直线与圆的位置关系(第五课时)三角形的内切圆12
点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系【要点梳理】要点一、点和圆的位置关系1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有2.三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等.要点诠释:(1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系;(2)不在同一直线上的三个点确定一个圆.要点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3) 相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点三、切线的判定定理、性质定理和切线长定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可.2.切线的性质定理:圆的切线垂直于过切点的半径.3.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.5.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.6.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1) 到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.要点四、圆和圆的位置关系1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系:设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:两圆外离d>r1+r2两圆外切d=r1+r2两圆相交r1-r2<d<r1+r2 (r1≥r2)两圆内切d=r1-r2 (r1>r2)两圆内含d<r1-r2 (r1>r2)要点诠释:(1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;(2) 内切、外切统称为相切,唯一的公共点叫作切点;(3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.【典型例题】类型一、点与圆的位置关系1.已知圆的半径等于5 cm,根据下列点P到圆心的距离:(1)4 cm;(2)5 cm;(3)6 cm,判定点P与圆的位置关系,并说明理由.【变式】点A在以O为圆心,3 为半径的⊙O内,则点A到圆心O的距离d的范围是________.类型二、直线与圆的位置关系2.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【变式】如图,P点是∠AOB的平分线OC上一点,PE⊥OA于E,以P为圆心,PE为半径作⊙P .求证:⊙P与OB相切。
直线与圆的位置关系-内切圆_

三角形的内切圆-小题库【知识点】1.(1)与三角形各边都相切的圆叫做这个三角形的内切圆(inscribed circle).(2)内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心(incenter).【说明】这个三角形叫做这个圆的外切三角形.题库:1.正三角形外接圆的半径为2,那么它内切圆的半径为()A. 1;B. √2;C. √3;D. 2.2.已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()A. B. C. 2 D. 33.如图,⊙O是△ABC的内切圆,分别切BA,BC,AC于点E,F,D,P是弧DE上一点.如果∠EPF=70∘,那么∠B=()A. 40°;B. 50°;C. 60°;D. 70°.4.在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是()A. B. 1 C. 2 D.5.下列说法中,正确的是()A. 垂直于半径的直线一定是这个圆的切线B. 任何三角形有且只有一个内切圆C. 三点确定一个圆D. 三角形的内心到三角形的三个顶点的距离相等6.在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,I是△ABC的内心,延长AI交△ABC的外接圆D,则∠ICD的度数是()A. 50°B. 55°C. 60°D. 65°7.已知AD为△ABC的外接圆⊙O的直径,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,BC=6,cos∠BAC=,则EF的长是()A. 1B. 4-C. 5-D. -18.如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB 的面积最小时,△AOB的内切圆的半径是()9.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A. B. 25 C. D. 5610.已知,Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则△ABC的外接圆半径和△ABC的外心与内心之间的距离分别为()A. 5和B. 和C. 和D. 和11.如图,⊙I是△ABC的内切圆,D,E,F为三个切点,若∠DEF=52°,则∠A的度数为()A. 76°B. 68°C. 52°D. 38°12.如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为()A. 15B. 9C. 7.5D. 713.直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为.14.已知一块直角三角形钢板的两条直角边分别为30cm、40cm,能从这块钢板上截得的最大圆的半径为.15.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO•DF;④AE•CH=S △ABC,其中正确结论的序号为__________16.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=__________17.如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=__________ .18.如图,⊙O既是正△ABC的外接圆,又是正△DEF的内切圆,则内外两个正三角形的相似比是__________.19.如图,半径为2cm,圆心角为90°的扇形OAB的上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在上从点A运动到点B时,内心I所经过的路径长为__________.20.如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.(1)求证:AF=BG;(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理由21.联想三角形内心的概念,我们可引入如下概念.定义:到三角形的两边距离相等的点,叫做此三角形的准内心.举例:如图1,若PD=PE,则点P为△ABC的准内心.应用:如图2,BF为等边三角形的角平分线,准内心P在BF上,且PF=BP,求证:点P是△ABC 的内心.探究:已知△ABC为直角三角形,∠C=90°,准内心P在AC上,若PC=AP,求∠A的度数.22.已知:如图,在Rt△ABC中,∠C=90°,⊙O与△ABC的三边分别切于点D,E,F.(1)连接AO、BO,求∠AOB的度数;(2)连接BD,若tan∠DBC=,求tan∠ABD的值23.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D (1)如图1,求证:BD=ED;(2)如图2,AD为⊙O的直径.若BC=6,sin∠BAC=,求OE的长24.规定三角形的三条内角平分线的交点叫三角形的内心.(1)已知I为三角形ABC的内心,连接AI交三角形ABC的外接圆于点D,如图所示,连接BD和CD,求证:BD=CD=ID.(2)己知三角形ABC,AD平分∠BAC且与它的外接圆交于点D,在线段AD上有一点I满足BD=ID.试问点I是否是三角形ABC的内心?若是加以证明;若不是,说明理由.25.如图,已知:⊙O是三角形ABC的内切圆,切点分别为D,E,F,连接DF,作EP⊥DF,垂足为点P,连接PB,PC.求证:∠DPB=∠FPC.26.已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(Ⅰ)如图①,若半径为r1的⊙O1是Rt△ABC的内切圆,求r1;(Ⅱ)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2;(Ⅲ)如图③,当n大于2的正整数时,若半径r n的n个等圆⊙O1、⊙O2、…、⊙O n依次外切,且⊙O1与AC、BC相切,⊙O n与BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙O n-1均与AB边相切,求r n.27.阅读材料并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴,AB=2BC.在Rt△AOC中,∵,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴,∴S正三角形=3S△OAB=3r2•tan60°.(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=______;(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形;(3)如图④,根据以上探索过程,请直接写出S正n边形=______.28.如图1,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试确定Rt△ABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?(3)试判断以P为圆心,半径为y的圆与⊙I能否相切?若能,请求出相应的x的值;若不能,请说明理由.29.如图,点M(m,n)在第一象限,且,过O、M两点作圆分别与x轴正半轴,y轴正半轴交于A、B两点,C在弧AO上,BC交OM于D,且CO=CD.(1)求M点的坐标;(2)若∠BDM=60°,连AM,求的值;(3)过D作DH⊥AB于H,下列结论:①DH+AB的值不变;②DH+AB的值不变,其中有且只有一个结论是正确的,请你作出正确判断并予以证明.30.如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.31.为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)AC BC AB r L s图甲0.6图乙 5.0 1.0(2)观察图形,利用上表实验数据分析、猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?32.阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC 被划分为三个小三角形,用S△ABC表示△ABC的面积.∵S△ABC=S△OAB+S△OBC+S△OCA又∵S△OAB=AB•r,S△OBC=BC•r,S△OCA=CA•r∴S△ABC=AB•r+BC•r+CA•r=l•r(可作为三角形内切圆半径公式)(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、a n,合理猜想其内切圆半径公式(不需说明理由).33.三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.(1)试举出一个有内心的四边形.(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O 仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?第11页共11页。
14第十四讲:直线与圆的位置关系、三角形内切圆

第十四讲直线与圆的位置关系、三角形的内切圆知识点一、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线.这个公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r.知识点二、切线的判定和性质(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.常见解题方法:①有交点,连半径,证垂直②无交点,作垂直,证半径(2)切线的性质定理:圆的切线垂直于经过切点的半径。
如右图中,OD垂直于切线.知识点三、切线长定理(1)切线长:切线上一点到切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:过圆外一点作圆的两条切线,两条切线长相等,圆心和这一点的连线平分两条切线的夹角.如图中:圆外一点P与圆O相切与D,E两点,所以有PD=PE,可以通过连接OP来证明.CABD知识点四、三角形的内切圆(1)定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.(2)性质:1、三角形的内心是三角形的三条角平分线的交点,它到三边的距离相等.2、连接内心和三角形的顶点平分三角形的这个内角.题型一、直线与圆的位置关系例1、若⊙O 半径是2,点A 在直线l 上,且OA=2,则直线l 与⊙O 的位置关系是( ) A .相切 B .相交 C .相离 D .相切或相交例2、已知同一平面内有⊙O 和点A 与点B ,如果O 的半径为3cm ,线段OA =5cm ,线段OB =3cm ,那么直线AB 与⊙O 的位置关系为( ) A .相离 B .相交 C .相切 D .相交或相切例3、如图,在Rt △ABC 中,∠B=90°,AB=8cm ,BC=6cm.若要以B 为圆心,r 为半径画圆B ,请根据下列条件,求半径r 的值或取值范围:(1)直线AC 与圆B 相离;(2)直线AC 与圆B 相切;(3)直线AC 与圆B 相交.BCA知识点二、切线的判定例1、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D :(1)求证:BC 是△ADC 的外接圆的切线;(2)△BDC 的外接圆的切线是哪一条?为什么?(3)若AC=5,BC=12,以C 为圆心作圆C ,使圆C 与AB 相切,则圆C 的半径是多少?例2、如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠CAD =∠ABC,判断直线AD 与⊙O 的位置关系,并说明理由.例3、如图,已知:O 为∠BAC 平分线上一点,OD ⊥AB 于D ,以O 为圆心,OD 为半径作⊙O. 求证:⊙O 与AC 相切。
直线与圆的位置关系 切线及三角形内切圆知识精讲

初三数学直线与圆的位置关系 切线及三角形内切圆知识精讲一. 本周教学内容:直线与圆的位置关系,切线及三角形内切圆[学习目标]1. 直线为l ,⊙O 的半径为r ,圆心到直线的距离为d 。
(1)直线l 与⊙O 相离⇔>⇔d r ,无公共点; (2)直线l 与⊙O 相切⇔=d r ,⇔唯一公共点; (3)直线l 与⊙O 相交⇔<d r ,⇔两公共点。
注意:①由直线与圆的位置关系⇒数量关系 反之,数量关系⇒位置关系;②直线与圆的位置关系,d ,r 数量关系,公共点个数三者互相转化。
2. 重要公式:在Rt △ABC 中,∠C =90°,CD 是AB 边上的高,则:1212A CBC A B CD ··=即:AC ·BC =AB ·CD (是求斜边上高的常用方法) 3. 切线的判定方法 ①定义法(不常用),即:唯一公共点; ②数量关系推理法,即d r =;③判定定理:垂直于过切点的半径的直线是圆的切线。
4. 切线的性质:①与判定均为互逆定理;②其中性质定理及推论要熟练掌握。
实际上①垂直于切线;②经过切点;③经过圆心;任意知道两个就能推出第三个。
5. 作图:作和已知三角形各边都相切的圆。
关键找内心,(各内角平分线交点)和半径。
6. 与三角形各边都相切的圆叫三角形内切圆,这个三角形叫圆的外切三角形。
与多边形各边都相切的圆叫多边形的内切圆,多边形叫圆的外切多边形。
7. 三角形的内切圆、圆心是角平分线交点,半径是圆心到三边的距离。
三角形的外接圆,圆心是三边中垂线交点,半径是圆心到三个顶点的距离。
例1. 已知半径为3的⊙O 上一点P 和圆外一点Q ,如果OQ =5,PQ =4,则PQ 和圆的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 位置不定 解:∵OP =3,PQ =4,OQ =5, ∴OP PQ OQ 222+=,∴△OPQ 是直角三角形,且∠OPQ =90°, ∴PQ ⊥OP 。
2.3三角形的内切圆-2020春浙教版九年级数学下册习题课件(共25张PPT)

6
( C)
第2章 直线与圆的位置关系
上一页 返回导航 下一页
数学·九年级·配浙教
7
2.如图为4×4的网格图,点A,B,C,D,O均在格点上,点O是 A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心
( B)
第2章 直线与圆的位置关系
上一页 返回导航 下一页
数学·九年级·配浙教
数学·九年级·配浙教
12
8.【四川泸州中考】如图,等腰△ABC 的内切圆⊙O 与 AB,BC,CA 分别相切
于点 D,E,F,且 AB=AC=5,BC=6,则 DE 的长是
(D )
A.3
10 10
C.3 5 5
第2章 直线与圆的位置关系
B.3
10 5
D.6
5 5
上一页 返回导航 下一页
数学·九年级·配浙教
第2章 直线与圆的位置关系
上一页 返回导航 下一页
数学·九年级·配浙教
22
(1)类比推理:若面积为 S 的四边形 ABCD 存在内切圆(与各边都相切的圆),如 图 2,各边长分别为 AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径 r;
(2)理解应用:如图 3,在等腰梯形 ABCD 中,AB∥DC,AB=21,CD=11,AD =13,⊙O1 与⊙O2 分别为△ABD 与△BCD 的内切圆,设它们的半径分别为 r1 和 r2, 求rr12的值.
数学·九年级·配浙教
20
(3)解:由∠BAD=120°,得∠BCI=∠DCI=30°.设△BCD 的内
切圆半径为 r.过点 I 作 IF⊥BC,IG⊥CD,垂足为点 F,G,过点 E
分别作 EM⊥BC,EN⊥CD,垂足为点 M,N.由(1),可知 AC=245,
直线与圆的位置关系-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

直线与圆的位置关系知识点一、直线与圆的位置关系直线与圆有三种位置关系,如下所示:判定直线与圆的位置关系通常有以下两种方法:(1)根据直线与圆的公共点的个数判断;(2)根据圆心到直线的距离与半径的大小关系判断. 知识点二、切线的判定定理与切线的性质定理1. 切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.如图所示,OA 的一条半径,直线l 经过点A 且OA ⊥l ,则l 的切线.判定一条直线是否是圆的切线共有以下三种方法:(1)定义法:当直线与圆有且只有一个公共点时,直线与圆相切;(2)数量关系法:当圆心到直线的距离等于半径时,直线与圆相切;(3)判定定理法:经过半径的外端,并且垂直于这条半径的直线是圆的切线.2.切线的性质定理:圆的切线垂直于经过切点的半径.如图所示:直线l的切线,切点为点A,则OA⊥l.例:如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.【解答】(1)见解析;(2)3【解析】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)在Rt△PBD中,PB=6,DB=8,根据勾股定理得,∵PD与PB都为圆的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4,在Rt△CDO中,设OC=r,则有DO=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.知识点三、三角形的内切圆1.定义:与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2.性质:三角形的内心就是三角形三条内角平分性的交点,内心到三角形各边的距离相等,任意三角形的内心都在三角形的内部.3.三角形的内切圆的作法:作三角形任意两个内角平分线,它们的交点就是内切圆的圆心,过圆心向任意一条边作垂线,垂线段的长度就是内切圆的半径.补充:三角形外心与内心对比:例:直角三角形的两条直角边分别为8和15,那么这个直角三角形最大能容纳一个直径为几的圆?【解答】6【解析】如图所示:由勾股定理可求出三角形斜边AB=17,设三角形的内切圆的半径为r即,解得半径,则直径为6.知识点四、切线长及切线长定理1.切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长;2.切线长定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.外一点P引两条切线PA、PB,切点分别为A、B,连接OA、OB、AB,延长PO并延长交圆于点E,则:①垂直:OA⊥PA,OB⊥PB,OD⊥AB;②全等:△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP;③弧相等:.巩固练习一.选择题1.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠C=65°,则∠P的度数为()A.50°B.65°C.70°D.80°【解答】A【解析】连接OA 、OB ,∵PA 、PB 是⊙O 切线, ∴PA ⊥OA ,PB ⊥OB , ∴∠PAO =∠PBO =90°,∵∠P +∠PAO +∠AOB +∠PBO =360°, ∴∠P =180°﹣∠AOB , ∵∠ACB =65°,∴∠AOB =2∠ACB =130°, ∴∠P =180°﹣130°=50°, 故选A .2.平面直角坐标系中,⊙P 的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P 与y 轴的位置关系是( ) A .相交 B .相离 C .相切 D .以上都不是【解答】A【解析】∵⊙P 的圆心坐标为(﹣4,﹣5), ∴⊙P 到y 轴的距离d 为4 ∵d =4<r =5 ∴y 轴与⊙P 相交 故选A .3.三角形的三边长分别为6,8,10,则它的边与半径为2的圆的公共点个数最多为( ) A .3 B .4 C .5 D .6【解答】B【解析】∵62+82=100,102=100, ∴三角形为直角三角形,设内切圆半径为r ,则12(6+8+10)r =12×6×8, 解得r =2,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆为三角形内切圆时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.∴则它的边与半径为2的圆的公共点个数最多为4个,故选B.4.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P =40°,那么∠B的度数为()A.40°B.25°C.35°D.45°【解答】B【解析】∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∠POC=25°.∴∠B=12故选B.5.如图,已知PA,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1 B.2 C.3 D.4【解答】C【解析】∵PA,PB是⊙O的两条切线,A,B为切点,∴PA=PB,所以①正确;∵OA=OB,PA=PB,∴OP垂直平分AB,所以②正确;∵PA,PB是⊙O的两条切线,A,B为切点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选C.6.如图,点D是△ABC中BC边的中点,DE⊥AC于E,以AB为直径的⊙O经过D,连接AD,有下列结论:AC;④DE是⊙O的切线.其中正确的结论是()①AD⊥BC;②∠EDA=∠B;③OA=12A.①②B.①②③C.②③D.①②③④【解答】D【解析】∵AB是⊙O直径,∴∠ADB=90°,∴AD⊥BC,选项①正确;连接OD,如图,∵D为BC中点,O为AB中点,∴DO为△ABC的中位线,∴OD∥AC,又DE⊥AC,∴∠DEA=90°,∴∠ODE=90°,∴DE为圆O的切线,选项④正确;又OB=OD,∴∠ODB=∠B,∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠BDO,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,AB,∴AC=AB,又OA=12AC,选项③正确;∴OA=12则正确的结论为①②③④.故选D.7.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'C'D'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5 B.1.5 C.3 D.4【解答】D【解析】如图,连接OE并延长交CF于点H,∵矩形ABCD 绕点C 旋转得矩形A 'B 'C 'D ', ∴∠B ′=∠B ′CD ′=90°,A ′B ′∥CD ′,BC =B ′C =4,∵边A 'B '与⊙O 相切,切点为E , ∴OE ⊥A ′B ′,∴四边形EB ′CH 是矩形, ∴EH =B ′C =4,OH ⊥CF ,∵AB =5,∴OE =OC =12AB =52, ∴OH =EH ﹣OE =32,在Rt △OCH 中,根据勾股定理,得CH =√OC 2−OH 2=√(52)2−(32)2=2,∴CF =2CH =4. 故选D .8.如图,△ABC 内接于⊙O ,BD 切⊙O 于点B ,AB =AC ,若∠CBD =40°,则∠ABC 等于( )A .40°B .50°C .60°D .70°【解答】D【解析】∵BD 切⊙O 于点B , ∴∠DBC =∠A =40°, ∵AB =AC , ∴∠ABC =∠C ,∴∠ABC =(180°﹣40°)÷2=70°.故选D.9.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD的周长等于3,则PA 的值是()A.32B.23C.12D.34【解答】A【解析】∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=32.故选A.10.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.9【解答】D【解析】∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选D.11.如图,这条花边中有4个圆和4个正三角形,且这条花边的总长度AB为4,则花边上正三角形的内切圆半径为()A.√33B.23√3C.1 D.√3【解答】A【解析】如图,选择一个等边三角形和其内切圆,圆O是等边三角形ACE的内切圆,圆O切三角形的边CE于点D,∵这条花边的总长度AB为4,∴CE=2,连接OC,AD,则AD过点O,∴CD=DE=12CE=1,∵△ACE是等边三角形,∴∠ACE=60°,∵圆O是等边三角形ACE的内切圆,∴∠OCD=30°,∴OD=CD•tan30°=√33.∴花边上正三角形的内切圆半径为√33.故选A.二.填空题12.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.【解答】103<AO<203【解析】在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴OECD =AOAC,∴AO10=26,∴AO=103,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴OCAC =OFAB,∴OC10=26,∴OC=103,∴AO=203,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203,故答案为103<AO<203.13.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s 的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为时,BP与⊙O相切.【解答】2秒或10秒【解析】连接OP∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=6cm,=2π,弧AP=60π×6180∵圆的周长为:12π,∴点P运动的距离为2π或12π﹣2π=10π;∴当t=2秒或10秒时,有BP与⊙O相切.故答案为2秒或10秒.14.在Rt△ABC中,∠C=90°,AC=BC,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于.【解答】2√2cm【解析】过C点作CD⊥AB于D,如图,∵⊙C与AB相切,∴CD为⊙C的半径,即CD=2,∵∠C=90°,AC=BC,∴∠B=45°,∴△CDB为等腰直角三角形,∴BC=√2CD=2√2(cm).故答案为2√2cm.15.如图,在矩形ABCD中,已知AB=6,BC=4,以CD为直径作⊙O,将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为M,边CD′与⊙O相交于点N,则CN的长为.【解答】4√2【解析】连接OM,延长MO交CD于点G,作OH⊥B′C于点H,则∠OMB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=6,BC=B′C=4,∴四边形OMB′H和四边形MB′CG都是矩形,OE=OD=OC=3,∴B′H=OM=3,∴CH=B′C﹣B′H=1,∴CG=B′M=OH=√OC2−CH2=2√2,∵四边形MB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CN=2CG=4√2,故答案为4√2.16.如图,正方形ABCD的边长为8,E为AB中点,F为BC边上的动点,连接EF,以点F为圆心,EF长为半径作⊙F.当⊙F与AD边相切时,CF的长为.【解答】8﹣4√3【解析】当⊙F与直线AD相切时.设切点为K,连接FK,如图:则FK⊥AD,四边形FKDC是矩形.∴FE=FK=CD=2BE,∴BE=4,FE=8,在Rt△FBE中,FB=√FE2−BE2=√82−42=4√3,∴CF=BC﹣FB=8﹣4√3.故答案为8﹣4√3.17.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.【解答】125【解析】如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=12.5.故答案为12518.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为.【解答】14【解析】设AE的长为x,正方形ABCD的边长为a,∵CE与半圆O相切于点F,∴AE=EF,BC=CF,∵EF+FC+CD+ED=12,∴AE+ED+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4;在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,∵AE+EF+FC+BC+AB=14,∴直角梯形ABCE周长为14.故答案为14.19.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.【解答】1【解析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,∵∠C=90°,∴四边形EOFC是矩形,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为1.20.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4√b−1−19,则△ABC的内切圆半径=.【解答】1【解析】∵b+|c﹣3|+a2﹣8a=4√b−1−19,∴|c﹣3|+(a﹣4)2+(√b−1−2)2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1,故答案为1.21.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.【解答】2√2【解析】连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,=6,∴OA=OBtanA在Rt△AOP′中,∠A=30°,OA=3,∴OP′=12∴线段PQ长度的最小值=√32−1=2√2,故答案为2√2.三.解答题22.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【解答】(1)BC与⊙O相切,理由见解析;(2)BD=1207【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AEAD =ADAC,10 8=8AC,∴AC =325,∴CD =√AD 2−AC 2=√82−(325)2=245, ∵OD ⊥BC ,AC ⊥BC ,∴OD ∥AC ,∴△OBD ∽△ABC ,∴OD AC=BD BC , ∴5325=BD BD+245, ∴BD =1207.23.如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为H ,P 是CD 延长线上一点,DE ⊥AP ,垂足为E ,∠EAD =∠HAD .(1)求证:AE 为⊙O 的切线;(2)已知PA =2,PD =1,求⊙O 的半轻和DE 的长.【解答】(1)见解析;(2)DE 的长为35,⊙O 的半径为32 【解析】(1)证明:连接AO 并延长交⊙O 于点M ,连接MD ,如图,∵AB ⊥CD ,∴AD̂=BD ̂, ∴∠M =∠BAD ,∵∠EAD =∠HAD .∴∠M =∠EAD ,∵AM 为直径,∴∠ADM =90°,∴∠M +∠MAD =90°,∴∠EAD +∠MAD =90°,即∠MAE =90°,∴AM ⊥AE ,∴AE 为⊙O 的切线;(2)∵∠EAD =∠HAD ,DH ⊥AH ,DE ⊥AE ,AD =AD ,∴△AHD ≌△AED (AAS )∴DE =DH ,AH =AE ,设DE =x ,AH =y ,则DH =x ,AE =y ,∵∠EPD =∠HPA ,∠PED =∠PHA =90°,∴Rt △PED ∽Rt △PHA ,∴DE AH =PE PH =PD PA ,即x y =2−y 1+x =12, ∴解得x =35,y =65,即DE 的长为35,AH =65,设圆的半径为r ,则OH =r −35, 在Rt △OAH 中,(r −35)2+(65)2=r 2,解得r =32, 即⊙O 的半径为32.答:⊙O 的半轻和DE 的长分别为:32,35.24.如图,AB 是⊙O 的直径,AB =6,OC ⊥AB ,OC =5,BC 与⊙O 交于点D ,点E 是BD ̂的中点,EF ∥BC ,交OC 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)CG∥OD,交AB于点G,求CG的长.【解答】(1)见解析;(2)CG=173【解析】证明:(1)连接OE,交BD于H,∵点E是BD̂的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC=√OB2+OC2=√9+25=√34,∵S△OBC=12×OB×OC=12×BC×OH,∴OH=√34=15√3434,∵cos∠OBC=OBBC =BHOB,∴√34=BH3,∴BH=9√3434,∴BD=2BH=9√3417,∵CG∥OD,∴ODCG =BDBC,∴3CG =9√3417√34,∴CG=173.25.如图,△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC,AB,AC切于点D,E,F,求AE,BD 和CF的长.【解答】AE=4,BD=9,CF=5【解析】设AE=x,∵△ABC的内切圆分别和BC,AB,AC切于点D,E,F,∴AF=AE=x,BE=BD,CD=CF,而BE=BA﹣AE=13﹣x,CF=CA﹣AF=9﹣x,∴BD=13﹣x,CD=9﹣x,而BD+CD=BC,∴13﹣x+9﹣x=14,解得x=4,∴AE=4,BD=9,CF=5.26.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【解答】(1)△PCD的周长=12;(2)∠COD=65°【解析】(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,{OA=OEOC=OC,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∠AOB=65°.∴∠COD=1227.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.【解答】24cm【解析】连接OA,则OA⊥PA.在直角三角形APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长=2PA=24cm.28.如图,⊙O是梯形ABCD的内切圆,AB∥DC,E、M、F、N分别是边AB、BC、CD、DA上的切点.(1)求证:AB+CD=AD+BC;(2)求∠AOD的度数.【解答】(1)见解析;(2)∠AOD=90°【解析】(1)证明:∵⊙O切梯形ABCD于E、M、F、N,由切线长定理:AE=AN,BE=BM,DF=DN,CF=CM,∴AE+BE+DF+CF=AN+BM+DN+CM,∴AB+DC=AD+BC;(2)连OE、ON、OM、OF,∵OE=ON,AE=AN,OA=OA,∴△OAE≌△OAN,∴∠OAE=∠OAN.同理,∠ODN=∠ODF.∴∠OAN+∠ODN=∠OAE+∠ODE.又∵AB∥DC,∠EAN+∠CDN=180°,×180°=90°,∴∠OAN+∠ODN=12∴∠AOD=180°﹣90°=90°.。
考点20 与圆有关的位置关系及计算(精讲)(解析版)

考点20.与圆有关的位置关系及计算(精讲)【命题趋势】与圆相关的位置关系也是各地中考数学中的必考考点之一,主要内容包括点、直线与圆的位置关系、切线的性质和判定、三角形的内切圆和外接圆三块,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。
关键是掌握基础知识、基本方法,力争拿到全分。
【知识清单】1:点、直线与圆的位置关系类(☆☆)1)点和圆的位置关系:已知⊙O的半径为r,点P到圆心O的距离为d,则:图1图2(1)d<r⇔点在⊙O内,如图1;(2)d=r⇔点在⊙O上,如图2;(3)d>r⇔点在⊙O外,如图3.解题技巧:掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系。
2)直线和圆的位置关系:设⊙O的半径为r,圆心到直线l的距离为d,则直线和圆的位置关系如下:图1图2图3(1)d>r⇔相离,如图1;(2)d=r⇔相切,如图2;(3)d<r⇔相交,如图3。
2:切线的性质与判定(☆☆☆)1)切线的性质:(1)切线与圆只有一个公共点;(2)切线到圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径。
解题技巧:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题。
2)切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法);(2)到圆心的距离等于半径的直线是圆的切线(数量关系法);(3)经过半径外端点并且垂直于这条半径的直线是圆的切线(判定定理法)。
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径。
3)切线长定理定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
直线与圆的位置关系

学员编号:年级:九年级课时数:3学员姓名:辅导科目:初中数学学科教师:课题直线与圆的位置关系授课时间:备课时间:教学目标重点、难点考点及考试要求1、直线和圆的位置关系2、切线的性质3、切线的判定4、内切圆、切线长定理教学内容【基本知识点】直线与圆的位置关系:相交、相切、相离,特别地:如果⊙O的半径为r,圆心O到直线L的距离为d,那么:1、直线L和⊙O相交⇔d<r2、直线L和⊙O相切⇔d=r3、直线L和⊙O相离⇔d>r切线:经过直径的一端,并且垂直于这条直径的直线就是圆的切线内切圆:和三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
4、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长5、切线长定理:从圆外一点引圆的两条切线,切线长相等,圆心和这一点的连线平分两条切线的夹角.解题决策:(1)圆的切线的判断:①到圆心的距离等于圆的半径的直线是圆的切线(做垂直,证半径)②经过半径的外端且垂直于这条半径的直线是圆的切线(做半径,证垂直)当涉及切线问题时,因灵活应用切线的性质,通常连接切点和圆心【热门考点探析】考点一:直线与圆的位置关系1、(2011山东东营,12,3分)如图,直线333y x=+与x轴、y分别相交与A、B两点,圆心P的坐标为(1,0),圆P与y轴相切与点O。
若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P′的个数是()A.2 B.3 C.4 D. 5考点二:切线的性质2、(2011台湾台北,16)如图(六),BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点。
若∠ADE=︒19,则∠AFB的度数为何?A.97 B.104 C.116 D.142考点三:切线的判定:3、(2011江苏淮安,25,10分)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.C O BAD考点四:内切圆,切线长定理4、(2011四川南充市,13,3分)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P= __________度.POC BA考点五:综合题:5、(深圳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
练习5.如图:过点A作⊙O的两条割线,分别交⊙O于B、C和 D、E. 已知AD=4,DE=2, CE=5,AB=BC. 求AB、BD. 5 3 AB = 2 3, BD = . 3
E
D
A B C O
A
P B
O
C
练习6.如图:PA切⊙O于A,PBC是⊙O的割线.已知⊙O 的半径为8,PB=4,PC=9.求PA、PO.
D O F
·
B
a+b-c C 解得 r= 2 a+b-c
2
E
设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的
内切圆的半径 r=
或r= a+b+c
ab
三角形外接圆
C
三角形内切圆
C
. o
A B B
. o
A
外切圆圆心:三角形三边 垂直平分线的交点。
内切圆圆心:三角形三个 内角平分线的交点。 内切圆的半径:交点到三 角形任意一边的垂直距离。
名称 外心: 三角形 外接圆 的圆心
确定方法
三角形三边 中垂线的交 点
图形
A
性质
1.OA=OB=OC 2.外心不一定在三 角形的内部.
o
C B
内心: 三角形 内切圆 的圆心
三角形三条 角平分线的 交点
A
O
B
1.到三边的距离 相等; 2.OA、OB、OC 分别平分∠BAC、 ∠ABC、∠ACB C 3.内心在三角形内 部.
例1 作圆,使它和已知三角形的各边都相切 已知: △ABC(如图).
求作:和△ABC的各边都相切的圆.
A
NIM
分析
C
B
D
作法:1. 作∠ABC、 ∠ACB的平分线BM和CN,交点为I. 2. 过点I作ID⊥BC,垂足为点D. 3. 以I为圆心,ID为半径作⊙I. ⊙I就是所求的圆.
读句画图:
①以点O为圆心,1cm为半径画⊙O;
2.直角三角形的外接圆半径 为5cm,内切圆半径为1cm, 则此三角形的周长是 _______. 22cm
• O
B C
探讨: 设△ABC 的内切圆的半径为r,△ABC 的各边长 之和为L,△ABC 的面积S,我们会有什么结论? A 解:AD+AF+BD+BE+CE+CF=L
2AD+2BE+2CE=L 2AD=L-2(BE+CE) AD=AF=? BD=BE? B CE=CF=?
(4)试探索: ∠A与∠BOC之间存 在怎样的数量关系?请说明理由.
1 答: ∠BOC =90 ° + ∠A. 2
理由: ∵点O是△ABC的内心,
1 1 ∴ ∠1= ∠ABC, ∠3= ∠ACB. 2 2 1
2 )1
A O
B
4 3(
C
∴ ∠1+ ∠3 =
2 1 = (180 ° - ∠A ) 2 1
例2 如图,E是圆内两弦AB和CD的交点,直线 EF//CB,交AD的延长线于点F,FG切圆于点G. 求证:(1) △DFE∽△EFA; (2)EF=FG.
O A
C
E B
证明: (1)∵EF//CB, ∴∠DEF=∠DCB. ∵∠DCB和∠DAB都是 上的圆周角. ∴∠DAB =∠DCB=∠DEF. (2)由(1)知 ∴ △DFE∽△EFA, ∴EF2 =FA•FD. 又∵FG是圆的切线, ∴FG2 =FA•FD.
P B
D
A C
例4 如图,AB是⊙O的直径,过A、B引两条弦AD和BE, 相交于点C.求证:AC· AD+BC· BE=AB2. 证明:连接AC、AD,过C作CF⊥AB,与AB交于F. D ∵AB是⊙O的直径,∴∠AEB=∠ADB=900. E C 0, ∴ A、F、C、E四点共圆. 又∵ ∠AFC=90 ∴ BC•BE=BF•BA. „„„(1) A FO 同理可证F、B、D、C四点共圆. ∴ AC•AD=AF•AB. „„„(2) (1)+(2)可得 AC•AD+BC•BE= AB(AF+BF)=AB2.
D O • r E
F
1 三角形面积 S = rL 2
C
(L为三角形周长,r为内切圆半径)
例3 如图,朱家镇在进入镇区的道路交叉口的三 角地处建造了一座镇标雕塑,以树立起文明古镇的形 象。已知雕塑中心M到道路三边AC、BC、AB的距离 相等,AC⊥BC,BC=30米,AC=40米。请你帮助计 算一下,镇标雕塑中心M离道路三边的距离有多远?
A 镇 商 业 区 D
.M
F B
C
E 镇工业区
解:∵雕塑中心M到道路三边的距离相等
A 镇 商 业 区 D C ∴点M是△ABC的内心, 连接AM、BM、CM. 设⊙M的半径为r米, ⊙M分别切AC、BC、AB于点D、E、F, 则MD⊥AC, ME ⊥BC, MF ⊥AB, 则 MD= ME= MF=r, ∵在Rt △ABC 中,AC=40,BC=30, ∴AB=50.
结论:
D b A r O c
C F a B
•
E
填空:
1 1. 三角形的内切圆能作____个,圆的外切三角形 内部 无数 有_____ 个,三角形的内心在圆的_______. 2.如图,O是△ABC的内心,则 (1)OA平分∠______, OB平分∠______, BAC ABC OC平分∠______,. ACB A 140º (2)若∠BAC=100º,则∠BOC=______.
∴S△ABC=S△AOB+S△BOC +S△AOC = =
1 1 1 AB· OD+ 2 BC· OE+ 2AC· OF 2 1 l· r 2
A D F O
解:设△ABC的内切圆与三边相切于D、E、F,
·
C
B
E
设△ABC的三边为a、b、c,面积为S, 2S 则△ABC的内切圆的半径 r= a+b+c
(∠ABC+ ∠ACB)
= 90 ° -
在△OBC中, ∠BOC =180 °-( ∠1+ ∠3 )
1 = 180 °-( 90 ° - ∠A ) 2 1
2
∠A.
= 90 °+
2
∠A.
三角形的内切圆的有关计算 如图,△ABC的内切圆的半径为r, △ABC的周长为l,求△ABC的面积S. 连结OA、OB、OC、OD、OE、OF, 则OD⊥AB,OE⊥BC,OF⊥AC.
.M
F
B E 镇工业区
1 1 ∵ △ABC的面积为 AC· = × 40×30= 600, BC 2 1 2
又∵ △ABC的面积为 (AC· MD+BC · ME+AB · MF) 2 =20 r+15 r+25 r=60 r. ∴60 r= 600, r=10. 答:镇标雕塑中心离道路三边的距离为10米.
n
m A
E C F l
②作直线m与⊙O相切于点D,
作直线n与⊙O相切于点E, 直线m和直线n相交于点A; ③作直线l与圆O相切于点F, B
D
. O
直线l分别与直线m、直线n相交于点B、C.
1. 和三角形各边都相切的圆叫做三角形的内切圆, 内切圆的圆心叫做三角形的内心,这个三角形叫做圆的 外切三角形.
4. 三角形的内心到三角形三边的距离相等。
分析. 试说明圆的 外切四边形的两组 对边的和相等.
看 比 已知:如图,在Rt△ABC中,∠C=90°, 谁 一 边BC、AC、AB的长分别为a、b、c,求 做 比 求其内切圆O的半径长. 得 快
A
例 直角三角形的两直角边 分别是5cm,12cm .则其内 2 切圆的半径为______.
外切圆的半径:交点到三 角形任意一个定点的距离。
分析题目已知:如 图, △ABC的内切圆 ⊙O与BC 、CA、 AB 分别相交于点D 、 E 、 F ,且AB=9 厘米,BC =14厘 米,CA =13厘米,求 AF、BD、CE的长。
A E
F
B
O D
C
例1 △ABC的内切圆⊙O与BC、CA、AB分别相切于
2. 和多边形各边都相切的圆叫做多边形的内切圆, 这个多边形叫做圆的外切多边形.
A
三形各边的距离相等;
2. 三角形的内心在三角形的角平分线上. D . O
三角形外心的性质:
E
F
1. 三角形的外心到三角形各个顶点的距离相等; 2. 三角形的外心在三角形三边的垂直平分线上.
PA = 6, PO = 2 + 8 = 10.
1. 本节课从实际问题入手,探索得出三角形内切圆的作法 . 2. 通过类比三角形的外接圆与圆的内接三角形概念得出 三角形的内切圆、圆的外切三角形概念,并介绍了多边形的
内切圆、圆的外切多边形的概念.
3. 学习时要明确“接”和“切”的含义、弄清“内心”与 “外心”的区别, 4. 利用三角形内心的性质解题时,要注意整体思想的运 用,在解决实际问题时,要注意把实际问题转化为数学问题.
CE=9(cm).
例.如图,△ABC 中,∠C =90º,它的 内切圆O分别与边AB、 BC、CA相切 于点D、E、F,且 B BD=12,AD=8, 求⊙O的半径r.
A
D
F O E
C
1.一个三角形有且只有一个内切圆; 2.一个圆有无数个外切三角形; 3.三角形的内心就是三角形三条内角平
分线的交点;
如图,Rt△ABC中,∠C=90°,BC=a,AC=b, AB=c,⊙O为Rt△ABC的内切圆. 求:Rt△ABC的内切圆的半径 r. 解:设Rt△ABC的内切圆与三边相切于D、E、F, 连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。 A ∵ ⊙O与Rt△ABC的三边都相切 ∴AD=AF,BE=BF,CE=CD 设AD= x , BE= y ,CE= r 则有 x+r=b y+r=a x+y=c