第26章反比例函数练习题
人教版初三数学9年级下册 第26章(反比例函数)26.1反比例函数 课后练习

人教九下26.1反比例函数一、选择题1. 下列函数中,是反比例函数的是( )A.y=−x2B.y=−12xC.y=1x−1D.y=1x22. 已知函数y=kx,当x=1时,y=−3,那么这个函数的解析式是( )A.y=3x B.y=−3xC.y=13xD.y=−13x3. 下列函数关系中,是反比例函数的是( )A.等边三角形面积S与边长a的关系B.直角三角形两锐角A与B的关系C.长方形面积一定时,长y与宽x的关系D.等边三角形的顶角A与底角B的关系4. 若点(3,6)在反比例函数y=kx(k≠0)的图象上,那么下列各点在此图象上的是( ) A.(−3,6)B.(2,9)C.(2,−9)D.(3,−6)5. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<16. 下列反比例函数的图象一定在第一、三象限的是( )A.y=mx B.y=m+1xC.y=m2+1xD.y=−mx7. 已知函数y=kx的图象经过(2,3),下列说法正确的是( )A.y随着x增大而增大B.函数的图象只在第一象限C.当x<0时,必有y<0D.点(−2,−3)不在此函数的图象上8. 已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)的图象上的两点,当x1<x2<0时,y1 >y2,那么一次函数y=kx−k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限9. 一次函数y=kx+b(k≠0)与反比例函数y=kx(k≠0)的图象在同一平面直角坐标系中的大致图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<010. 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=kx (x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.3211. 在反比例函数y=k(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1−y2的x值为( )A.正数B.负数C.非正数D.非负数二、填空题12. 设三角形的底边、对应高、面积分别为a,ℎ,S.(1)当a=10时,S与ℎ的关系式为,是函数;(2)当S=18时,a与ℎ的关系式为,是函数.13. 已知变量y,x成反比例,且当x=2时,y=6,则这个函数关系是.14. 若函数y=(n−1)x n2−2是反比例函数,则n=.15. 点(1,3)在反比例函数y=k的图象上,则k=,在图象的每一支上,y随x的增大x而.16. 如图所示,某反比例函数的图象经过点(−2,1),则此反比例函数表达式为.17. 反比例函数y=2a−1的图象有一支位于第一象限,则常数a的取值范围是.x18. 已知点A(2,y1),B(4,y2)都在反比例函数y=k(k<0)的图象上,则y1y2(填“>”“<”x或“=”).19. 已知函数y=(m+1)x m2−5是反比例函数,且图象在第一、三象限内,则m=.20. 反比例函数y=k+1,点(x1,y1),(x2,y2)在其图象上,当x1<0<x2时,有y1>y2,则k x的取值范围是.图象上的概率21. 从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x是.三、解答题22. 已知y−1与x成反比例,当x=3时,y=5,求y与x的函数关系式.23. 作出反比例函数y=−4的图象,并结合图象回答:x(1) 当x=2时,y的值;(2) 当1<x≤4时,y的取值范围;(3) 当1≤y<4时,x的取值范围.的图象的一支位于第一象限.24. 已知反比例函数y=m−7x(1) 判断该函数图象的另一支所在的象限,并求出m的取值范围;(2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.25. 如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点D.x(1) 求k的值;(2) 若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式,并写出x的取值范围.26. 已知反比例函数的图象过点(1,−2).(1) 求这个函数的解析式,并画出图象;(2) 若点A(−5,m)在该图象上,则点A关于两坐标轴和原点的对称点是否也在图象上?27. 如图,一次函数y=kx+b的图象l分别与x轴,y轴交于点E,F,与双曲线y=−4x (x<0)交于点P(−1,n),F是PE的中点.(1) 求直线l的解析式;(2) 若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】B5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】D10. 【答案】D11. 【答案】A二、填空题12. 【答案】S=5ℎ;正比例;a=36;反比例ℎ13. 【答案】y=12x14. 【答案】−115. 【答案】3;减小16. 【答案】y=−2x17. 【答案】a>1218. 【答案】<19. 【答案】220. 【答案】k<−121. 【答案】16三、解答题22. 【答案】y=12+x.x23. 【答案】(1) y=−2.(2) −4<y≤−1.(3) −4≤x<−1.24. 【答案】(1) 第三象限;m−7>0,则m>7.(2) m=13.25. 【答案】(1) k=2.(2) S=2x−2,x>12−2x,0<x<1.26. 【答案】(1) y=−2,图略.x(2) m=2,点A−5,关于两坐标轴对称的点均不在函数图象上,关于原点对称的点在函数图5象上.27. 【答案】(1) y=−2x+2.(2) 当a=−2时,PA=PB(提示:过点P作PD⊥AB).。
人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案满分120分一、单选题1. ( 3分) 如图,正比例函数y1=k1x和反比例函数y2=k2的图象交于A(﹣1,2)、B(1,﹣2)两点,x若y1<y2,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】由图象可得,﹣1<x<0或x>1时y1<y2.故D符合题意.【分析】因为y1<y2,所以正比例函数的图象低于反比例函数的图象,而两图像交于A(﹣1,2)、B (1,﹣2)两点,两交点和原点将图形分成四部分,则x的取值范围是﹣1<x<0或x>1。
的图像上,则k的值是()2. ( 3分) 若点A(-1,6)在反比例函数y=kxA.-6B.-3C.3D.6【答案】A【考点】反比例函数图象上点的坐标特征的图象上【解析】【解答】因为A(-1,6)在反比例函数y=kx所以6= k1解得:k=-6.故答案为:A.的图象上,则点的坐标一定满足解析式,代入就得到k的值.【分析】点A(-1,6)在反比例函数y=kx3. ( 3分) 下列函数的图象,一定经过原点的是()A.y=2B.y=5x2﹣3xC.y=x2﹣1D.y=﹣3x+7x【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】A、x≠0,所以不经过原点,故错误;B、若x=0,则y=5×0﹣3×0=0.所以经过原点.故正确;C、若x=0,则y=﹣1.所以不经过原点.故错误;D、若x=0,则y=7.所以不经过原点.故错误.故答案为:B.【分析】反比例函数中由于自变量的取值范围是不能为零的故图像不可能经过坐标原点;二次函数的图像与y轴的交点取决于常数项C,只有C等于零的时候,图像才会经过坐标原点;一次函数的图像与y轴的交点取决于常数b,只有b=0的时候直线才经过坐标原点。
人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)

第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。
第二十六章反比例函数 达标测试卷(含答案)

第二十六章反比例函数一、选择题(每小题3分,共30分)1.下列函数中,属于反比例函数的是( )A .y =3xB .y =-2x C .y =x 2+3 D .x +y =522.已知双曲线y =kx 经过点(-2,5),则下列各点在该双曲线上的是( )A .(-5,-2)B .(1,10)C .(5,2)D .(10,-1) 3.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象位于第一、三象限C .它的图象经过原点D .当x >0时,y 随x 的增大而增大4.已知反比例函数y =k -3x ,当x >0时,y 随x 的增大而增大,则k 的取值范围是( )A .k <3B .k ≤3C .k >3D .k ≥35.如图是反比例函数y 1=kx 和一次函数y 2=mx +n 的图象,若y 1<y 2,则相应的x的取值范围是( )A .1<x <6B .x <1C .x <6D .x >1(第5题) (第7题)6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后汽缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /mL 100 80 60 40 20 压强y /kPa6075100150300则可以反映y 与x 之间的关系的式子是( )A.y=3 000x B.y=6 000xC.y=3 000x D.y=6 000x7.如图,反比例函数y=4x和y=2x在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为() A.1 B.2 C.4 D.无法计算8.函数y=kx(k≠0)与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是() 9.如图,O为坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为() A.-12 B.-27 C.-32 D.-36(第9题) (第10题)10.如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=kx的图象交于C,D两点,过点C作CE⊥y轴于点E,过点D作DF⊥x 轴于点F,连接CF,DE,有下列结论:①△CEF与△DEF的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于k2,其中正确的有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共15分)3 11.已知函数y =(m -1)x |m |-2是反比例函数,则m =________.12.已知点A (1,y 1),B (2,y 2)是双曲线y =5x 上的点,则y 1________y 2(填“>”“<”或“=”).13.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________________.14.反比例函数y =kx 的图象经过点A (2,1),若y ≤1,则x 的取值范围为________________.15.如图,点A 在反比例函数y =6 2x (x >0)的图象上,以OA 为直径的圆交该双曲线于点C ,交y 轴于点B ,若CB ︵=CO ︵,则点A 的坐标为__________.三、解答题(一)(每小题8分,共24分)16.已知反比例函数y =kx 的图象经过点P (1,6). (1)求k 的值;(2)若点M (-2,m ),N (-1,n )都在该反比例函数的图象上,试比较m ,n 的大小.17.如图,直线y =x +m 与双曲线y =kx 相交于A (2,1)和B 两点.(1)求m与k的值;(2)求点B的坐标;(3)直线y=-2x+4m经过点B吗?请说明理由.18.已知y是x+1的反比例函数,且当x=-2时,y=-3.(1)求y与x的函数关系式;(2)当x=12时,求y的值.四、解答题(二)(每小题9分,共27分)19.如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b-6x<0中的x的取值范围;(3)求△AOB的面积.20.制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作.操作8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时温度y(℃)与时间x(min)成反比例函数关系(如图),已知某材料初始温度是26 ℃.(1)分别求出该材料煅烧和锻造时y关于x的函数解析式,并写出自变量x的取值范围.(2)根据工艺要求,当材料温度低于400 ℃时,须停止操作,那么锻造的操作时间有多长?21.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=mx(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n-4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的解析5式.五、解答题(三)(每小题12分,共24分)22.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC⊥x轴于点C,连接BC.若△ABC的面积为2.(1)求k的值;(2)①点A的坐标为________,点B的坐标为________;②当kx≤2x时,x的取值范围为________________;(3)在x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.23.如图,已知一次函数y=32x-3的图象与反比例函数y=kx的图象交于点A(4,n),与x轴交于点B.(1) 填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=kx的图象,当y≥-2时,请直接写出自变量x的取值范围.7答案一、1.B 2.D 3.B 4.A 5.A 6.D 7.A 8.B 9.C 点拨:∵A (-3,4),∴OA =32+42=5.∵四边形OABC 是菱形,∴AB =OA =5,AB ∥OC , 则点B 的横坐标为-3-5=-8,纵坐标为4, 即点B 的坐标为(-8,4),将点B (-8,4)的坐标代入y =k x ,得4=k-8,解得k =-32.故选C.10.C二、11.-1 12.> 13.y =100x 14.x <0或x ≥2 15.(3,2 6)三、16.解:(1)∵反比例函数y =k x 的图象经过点P (1,6), ∴6=k1,解得k =6.(2)∵k =6>0,∴当x <0时,y 随x 的增大而减小, ∵-2<-1,∴m >n .17.解:(1)将A (2,1)的坐标代入y =x +m ,得1=2+m ,解得m =-1.将A (2,1)的坐标代入y =k x ,得1=k2,解得k =2. (2)由(1)知m =-1,k =2,联立⎩⎪⎨⎪⎧y =x -1,y =2x ,解得⎩⎨⎧x 1=2,y 1=1,⎩⎨⎧x 2=-1,y 2=-2, ∴点B 的坐标为(-1,-2). (3)经过,理由略. 18.解:(1)设y =kx +1(k ≠0). 把x =-2,y =-3代入,得-3=k-2+1,解得k =3,故y 与x 的函数关系式为y =3x +1.9 (2)把x =12代入y =3x +1,得y =312+1=2.四、19.解:(1)分别把A (m ,6),B (3,n )的坐标代入y =6x (x >0)得6=6m ,n =63,解得m =1,n =2, 所以A 点坐标为(1,6),B 点坐标为(3,2), 把A (1,6),B (3,2)的坐标代入y =kx +b ,得 ⎩⎨⎧k +b =6,3k +b =2,解得⎩⎨⎧k =-2,b =8,所以一次函数的解析式为y =-2x +8. (2)当0<x <1或x >3时,kx +b -6x <0.(3)设一次函数y =-2x +8的图象与x 轴,y 轴分别交于点D ,C, 当x =0时,y =8,则C 点坐标为(0,8), 当y =0时,-2x +8=0,解得x =4, 则D 点坐标为(4,0),所以S △AOB =S △COD -S △AOC -S △BOD =12×4×8-12×8×1-12×4×2=8.20.解:(1)设该材料锻造时y 关于x 的函数解析式为y =k x (k ≠0),则600=k8,∴k=4 800,∴y =4 800x .当y =800时,800=4 800x ,解得x =6, ∴点B 的坐标为(6,800).设该材料煅烧时y 关于x 的函数解析式为y =ax +b (a ≠0),将点A (0,26),B (6,800)的坐标代入得⎩⎨⎧b =26,6a +b =800,解得⎩⎨⎧a =129,b =26,∴y =129x +26.∴该材料锻造时y 关于x 的函数解析式为y =4 800x (x ≥6),煅烧时y 关于x 的函数解析式为y =129x +26(0≤x <6).(2)把y =400代入y =4 800x ,得x =12,12-6=6(min),∴锻造的操作时间有6 min.21.解:∵点B (2,n ),P (3n -4,1)在反比例函数y =mx (x >0)的图象上,∴⎩⎨⎧2n =m ,3n -4=m ,解得⎩⎨⎧m =8,n =4,∴反比例函数的解析式为y =8x ,B (2,4),P (8,1). 如图,过点P 作PD ⊥BC 于D ,并延长交AB 于点P ′.在△BDP 和△BDP ′中,⎩⎨⎧∠PBD =∠P ′BD ,BD =BD ,∠BDP =∠BDP ′=90°,∴△BDP ≌△BDP ′,∴DP ′=DP .易知DP =8-2=6,∴DP ′=6.∵BC ⊥x 轴,PP ′⊥BC , ∴PP ′∥x 轴,∴易得P ′(-4,1).将B (2,4),P ′(-4,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =4,-4k +b =1,解得⎩⎪⎨⎪⎧k =12,b =3,∴一次函数的解析式为y =12x +3.五、22.解:(1)由题意知点A 与点B 关于原点对称,∴OA =OB ,∴S △AOC =S △BOC =12S △ABC =12×2=1, ∴12|k |=1,∵k >0,∴k =2. (2)①(1,2);(-1,-2) ②x ≥1或-1≤x <0(3)存在.由(2)可得AB 2=(-1-1)2+(-2-2)2=20.设D (m ,0),则AD 2=22+(1-m )2=m 2-2m +5, BD 2=22+(m +1)2=m 2+2m +5,当△ABD 为直角三角形时,可分以下三种情况:11当∠BAD =90°时,AB 2+AD 2=BD 2,即20+m 2-2m +5=m 2+2m +5,解得m =5;当∠ABD =90°时,AB 2+BD 2=AD 2,即20+m 2+2m +5=m 2-2m +5,解得m =-5, 当∠BDA =90°时,AD 2+BD 2=AB 2,即m 2-2m +5+m 2+2m +5=20,解得m =±5. ∴点D 的坐标为(-5,0),(-5,0),(5,0)或(5,0).23.解:(1)3;12(2)对于y =32x -3,令y =0,则32x -3=0,解得x =2,∴B (2,0). 如图,过点A 作AE ⊥x 轴于E ,过点D 作DF ⊥x 轴于F .∵A (4,3),B (2,0),∴OE =4,AE =3,OB =2, ∴BE =OE -OB =4-2=2.∴在Rt △ABE 中,AB =AE 2+BE 2=32+22=13.∵四边形ABCD 是菱形,∴AB =CD =BC =13,AB ∥CD ,∴∠ABE =∠DCF , ∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB =∠DFC =90°,在△ABE 与△DCF 中,⎩⎨⎧∠AEB =∠DFC ,∠ABE =∠DCF ,AB =DC ,∴△ABE ≌△DCF ,∴CF =BE =2,DF =AE =3, ∴OF =OB +BC +CF =2+13+2=4+13,∴点D 的坐标为(4+13,3).(3)当y ≥-2时,自变量x 的取值范围是x ≤-6或x >0.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)

第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。
人教版初三数学9年级下册 第26章(反比例函数)压轴综合专练(含解析)
人教版九年级数学下册第二十六章《反比例函数》压轴综合专练1.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b<的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.2.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.3.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?4.如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.5.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB 恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.6.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.7.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.8.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.9.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.10.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).11.如图,一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),且与y轴相交于点C,与双曲线y=相交于点P.(1)求b的值;(2)作PM⊥PC交y轴于点M,已知S△MPC=4,求双曲线的解析式.12.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.13.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.14.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.15.已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.参考答案1.解:(1)把A(1,4)代入y=得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得:当0<x<1或x>4时,kx+b<;∴不等式kx+b<的解集为0<x<1或x>4;(3)如图,设直线AB与x轴交于点C,∵直线AB与x轴交于点C,∴点C坐标为(5,0),∵△ABP的面积为6,∴×PC×4﹣PC×1=6,∴PC=4,∴点P的坐标为(1,0)或(9,0).2.解:(1)∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).3.解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.4.解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=10,解得:x=3,则E(3,0).5.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,∵∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∴B(1,);∵双曲线y=经过点B,∴k=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,∵AB=BC,∴BC=2OB,∴OC=OB,∴C(﹣1,﹣),∵﹣1×(﹣)=,∴点C在双曲线上.6.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3=,∴m=﹣6.∴该反比例函数的解析式为y=﹣.(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8.7.解:(1)∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD=×2×2=2;(3)存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),∴b的值为﹣.8.解:(1)∵点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,∴当y=﹣1时,x﹣3=﹣1,解得x=2,∴B(2,﹣1).设点A的坐标为(2,t),则t<﹣1,AB=﹣1﹣t.∵S△OAB=4,∴(﹣1﹣t)×2=4,解得t=﹣5,∴点A的坐标为(2,﹣5).∵点A在反比例函数y=(k<0)的图象上,∴﹣5=,解得k=﹣10;(2)∵P、Q两点关于y轴对称,点P的坐标为(m,n),∴Q(﹣m,n),∵点P在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,∴n=﹣,n=﹣m﹣3,∴mn=﹣10,m+n=﹣3,∴====﹣.9.解:(1)E(,4),F(6,);(2)∵E,F两点坐标分别为E(,4),F(6,),∴S△ECF=EC•CF=(6﹣k)(4﹣k),∴S△EOF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△ECF=24﹣k﹣k﹣S△ECF=24﹣k﹣(6﹣k)(4﹣k),∵△OEF的面积为9,∴24﹣k﹣(6﹣k)(4﹣k)=9,整理得,=6,解得k=12.∴反比例函数的解析式为y=.10.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),∴k=1×3=3,∴y=,∵B(3,y2)在反比例函数的图象上,∴y2==1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,AB=BP,∴=,==,∴B(, y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1).(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0.11.解:(1)∵一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),∴b+2+b=0,解得:b=﹣1.(2)过点P作PB⊥MC于点B,如图所示.将b=﹣1代入一次函数解析式,得:y=﹣x﹣1.当x=0时,y=﹣1,∴点C的坐标为(0,﹣1),∴OC=1,∵点A的坐标为(﹣1,0),∴OA=1=OC,∴∠ACO=45°.∵PM⊥PC,∴△PMC为等腰直角三角形,∵PB⊥MC,∴PB=MC,∴S△PMC=CM•PB=PB2,∵S△PMC=4,∴PB2=4,即PB=2或PB=﹣2(舍去),∵点P在第二象限,∴点P的横坐标为﹣2,当x=﹣2时,y=﹣(﹣2)﹣1=1,∴点P的坐标为(﹣2,1).∵双曲线y=经过点P,∴k=﹣2×1=﹣2,∴双曲线的解析式为y=﹣.12.解:(1)∵当x=0时,y=7,当y=0时,x=﹣,∴A(﹣,0)、B(0、7).∴S△AOB=|OA|•|OB|=×(﹣)×7=,解得k1=﹣1.∴直线的解析式为y=﹣x+7.∵当x=1时,y=﹣1+7=6,∴C(1,6).∴k2=1×6=6.∴反比例函数的解析式为y=.(2)∵点C与点D关于y=x对称,∴D(6,1).当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);当x=4时,反比例函数图象上的点为(4,),直线上的点为(4,3),此时可得整点为(4,2);当x=5时,反比例函数图象上的点为(5,),直线上的点为(5,2),此时,不存在整点.综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).13.解:(1)∵A(2,0),∴OA=2.∵tan∠OAB==,∴OB=1,∴B(0,1),设直线l的表达式为y=kx+b,则,解得,∴直线l的表达式为y=﹣x+1;(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为﹣1,又∵点P在直线l上,∴点P的纵坐标为:﹣×(﹣1)+1=,∴点P的坐标是(﹣1,),∵反比例函数y=的图象经过点P,∴=,∴m=﹣1×=﹣.14.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).15.解:(1)如图所示,延长AE,BD交于点C,则∠ACB=90°,∵一次函数y=﹣2x+1的图象经过点A(﹣1,m),∴m=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),∴令y=﹣2,则﹣2=﹣2x+1,∴x=,即B(,﹣2),∴C(﹣1,﹣2),∴AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,∴四边形AEDB的面积=△ABC的面积﹣△CDE的面积=AC×BC﹣CE×CD=×5×﹣×2×1=.。
第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册
第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。
人教版九年级数学下册 第26章 反比例函数 单元练习 包含答案
第26章反比例函数一.选择题(共13小题)1.如图,正比例函数y1=kx和反比例函数y2=的图象交于A(﹣1,2)、(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或 0<x<1 D.﹣1<x<0或x>12.设I,R,U分别表示电流、电阻和电压,现给出以下四个结论:①当I一定时,U与R成反比例函数;②当R一定时,U与I成反比例函数;③当U一定时,I与R成反比例函数;④当R与U一定时,I也一定.其中正确的结论为()A.①,②B.②,③C.③,④D.①,④3.若ab<0,则函数y=ax,坐标系内的图象大致可能是如图中的()A.B.C.D.4.如图,A,B是双曲线y=的一个分支上的两点,且点B(a,b)在点A的右侧,则b的取值范围是()A.b>1 B.b<2 C.b>2 D.0<b<25.点(x1,y1)、(x2,y2)、(x3,y3)都在反比例函数的图象上,并且x1<x2<0<x3,则下列正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y26.若函数y=ax和的图象无公共点,且ab≠0,则可断定()A.a>0,b>0 B.a<0,b>0 C.a<0,b>0 D.ab<07.若反比例函数y=m的图象在它所在的象限内,y随x的增大而增大,则m的值是()A.﹣2 B.2C.±2 D.以上结论都不对8.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于x轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>49.已知反比例函数的图象上有一点Q,过点Q分别作x轴,y轴的平行线,若两条平行线与两坐标轴所围成的矩形面积为S,则()A.S=1 B.S=2 C.1<S<2 D.S>210.下列关系式中,说法正确的是()A.在y=2x+1中,y﹣1与x成正比例B.在xy=﹣3中,y与成反比例C.在y=﹣|x|中,y与x成正比例D.在A=πr2中,r与成正比例11.正比例函数y=2x与反比例函数y=在同一坐标系的大致图象为()A.B.C.D.12.反比例函数y=(k≠0)的图象双曲线是()A.是轴对称图形,而不是中心对称图形B.是中心对称图形,而不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形13.如图为反比例函数y=的图象,则k等于()A.B.C.10 D.﹣10二.填空题(共13小题)14.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(x>0)的图象上,则点B的坐标为,点E的坐标为.15.对于函数y=,当x=时,y=.16.已知点P在反比例函数y=的图象上,且点P的纵坐标是3,则P点关于x轴的对称点是.17.已知函数y=的图象如图所示,那么m的值为.18.已知反比例函数y=(k≠0)的图象经过点(1,﹣2),则这个函数的表达式是.19.已知桌面上有一砝码,砝码对桌面的压力为16N,则砝码对桌面的压强p(Pa)关于受力面积S(m2)的函数解析式为.20.是y关于x的反比例函数,且图象在第二、四象限,则m的值为.21.已知函数y=(m+3)x|m|﹣4是反比例函数,则m=.22.已知y=(k≠0)的图象的一部分如图,则k0.23.已知反比例函数y=,下列结论不正确的是.①图象经过点(1,1);②图象在第一、三象限;③当x>1时,0<y<1;④当x<0时,y随着x的增大而增大.24.已知y=(m+1)是反比例函数,则m=.25.点P在反比例函数y=的图象上,若点P的纵坐标小于﹣1,则点P的横坐标的取值范围是.26.已知反比例函数y=图象与一次函数y=2x+k的图象的一个交点的纵坐标是﹣4,点P是反比例函数y=图象上一点,过P作PD⊥x轴于D,则△POD的面积为.三.解答题(共14小题)27.已知反比例函数y=图象与直线y=2x和y=x+1的图象过同一点.(1)求反比例函数;(2)请画出函数图象;(3)当x>0时,这个反比例函数值y随x的增大如何变化?28.已知反比例函数y=与第三象限的角平分线交于点P,且P点到原点的距离等于4,求函数的解析式.29.分别在坐标系中画出它们的函数图象.(1)y=;(2)y=﹣.30.已知变量y与x成反比例,当x=3时,y=﹣6.求:(1)y与x之间的函数关系式;(2)当y=3时,x的值.31.作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<3时,求x的取值范围;(3)当﹣3<x<2时,求y的取值范围.32.如图,A、B、C为反比例函数图象上的三个点,分别从A、B、C向x轴、y轴作垂线,构成三个矩形ADOE,BGOF,CHOI,它们的面积分别是S1、S2、S3,试比较S1、S2、S3的大小并说明理由.33.已知一次函数y=kx+b(k≠0)和反比例函数y=的图象交于点A(1,1).(1)求两个函数的表达式.(2)若点B(3,0),则△AOB得到面积是多少?直接写出结论.34.某一次函数的图象交反比例函数的图象于点A(m,1),且与直线平行.(1)求该一次函数的解析式;(2)求在(1)中一次函数的图象上横坐标为﹣4的点M的坐标;(3)在该一次函数的图象上是否存在点P,使它到x轴的距离为2?若存在,求出点P 的坐标;若不存在,请说明理由.35.如图,已知一次函数y=﹣x+8和反比例函数y=(k≠0)的图象在第一象限内有两个不同的公共点A、B.(1)求实数k的取值范围;(2)若k=12,求△AOB的面积.36.已知正比例函数y=x与反比例函数y=(x>0)相交于点A,而反比例函数y=(x >0)又与一次函数y=4﹣x相交于点B和C.(1)求A、B、C的坐标.(2)求△ABC的面积.37.已知y=y1﹣y2,y1与x2成正比例,y2与x+3成反比例,当x=0时,y=2;当x=3时,y=0,求y与x的函数关系式,并指出自变量的取值范围.38.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x+(k+1)在第四象限的交点,AB ⊥x轴于B,且S△AOB=,求这两个函数的解析式.39.已知P是双曲线y=上的任意一点,过P分别作PA⊥x轴,PB⊥y轴,A,B分别是垂足.(1)求四边形PAOB的面积.(2)P点向左移动时,四边形PAOB的面积如何变化?40.反比例函数y=(x>0)的图象如图,点B在图象上,连接OB并延长到点A,使AB =2OB,过点A作AC∥y轴,交y=(x>0)的图象于点C,连接OC,S△AOC=5,求k 值.参考答案一.选择题(共13小题)1.解:∵由图可知,当﹣1<x<0或x>1时,一次函数的图象在反比例函数的下方,∴若y1<y2,则x的取值范围是﹣1<x<0或x>1.故选:D.2.解:①当I一定时,R=,U与R成正比例函数;②当R一定时,I=,U与I成正比例函数;③当U一定时,I=,I与R成反比例函数;④当R与U一定时,I也一定,正确;故选:C.3.解:∵ab<0,∴a,b异号,∴两个函数图象没有交点,排除A,D;∵正比例函数经过原点,∴排除C.故选:B.4.解:由题意得:b<2;再由双曲线的图象特征可得b>0,∴0<b<2.故选:D.5.解:∵反比例函数中,k=>0,∴此函数的图象位于一、三象限,∵x3>0,∴点(x3,y3)位于第一象限,∴y3>0,∵x1<x2<0,∴(x1,y1)、(x2,y2)位于第三象限,∵此函数的图象在第三象限内y随x的增大而减小,∴y1>y2,∴y2<y1<y3.故选:B.6.解:∵ab≠0,∴a≠0,b≠0.又因为两个图象无公共点,所以a>0时,b<0,而当a<0时,则b>0,所以可得ab<0.故选:D.7.解:根据题意得:,解得m=﹣2.故选:A.8.解:∵A,B是函数y=的图象上关于原点O对称的任意两点,且AC垂直于x轴于点C,BD垂直于x轴于点D,∴S△AOC=S△BOD=×2=1,假设A点坐标为(x,y),则B点坐标为(﹣x,﹣y),则OC=OD=x,∴S△AOD=S△AOC=1,S△BOC=S△BOD=1,∴四边形ADBC面积=S△AOD+S△AOC+S△BOC+S△BOD=4.故选:C.9.解:依题意有矩形面积S=|k|=1.故选:A.10.解:A、∵y=2x+1,∴y﹣1=2x,∴y﹣1与x成正比例,正确.B、∵xy=﹣3,∴y与成正比例,故选项错误;C、∵x≥0时,y=﹣x;x<0时,y=x,错误;D、∵A=πr2,∴r=(r>0),错误.故选:A.11.解:∵正比例函数y=2x中,k=2>0,故其图象过一、三象限,反比例函数y=的图象在一、三象限,选项D符合;故选:D.12.解:(1)当k>0时,反比例函数y=(k≠0)的图象在一、三象限,其对称轴是直线y=x,对称中心是原点;(2)当k<0时,反比例函数y=(k≠0)的图象在二、四象限,其对称轴是直线y =﹣x,对称中心是原点.故选:C.13.解:将点(﹣2,﹣5)代入y=,得k=10.故选:C.二.填空题(共13小题)14.解:依据比例系数k的几何意义可得正方形OABC的面积为1,所以其边长为1,故B(1,1).设点E的纵坐标为m,则横坐标为1+m,所以m(1+m)=1,解得m1=,m2=,由于m=不合题意,所以应舍去,故m=,即1+m=,故点E的坐标是(,).故答案是:(1,1);(,).15.解:当x=时,y==8.故答案为:8.16.解:∵点P在反比例函数y=的图象上,且点P的纵坐标是3,∴P(2,3),∴P点关于x轴的对称点是(2,﹣3).故答案为:(2,﹣3).17.解:∵函数y=的图象经过点(﹣3,3),∴m=﹣3×3=﹣9.故答案为﹣9.18.解:∵反比例函数y=(k≠0)的图象经过点(1,﹣2),∴k=1×(﹣2)=﹣2,∴反比例函数解析式为y=﹣.故答案为y=﹣.19.解:设,由压强=压力÷受力面积,砝码对桌面的压力为16N,可得:p=(S>0),故答案为:p=(S>0),20.解:由题意得:m2﹣m﹣7=﹣1,且m﹣1≠0,解得:m1=3,m2=﹣2,∵图象在第二、四象限,∴m﹣1<0,∴m<1,∴m=﹣2,故答案为:﹣2.21.解:由y=(m+3)x|m|﹣4是反比例函数,得|m|﹣4=﹣1,且m+3≠0.解得m=3,故答案为:3.22.解:∵反比例函数y=的图象在一三象限,∴k>0.故答案为:>.23.解:①、x=1,y==1,∴图象经过点(1,1),正确;②、∵k=1>0,∴图象在第一、三象限,正确;③、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;④、应为当x<0时,y随着x的增大而减小,错误.故答案为:④.24.解:∵y=(m+1)是反比例函数,∴m2﹣2m﹣4=﹣1,且m+1≠0,∴(m+1)(m﹣3)=0,且m+1≠0,∴m﹣3=0,即m=3;故答案是:3.25.解:∵当y=﹣1时,x=6,∴反比例函数y=的图象如图所示:由图象可知,若点P的纵坐标小于﹣1,则点P的横坐标的取值范围是 0<x<6.故答案为:0<x<6.26.解:将y=﹣4代入y=与y=2x+k中,可得﹣4=与﹣4=2x+k,解得k=﹣8,∴△POD的面积=|k|=4.三.解答题(共14小题)27.解:(1)依题意得,解得.即反比例函数y=图象过点(1,2),则k=xy=1×2=2.故该反比例函数解析式为:y=.(2)由(1)知,反比例函数解析式为:y=.则该函数图象经过第一、三象限,且经过点(1,2)、(﹣1,﹣2).其图象如图所示:;(3)由(2)中的图象可知,当x>0时,y随x的增大而减小.28.解:∵反比例函数y=与第三象限的角平分线交于P点,∴设P点为(a,a),∴a2+a2=42,即a2=8,而点P(a,a)在y=上,∴k=8,∴y=.29.解:(1)如图所示:列表得出:x﹣2 ﹣1 ﹣﹣ 1 2 y﹣﹣﹣1 ﹣ 1(2)如图所示:x﹣5 ﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 5 y 1 3 ﹣3 ﹣﹣1 ﹣﹣30.解:(1)设反比例函数的解析式为y=(k≠0),∵当x=3时,y=﹣6,∴﹣6=,∴k=﹣18,∴反比例函数的解析式为y=﹣;(2)把y=3代入y=﹣得3=﹣,解得x=﹣6,即当y=3时,x的值为﹣6.31.解:(1)当x=﹣2时,y==﹣6;(2)当y=2时,x==6,当y=3时,x==4,则x的范围是:4<x<6;(3)当x=﹣3时,y==﹣4,当x=2时,y=6,则y的范围是:y<﹣4或y>6.32.解:设点A坐标为(x1,y1)点B坐标(x2,y2)点C坐标(x3,y3),∵S1=x1•y1=k,S2=x2•y2=k,S3=x3•y3=k,∴S1=S2=S3.33.解:(1)∵点A(1,1)在反比例函数y=的图象上,∴k=2×1×1=2,∴反比例函数的表达式为y=;把点A(1,1),k=2代入一次函数y=kx+b中,得1=2+b,解得:b=﹣1,∴一次函数的表达式为y=2x﹣1,故反比例函数的表达式是y=,一次函数的表达式是y=2x﹣1;(2)∵A(1,1),B(3,0),∴S△AOB=×3×1=1.5.故△AOB的面积是1.5.34.解:(1)反比例函数的图象于点A(m,1),1=,m=4,一次函数图象过点A(4,1)且平行于与直线,设一次函数图象是y=﹣x+b1=﹣×4+bb=3,一次函数的解析式是y=﹣x+3;(2)当x=﹣4时,y=﹣(﹣4)+3=5,M点的坐标是(﹣4,5);(3)存在它到x轴的距离为2,即|y|=2﹣x+3=2或﹣x+3=﹣2,x=2,或x=10,点P的坐标是(2,2)(10,﹣2).35.解:(1)由得﹣x+8=,整理得x2﹣8x+k=0,∵方程组有两组解,∴△=82﹣4×k>0,∴0<k<16;(2)解方程组得或,∴A点坐标为(2,6),B点坐标为(6,2),把x=0代入y=﹣x+8得y=8,则C点坐标为(0,8),∴S△AOB=S△BOC﹣S△AOC=×8×6﹣×8×2=16.36.解:(1)解方程组得或,∴A点坐标为(1,1);解方程组得,,∴C点坐标为(2+,2﹣),B点坐标为(2﹣,2+);(2)过B、A、C三点向x轴作垂线,垂足为B′、A′、C′,BB′=2+,AA′=1,CC′=2﹣,B′C′=2,B′A′=﹣1,A′C′=+1 则S△ABC=S梯形BB′C′C﹣S梯形BB′A′A﹣S梯形AA′C′C=2.37.解:设y1=k1x2成正比例,y2=,则y=k1x2﹣,根据题意得,解得,所以y=﹣x2+,指出自变量x的取值范围为x≠﹣3.38.解:设A点坐标是(x,y),∵S△AOB=,∴=,∴,∵A点在第四象限,∴xy=﹣3,∴k=﹣3,∴反比例函数解析式,一次函数解析式y=﹣x﹣2.39.解:如图,(1)四边形PAOB的面积=2000;(2)P点向左移动时,四边形PAOB的面积不变,都等于2000.40.解:作BD⊥x轴于D,延长AC交x轴于E,如图,∵AC∥y轴,∴BD∥AE,∴△OBD∽△OAE,∴BD:AE=OD:OE=OB:OA,而AB=2OB,∴BD:AE=OD:OE=1:3,设OD=t,则OE=3t,∵B点和C点在反比例函数y=,(x>0)的图象上,∴B点坐标为(t,),∴BD=,∴AE=,∵S△AOC=S△AOE﹣S△COE,∴•3t•﹣k=5,∴k=.。
人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)
第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______. 2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3=(B)xy 3-= (C)xy 31=(D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式; ②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______. 2.如果函数y =2+1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小 (C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =______.2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限(D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x xy(B))0(5>=x xy (C))0(5>-=x xy(D))0(6>=x xy 15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系 (C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x (B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120 x(元/千克)销售量y/千克30 40 48 60 80 96 100价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A .11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x…-4-3-2-11234…y (1)34 2 4 -4 -2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (2014•广西玉林市、防城港市,第18题3分)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
①=;②阴影部分面积是(k1+k2);
③当∠AOC=90°时,|k1|=|k2|;
④若OABC是菱形,则两双曲线既关于x轴对称,
也关于y轴对称.其中正确的结论是
2.(2014•武汉,第15题3分)如图,若双曲线y=k/x与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为
3.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,
2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.
(1)求△OCD的面积;(2)当BE=AC时,求CE的长.
4.(2014•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x
<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.1)求k的值;2)求点A的坐标.
1.解:作AE⊥y轴于E,CF⊥y轴于F,如图,
∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,
∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,所以①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),
而k1>0,k2<0,∴S阴影部分=(k1﹣k2),所以②错误;
当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,
而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,
∴不能确定|k 1|=|k2|,所以③错误;
若OABC是菱形,则OA=OC,而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,
∴两双曲线既关于x轴对称,也关于y轴对称,所以④正
确.故答案为①④.
2.解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=3x,则BD=x,在Rt△OCE中,∠COE=60°,则
OE=x,
则点D的坐标为(5﹣
x,
x),
解得:x1=1,x2=0(舍去),故
k=×12=
.
3.解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上∴点D的坐标为(2,1).∴.
2)∵BE=,∴.∴点B的横坐标是,纵坐标是.∴CE=.4.解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;
(2)过D作DM⊥x轴于M,过B作BN⊥x轴于N,
则∠DMA=∠ANB=90°,
∵B(3,3),∴BN=ON=3,
设MD=a,OM=b,
∵D在双曲线y=﹣(x<0)上,
∴﹣ab=﹣4,即ab=4,
∵四边形ABCD是正方形,
∴∠DAB=90°,A D=AB,
∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,
在△ADM和△BAN中,
,∴△ADM≌△BAN(AAS),
∴BN=AM=3,MD=AN=a,∴0A=3﹣a,
即AM=b+3﹣a=3,a=b,
∵ab=4,∴a=b=2,
∴OA=3﹣2=1,
即点A的坐标是(1,0).。