 64 zz ( i)( i) 25 25 25 25 125
1. 复数的乘幂 设 n 为正整数, n 个非零相同复数 z 的乘 z 的 n 次幂,记为 z n ,即 积,称为
z n z z z
n个
若 z r(cos i sin ) ,则有
z n r n (cos n i sin n )
当 r 1 时,得到著名的棣莫弗公式 (cos i sin ) n cos n i sin n
所以 r z ( 1) 2 ( 3) 2 2 设 arg z, 则
3 tan t 3 1
又因为 z 1 i 3 位于第II象限 2 所以 arg z 3 于是
2 2 z 1 i 3 2(cos i sin ) 3 3
y arctan x , z在第一、四象限 y y arg z arctan , z在第二象限 其中 arctan 2 x 2 x y arctan x , z在第三象限
说明:当 z 在第二象限时, arg z 0 2 2 y y arctan tan( ) tan( ) tan
z0
25
开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称D 为闭集. 连通集 设是 D 开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集.
复变函数与积分变换经典PPT—复变函数.ppt

解
由上例可知
(z
1 a)n1
dz
2i, 0,
n0 n 0,
此处不妨设 a z0,
则有
1
1
1,
2 i (z z0 )n dz 0,
n1 n 1.
四、小结与思考
本课所讲述的复合闭路定理与闭路变形原
理是复积分中的重要定理, 掌握并能灵活应用它 是本章的难点.
1
2
3
CF
A
A
F
B4
D1 E C1 B
D
E
问题的提出 C
C1
复合闭路定理D
C2 C3
典型例题
小结与思考
一、.
z 2 z 1
因为 z 2 是包含 z 1 在内的闭曲线,
根据本章第一节例4可知,
1 dz 2i.
z 2 z 1 由此希望将基本定理推广到多连域中.
y C1
解 C1 和 C2 围成一个圆环域, 函数 ez 在此圆环域和其边界
z
C2 o1
2x
上处处解析, 圆环域的边界构成一条复合闭路,
根据闭路复合定理, ez dz 0. z
例3 求
(z
1 a)n1
dz
,
为含
a
的任一简单闭
路,n 为整数.
解 因为a 在曲线内部,
a
1
BB
BB
即 f (z)dz f (z)dz 0,
C
C1
或 f (z)dz f (z)dz.
C
C1
CF
A A F B
D1 E C1 B
复变函数和积分变换 84页PPT文档
(2)第二次数学危机 前面说过牛顿在确定 x3的导数时,前面部 分假设 0 是非零的,而在论证的后一部分, 又被取为零,偷换假设的错误是明显的。1734 年,英国哲学家、大主教贝克莱发表《分析 学家,或致一个不信正教数学家的进言》,矛 头指向微积分的基础——无穷小的问题,提 出了所谓“贝克莱悖论”。
中国古藉《易.系辞》中说: 「上古结绳而治,后世圣人易之以书契。」 这些都是匹配计数法的反映。
(2)整数 正整数,零与负整数构成整数系。
•零不仅表示「无」,更是表示空位的符号。 •中国古代用算筹计算数并进行运算时,空位不放算筹, 虽无空位记号,但仍能为位值记数与四则运算创造良好的条件。 •印度-阿拉伯命数法中的零(zero)来自印度的(sunya ) 字,其原意也是「空」或「空白」。
2、数学的内容
大致说来,数学分为初等数学与高等 数学两大部分。
初等数学中主要包含两部分:几何学 与代数学。几何学是研究空间形式的学科, 而代数学则是研究数量关系的学科。
初等数学基本上是常量的数学。
高等数学含有非常丰富的内容,以大学本科所学为 限,它主要包含: • 解析几何:用代数方法研究几何,其中平面解析几 何部分内容已放到中学。 • 线性代数:研究如何解线性方程组及有关的问题。 • 高等代数:研究方程式的求根问题。 • 微积分:研究变速运动及曲边形的求积问题。作为 微积分的延伸,物理类各系还要讲授常微分方程与 偏微分方程。 • 概率论与数理统计:研究随机现象,依据数据进行 推理。等等
分数的使用导源于除法运算的需要。 除法运算可看作求解方程px=q(p≠0 ),如果p, q是整数,则所给方程未必有整数解。 为了使它恒有解,就有必要把整数系扩大成为有 理数系。
(4)无理数
(5)实数
复变函数与积分变换PPT教学课件
实轴对称的.
o
zz
z x iy
x
z x iy
想一想,z与z的辐角主值有什么关系?
(1) 若z=0,则辐角无意义
(2) 若z位于负实轴上,则arg(z) arg(z)=
(3) 若z不在原点和负实轴上,则arg(z) -arg(z)
25
例2:求Arg(-3 4i) Arg(-3 - 4i)
e19i ,
故三角表示式为 z cos19 i sin19 ,
指数表示式为 z e19i .
30
例4:写出1,i, - 2, - 3i的三角表示式.
解:1 = 1(cos0 + i sin 0)
i = 1(cos + i sin )
2
2
-2 = 2(cos +isin )
-3i = 3[cos(- ) + i sin(- )]
3
26
4.复数的三种表示及其相互转化
利用直角坐标与极坐标的关系
x y
cos , sin ,
复数可以表示成 z (cos i sin)
复数的三角表示式
再利用欧拉公式 ei cos i sin , 欧拉介绍
复数可以表示成 z ei
复数的指数表示式
27
例3 将下列复数化为三角表示式与指数表示式:
用来表示复数, 通常把横轴叫实轴或x 轴, 纵轴
叫虚轴或 y 轴. 这种用来表示复数的平面叫复平
面. 复数 z x iy 可以用复平
y z x iy
y
(x, y)
面上的点( x, y) 表示.
o
x
x
19
2. 复数的模(或绝对值)
从原点O到点 z x iy所引的向量与复数z构成一一
复变函数与积分变换第1章复数与复变函数幻灯片PPT
,z2对应的向量分别为 1, 由复数的运算法那么知复数的加减法与向量
的加减法一致,于是在平面上以
为邻边的平行四边形的对角线 就表示
复数z1+z2〔图1.2〕,对角线 就表示复数z1-z2.
图1.2
页 退出
复变函数与积分变换
由上述几何解释知下面两个不等式成立:
出版社 理工分社
其中
表示向量 的长度,也就是复平面上点z1,z2之间的距
页 退出
复变函数与积分变换
复数域 形如
1.1复数
出版社 理工分社
的数称为复数,其中x和y是任意的实数,分别称为复数z的实部与虚部,记作
x=Re z,y=lm z;而i(也可记为 )称为纯虚数单位.
当Im z=0时,z=Re z可视为实数;而当Re z=0,Im z≠0时,z称为纯虚数;特别
地,当Re z=Im z=0时,记z=0+i0=0.
页 退出
复变函数与积分变换
出版社 理工分社
页 退出
复变函数与积分变换
出版社 理工分社
如图1.1所示,复数z=x+iy还可以用向量 来表示,x与y分别是向量 在x轴与 y轴上的投影.这样,复数z就与平面上的向量 建立了一一对应的关系. 引进了复平面后,为方便起见, “复数z〞、“点z〞及“向量 〞三者不再区分. 向量 的长度称为复数z=x+iy的模或绝对值,记作|z|,于是
页 退出
复变函数与积分变换
例1.4求z=1的n次方根. 解因为 所以 特别地,1的立方根为
它们均匀地分布在以原点为中心,以1为半径的圆周上 〔图1.5〕.
图1.5
出版社 理工分社
页 退出
复变函数与积分变换
复变函数与积分变换经典PPT—复变函数第一章小结与习题
若 z 1 r1 (cos 1 i sin 1) ,
z 2 r2 (cos 2 i sin 2) ,
则有
z2 z1
z2 z1
,
z2 Arg Arg z 2 Arg z 1 . z1
设复数 z 1 和 z 2的指数形式分别为
z 1 r1 e
z re
i
称为复数 z 的指数表示式.
4.复数的乘幂与方根 1) 乘积与商 两个复数乘积的模等于它们的模的乘积; 两个复数乘积的辐角等于它们的辐角的和.
若 z 1 r1 (cos 1 i sin 1) ,
z 2 r2 (cos 2 i sin 2) ,
则有
z1 z2 r1 r2 [cos( 1 2 ) i sin( 1 2 )] Arg( z1 z2 ) Argz1 A应的向量分别为 z 1 , z 2 ,
z
z1
y
先把 z 1 按逆时针方向 旋转一个角
所得向量
z 就表示积
z1 z 2 .
2 1
o
r2
复数相乘就是把模相乘, 辐角相加.
再把它的模扩大到
r2 倍 ,
r1
2,
r
z2
x
两个复数的商的模等于它们的模的商; 两个 复数的商的辐角等于被除数与除数的辐角之差.
设 G 是一个复数 个确定的法则存在 每一个复数 z x iy 的集合 . 如果有一 , 按这个法则 , 对于集合 G 中的
z , 就有一个或几个复数 w 是复变数
w u iv 与 z 的函数 ( 简称
之对应 , 那末称复变数 复变函数 ), 记作
z 2 r2 (cos 2 i sin 2) ,
则有
z2 z1
z2 z1
,
z2 Arg Arg z 2 Arg z 1 . z1
设复数 z 1 和 z 2的指数形式分别为
z 1 r1 e
z re
i
称为复数 z 的指数表示式.
4.复数的乘幂与方根 1) 乘积与商 两个复数乘积的模等于它们的模的乘积; 两个复数乘积的辐角等于它们的辐角的和.
若 z 1 r1 (cos 1 i sin 1) ,
z 2 r2 (cos 2 i sin 2) ,
则有
z1 z2 r1 r2 [cos( 1 2 ) i sin( 1 2 )] Arg( z1 z2 ) Argz1 A应的向量分别为 z 1 , z 2 ,
z
z1
y
先把 z 1 按逆时针方向 旋转一个角
所得向量
z 就表示积
z1 z 2 .
2 1
o
r2
复数相乘就是把模相乘, 辐角相加.
再把它的模扩大到
r2 倍 ,
r1
2,
r
z2
x
两个复数的商的模等于它们的模的商; 两个 复数的商的辐角等于被除数与除数的辐角之差.
设 G 是一个复数 个确定的法则存在 每一个复数 z x iy 的集合 . 如果有一 , 按这个法则 , 对于集合 G 中的
z , 就有一个或几个复数 w 是复变数
w u iv 与 z 的函数 ( 简称
之对应 , 那末称复变数 复变函数 ), 记作