2018年中考数学《无理数与实数》专题复习冲刺卷
2018年中考数学试题分类汇编解析(2)无理数与实数

【分析】直接利用立方根的定义化简得出答案. 【解答】解: 故选:B. 6.(2018•恩施州)64 的立方根为( ) A.8 B.﹣8 C.4 D.﹣4 =﹣1.
【分析】利用立方根定义计算即可得到结果. 【解答】解:64 的立方根是 4. 故选:C. 7.(2018•衡阳)下列各式中正确的是( ) A. =±3 B. =﹣3 C. =3 D. ﹣ =
故选:A.
4.(2018•黔南州)下列等式正确的是( ) A. =2 B. =3 C. =4 D. =5
【分析】根据算术平方根的定义逐一计算即可得. 【解答】解:A、 B、 C、 D、 = =3 = =2,此选项正确;
,此选项错误;
=42=16,此选项错误; =25 ,此选项错误;
故选:A. 5.(2018•济宁) A.1 B.﹣1 C.3 的值是( ) D.﹣3
【分析】依据无理数的三种常见类型进行判断即可. 【解答】解:A、1 是整数,为有理数; B、﹣0.6 是有限小数,即分数,属于有理数; C、﹣6 是整数,属于有理数; D、π 是无理数; 故选:D.
13.(2018•温州)给出四个实数 A. B.2 C.0 D.﹣1 ,2,0,﹣1,其中负数是( )
【分析】根据图示可以得到 a、b 的取值范围,结合绝对值的含义推知 |b|、|a|的数量关系. 【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意; B、如图所示,a<b,则 2a<2b,由不等式的性质知 1﹣2a>1﹣2b,故 本选项不符合题意; C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意; D、如图所示,a<﹣2<b<2 且|a|>2,|b|<2.则 a<﹣2<﹣b,故本 选项不符合题意; 故选:C.
17.(2018•枣庄)实数 a,b,c,d 在数轴上的位置如图所示,下列关系 式不正确的是( )
2018年中考数学真题分类汇编第三期专题2实数无理数平方根立方根试题含解析

实数(无理数,平方根,立方根)一.选择题1.(2018·广西贺州·3分)在﹣1.1.、2这四个数中,最小的数是()A.﹣1B.1C.D.2【解答】解:在实数﹣1,1,,2中,最小的数是﹣1.故选:A.2.(2018·广西贺州·3分)4的平方根是()A.2B.﹣2C.±2D.16【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.(2018·湖北江汉·3分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2bC.﹣a<b<2D.a<﹣2<﹣b【分析】根据图示可以得到A.b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A.如图所示,|b|<2<|a|,故本选项不符合题意;B.如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C.如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D.如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.4.(2018·四川省攀枝花·3分)下列实数中,无理数是()A.0B.﹣2C.D.解:0,﹣2,是有理数,是无理数.故选C.5.(2018·四川省攀枝花·3分)如图,实数﹣3.x、3.y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点MB.点NC.点PD.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.6.(2018·云南省昆明·4分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.7.(2018·浙江省台州·4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(2018·辽宁省沈阳市)(2.00分)下列各数中是有理数的是()A.πB.0C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A.π是无限不循环小数,属于无理数,故本选项错误;B.0是有理数,故本选项正确;C.是无理数,故本选项错误;D.无理数,故本选项错误;故选:B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.9.(2018·重庆市B卷)(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A.如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B.如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C.如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.【点评】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10.(2018•莱芜•3分)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】首先得出2的取值范围进而得出答案.【解答】解:∵2=,∴6<<7,∴无理数2﹣3在3和4之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.11.(2018•乐山•3分)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴ +1≈3.236.故选C.12.(2018·江苏常州·2分)已知a为整数,且,则a等于()A.1B.2C.3D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.二.填空题1.(2018·重庆市B卷)(4.00分)计算:|﹣1|+20=2.【分析】本题涉及零指数幂、绝对值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣1|+20=1+1=2.故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.2.(2018·辽宁省盘锦市)计算:﹣=.【解答】解:原式=3﹣2=.故答案为:.3.(2018·湖北荆州·3分)计算:|﹣2|﹣+()﹣1+tan45°=.【解答】解:|﹣2|﹣+()﹣1+tan45°=2﹣2+2+1=3.故答案为:3.4.(2018•莱芜•4分)计算:(π﹣3.14)0+2cos60°=2.【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2×=1+1=2,故答案为:2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(2018•陕西•3分)比较大小:3_________(填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.6. (2018·湖北咸宁·3分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.【答案】【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.7.(2018·江苏镇江·2分)计算:=2.【解答】解:原式===2.故答案为:28.(2018·吉林长春·3分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.三.解答题1.(2018·云南省曲靖·5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【解答】解:原式=2+1+3﹣3=3.2.(2018·云南省·6分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.3.(2018·浙江省台州·8分)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4.(2018·广西贺州·6分)计算:(﹣1)2018+|﹣|﹣(﹣π)0﹣2sin60°.【解答】解:原式=1+﹣1﹣2×=1+﹣1﹣=0.5.(2018·广西梧州·6分)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.6.2018·湖北十堰·5分)计算:|﹣|﹣2﹣1+【分析】原式利用绝对值的代数意义,负整数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式=﹣+2=3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(2018·辽宁省沈阳市)(6.00分)计算:2tan45°﹣|﹣3|+()﹣2﹣(4﹣π)0.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣(3﹣)+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.8.(2018•呼和浩特•10分)计算(1)计算:2﹣2+(3﹣)÷﹣3sin45°;(2)解方程:+1=.解:(1)原式=﹣+(9﹣)÷﹣3×=﹣++﹣=3;(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,所以分式方程的解为x=1.9.(2018•乐山•9分)计算:4cos45°+(π﹣2018)0﹣解:原式=4×+1﹣2=1.10.(2018•广安•5分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=9+2﹣﹣2+6×+1=12.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2018•陕西•6分)计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.12. (2018·湖北咸宁·8分)(1)计算:+|﹣2|;【答案】(1).【分析】(1)按顺序先化简二次根式、计算立方根、去绝对值符号,然后再按运算顺序进行计算即可得;【详解】(1)+|﹣2|=2﹣2+2﹣=;【点睛】本题考查了实数的混合运算,熟练掌握各运算的运算顺序以及运算法则是解题的关键.13.(2018·辽宁大连·9分)计算:( +2)2﹣+2﹣2解:原式=3+4+4﹣4+=.。
2018年中考数学专题复习训练无理数与实数

中考复习训练无理数与实数一、选择题1.下列命题中正确的是( )A. 有限小数不是有理数B. 无限小数是无理数C. 数轴上的点与有理数一一对应D. 数轴上的点与实数一一对应2.在实数π、、、tan60°中,无理数的个数为()A. 1B. 2C. 3D. 43.实数16的平方根是()A. 4B.±4 C.D. ±4.下列说法正确的是()A. 4的平方根是2B. 将点(-2,-3)向右平移5个单位长度到点 (-2,2)C. 是无理数D. 点(-2,-3)关于x轴的对称点是(-2,3)5.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,背面朝上放在不透明的桌子上,若随机抽取1张,则取出的卡片上的数是无理数的概率是()A.B.C.D.6.下列说法中,正确的是()A. (﹣6)2的平方根是﹣6 B. 带根号的数都是无理数C. 27的立方根是±3D. 立方根等于﹣1的实数是﹣17. 按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A. 14B. 16C. 8+5D. 14+8.下列说法正确的是().A. 符号不相同的两个数互为相反数B. 1.5的相反数是C. 的相反数是-3.14D. 互为相反数的两个数必然一个是正数,一个是负数9.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的平方根( )A. a+2B. a2+2C. D.10.关于的叙述,错误的是()A. 是无理数B. 面积为8的正方形边长是C. 的立方根是2D. 在数轴上可以找到表示的点11.已知|x|=2,|y|=3,且xy<0,则x+y的值是()A. 1或﹣1B. 5或﹣5 C. 5或1 D. ﹣5或﹣1二、填空题12.化简:=________ .13.估算=________(误差小于0.1).14.﹣________﹣(填>或<号).15.在数轴上,将表示-2的点向右移动3个单位长度后,对应的点表示的数是________.16.﹣64的立方根与的平方根之和是________17.某正数的平方根是n+l和n﹣5,则这个数为________.18.若实数x满足等式(x+4)3=﹣27,则x=________19.的平方根是________.20.若两个连续整数x、y满足x<+1<y,则x+y的值是________.21.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为________三、解答题22. 计算:(1﹣)++()﹣1.23.设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.24.已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.参考答案一、选择题D C B D B D C B C C A二、填空题12.13. 5.0或5.114.>15. 116.﹣2或﹣617.918.﹣719.±220.721.2<x<4三、解答题22.解:原式=﹣3+2+3=3.23.解:∵1<<2,∴x=1,y= ﹣1,∴(x+y)(x﹣y)=x2﹣y2=12﹣(﹣1)2=1﹣3+2 ﹣1=2 ﹣3.24.∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.。
2018年中考数学真题分类汇编第一期专题2实数无理数平方根立方根试题含解析

实数(无理数,平方根,立方根)一、选择题1.(2018•山东淄博•4分)与最接近的整数是()A.5 B.6 C.7 D.8【考点】2B:估算无理数的大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.2.(2018•山东枣庄•3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.3. (2018•山东菏泽•3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【考点】26:无理数;22:算术平方根.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.(2018·山东潍坊·3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.【点评】此题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.5. (2018•株洲市•3分)9的算术平方根是( )A. 3B. 9C. ±3D. ±9【答案】A【解析】分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.详解:∵32=9,∴9的算术平方根是3.故选:A.点睛:此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.6. (2018年江苏省南京市•2分)的值等于()A.B.﹣ C.± D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.7. (2018年江苏省南京市•2分)下列无理数中,与4最接近的是()A. B. C. D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵ =4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.8. (2018年江苏省泰州市•3分)下列运算正确的是()A. +=B. =2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9. (2018·四川自贡·4分)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.x+2y=3xy C. D.(﹣a3)2=﹣a6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2﹣2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.10.(2018•湖北荆门•3分)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.【点评】本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.11.(2018•湖北黄石•3分)下列各数是无理数的是()A.1 B.﹣0.6 C.﹣6 D.π【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.【点评】本题主要考查的是无理数的定义,熟练掌握无理数的三种常见类型是解题的关键.12.(2018•湖北恩施•3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.13.(2018·浙江临安·3分)化简的结果是()A.﹣2 B.±2 C.2 D.4【考点】二次根式的化简【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.【解答】解:==2.故选:C.【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.14.(2018·重庆(A)·4分)估计(的值应在A. 1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】二次根式的混合运算及估算无理数的大小【分析】先将原式化简,再进行判断.(2,而,在4到5之间,所以2在2到3之间【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简单题。
最新中考数学专题复习卷:无理数与实数专项练习题(含解析)

无理数与实数一、专练选择题1.四个数0,1,,中,无理数的是()A. B.1 C. D.02.4的平方根是()A. B.2 C.-2 D.163.下列无理数中,与最接近的是()A. B.C.D.4.估计的值在()A. 2和3之间B. 3和4之间 C. 4和5之间 D. 5和6之间5.7的算术平方根是()A. 49B.C.﹣D.±6.的值等于()A. 3B. -3C. ±3D.7.( )A. B.C.D.8.当x分别取,,0,2时,使二次根式的值为有理数的是()A.B.C. 0D.29.已知:a× =b×1 =c÷ ,且a、b、c都不等于0,则a、b、c中最小的数是()A. a B . b C.c D.a和c10.设a是9的平方根,B=()2,则a与B的关系是()A. a=±BB. a=BC. a=﹣B D. 以上结论都不对11.下列各组数中互为相反数的是()A. 5和B. 和C. 和D. ﹣5和12.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A. x是有理数B. x不能在数轴上表示C. x是方程4x=8的解D. x是8的算术平方根二、专项练习填空题13.﹣的相反数是________,倒数是________,绝对值是________.14.计算:3-1-()0=________.15.计算:________.16.比较大小:3________ (填<,>或=).17.若=2.449,=7.746,=244.9,=0.7746,则x=________,y=________.18.比较大小:﹣3________cos45°(填“>”“=”或“<”).19.一个正数的平方根分别是x+1和x﹣5,则x=________.20.化简( -1)0+( )-2- + =________.21.已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.22.如图,数轴上点A所表示的实数是________.三、解专项练习解答题23. 计算:(﹣2)3+ +10+|﹣3+ |.24. (1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .25.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根专项练习解析一、专练选择题1.【答案】A【解析】:A. 属于无限不循环小数,是无理数,A符合题意;B.1是整数,属于有理数,B不符合题意;C. 是分数,属于有理数,C不符合题意;D.0是整数,属于有理数,D不符合题意;故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2.【答案】A【解析】:∵22=2,(-2)2=4,∴4的平方根是±2.故答案为:A.【分析】平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,由此即可得出答案.3.【答案】C【解析】:4= ,与最接近的数为,故答案为:C.【分析】根据算数平方根的意义,4=,再根据算术平方根的性质,被开方数越大,其算术根越大,通过观察发现的被开方数17最接近的被开方数,从而得出答案。
2018年中考数学真题分类汇编(第一期)专题2实数(无理数,平方根,立方根)试题(含解析)

实数(无理数,平方根,立方根)一、选择题1.(2018•山东淄博•4分)与最接近的整数是()A.5 B.6 C.7 D.8【考点】2B:估算无理数的大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.2.(2018•山东枣庄•3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.3. (2018•山东菏泽•3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【考点】26:无理数;22:算术平方根.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.(2018·山东潍坊·3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.【点评】此题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.5. (2018•株洲市•3分)9的算术平方根是( )A. 3B. 9C. ±3D. ±9【答案】A【解析】分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.详解:∵32=9,∴9的算术平方根是3.故选:A.点睛:此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.6. (2018年江苏省南京市•2分)的值等于()A.B.﹣ C.± D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.7. (2018年江苏省南京市•2分)下列无理数中,与4最接近的是()A. B. C. D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵ =4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.8. (2018年江苏省泰州市•3分)下列运算正确的是()A. +=B. =2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9. (2018·四川自贡·4分)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.x+2y=3xy C. D.(﹣a3)2=﹣a6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2﹣2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.10.(2018•湖北荆门•3分)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2, 故选:C .【点评】本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键. 11.(2018•湖北黄石•3分)下列各数是无理数的是( ) A .1B .﹣0.6C .﹣6D .π【分析】依据无理数的三种常见类型进行判断即可. 【解答】解:A 、1是整数,为有理数; B 、﹣0.6是有限小数,即分数,属于有理数; C 、﹣6是整数,属于有理数; D 、π是无理数; 故选:D .【点评】本题主要考查的是无理数的定义,熟练掌握无理数的三种常见类型是解题的关键. 12.(2018•湖北恩施•3分)64的立方根为( ) A .8B .﹣8C .4D .﹣4【分析】利用立方根定义计算即可得到结果. 【解答】解:64的立方根是4. 故选:C .【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.13.(2018·浙江临安·3分)化简的结果是( )A .﹣2B .±2C .2D .4【考点】二次根式的化简【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案. 【解答】解:==2. 故选:C .【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.14.(2018·重庆(A )·4分)估计(1230246的值应在 A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间 【考点】二次根式的混合运算及估算无理数的大小 【分析】先将原式化简,再进行判断.()11123024=23024=252666-⋅⨯-⨯-,而25=45=20⨯,20在4到5之间,所以252-在2到3之间【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简单题。
2019年中考数学备战——2018年中考数学试题分类汇编解析(2)无理数与实数

考点2无理数与实数一.选择题(共24小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(2018•南通模拟)的值是()A.4 B.2 C.±2 D.﹣23.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±24.(2018•黔南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=55.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣36.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣47.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=8.(2018•广州)四个数0,1,,中,无理数的是()A.B.1 C.D.09.(2018•玉林)下列实数中,是无理数的是()A.1 B.C.﹣3 D.10.(2018•聊城)下列实数中的无理数是()A.B.C.D.11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.112.(2018•黄石)下列各数是无理数的是()A.1 B.﹣0.6 C.﹣6 D.π13.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣114.(2018•荆门)8的相反数的立方根是()A.2 B.C.﹣2 D.15.(2018•眉山)绝对值为1的实数共有()A.0个 B.1个 C.2个 D.4个16.(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 17.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>018.(2018•常德)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b19.(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π20.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.21.(2018•淄博)与最接近的整数是()A.5 B.6 C.7 D.822.(2018•南京)下列无理数中,与4最接近的是()A. B. C. D.23.(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间24.(2018•重庆)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间二.填空题(共10小题)25.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.26.(2017•恩施州)16的平方根是.27.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b=.28.(2018•上海)﹣8的立方根是.29.(2017•西藏)下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有(填序号).30.(2018•襄阳)计算:|1﹣|=.31.(2018•昆明)在实数﹣3,0,1中,最大的数是.32.(2018•陕西)比较大小:3(填“>”、“<”或“=”).33.(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).34.(2018•烟台)(π﹣3.14)0+tan60°=.三.解答题(共8小题)35.(2018•怀化)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣136.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)37.(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣138.(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)39.(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°40.(2018•娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.41.(2018•连云港)计算:(﹣2)2+20180﹣.42.(2018•桂林)计算: +(﹣3)0﹣6cos45°+()﹣1.答案分析一.选择题(共24小题)1.【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.3.【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.4.【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.5.【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.6.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.7.【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.8.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.9.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:1,﹣3,是有理数,是无理数,故选:B.10.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.11.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.12.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.13.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.14.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.15.【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.16.【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.17.【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.18.【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.19.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.20.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.21.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.22.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C23.【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.24.【分析】首先利用二次根式的乘法化简,进而得出答案.【解答】解:(2﹣)•=2﹣2=﹣2,∵4<<5,∴2<﹣2<3,故选:B.二.填空题(共10小题)25.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.26.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.27.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.28.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.29.【分析】根据无理数的定义即可判断;【解答】解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③30.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.31.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.32.【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,=10,∴3<.33.【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【解答】解:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.34.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.三.解答题(共8小题)35.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.36.【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.37.【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2+1+3﹣3=3.38.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.39.【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.40.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.41.【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.42.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.。
初中数学《无理数与实数》专项练习题(附答案)

,0,1.2131415,
−
4 5
,﹣
0.5252252225…(每两个 5 之间依次增加 1 个 2)
( 1 )正数集合:{
…};
( 2 )负分数集合:{ …};
( 3 )整数集合:{ …};
( 4 )无理数集合:{ …}.
45.若一正数 a 的两个平方根分别是 2m-3 和 5-m,求 a 的值.
46.若一个立方体木块的体积是 0.125m3 , 现将它锯成 8 个同样大小的立方体小木块,求每个小立方体 木块的表面积.
47.计算:
27 + |1 −
3|
+
(
1 2
)−1
−
20160
.
48.将右面各数填入相应的集合内:﹣3.8,﹣10,4.3,2π,﹣
20 7
,0,1.2131415…
整数集合:{ 负分数集合:{ 正数集合:{ 无理数集合:{ 49.请把下列各数填入相应的集合中.
(2)(2 − 1)2 = 25
38.计算:|
3
﹣2|+3tan30°+(
1 2
)﹣1﹣(3﹣π)0﹣
(
2)2
.
39.计算:3tan30°+|2﹣
3
|+(
1 3
)﹣1﹣(3﹣π)0﹣(﹣1)2017
.
40.计算:
(
−
4)
×
(
−
1 2
)
+
2−1
−
(
− 1)0 +
36 .
第四部分:解答题
41.若 5a+1 和 a﹣19 是正数 m 的两个平方根,求 m 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学《无理数与实数》专题复习冲刺卷
一、选择题
1.四个数0,1,,中,无理数的是()
A. B.1C. D.0
2.4的平方根是()
A. B.2C.-2 D.16
3.下列无理数中,与最接近的是()
A. B. C. D.
4.估计的值在()
A. 2和3之间
B. 3和4之间
C. 4和5之间
D. 5和6之间
5.7的算术平方根是()
A. 49
B.
C.﹣
D.±
6.的值等于()
A. 3
B. -3
C. ±3
D.
7.( )
A. B. C. D.
8.当x分别取,,0,2时,使二次根式的值为有理数的是()
A. B. C. 0 D. 2
9.已知:a× =b×1 =c÷ ,且a、b、c都不等于0,则a、b、c中最小的数是()
A. a
B. b
C. c
D. a和c
10.设a是9的平方根,B=()2,则a与B的关系是()
A. a=±B
B. a=B
C. a=﹣B
D. 以上结论都不对
11.下列各组数中互为相反数的是()
A. 5和
B. 和
C. 和
D. ﹣5和
12.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()
A. x是有理数
B. x不能在数轴上表示
C. x是方程4x=8的解
D. x是8的算术平方根
二、填空题
13.﹣的相反数是________,倒数是________,绝对值是________.
14.计算:3-1-()0=________.
15.计算:________.
16.比较大小:3________ (填<,>或=).
17.若=2.449, =7.746, =244.9, =0.7746,则x=________,y=________.
18.比较大小:﹣3________cos45°(填“>”“=”或“<”).
19.一个正数的平方根分别是x+1和x﹣5,则x=________.
20.化简( -1)0+( )-2- + =________.
21.已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.
22.如图,数轴上点A所表示的实数是________.
三、解答题
23. 计算:(﹣2)3+ +10+|﹣3+ |.
24. (1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .
25.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;
(2)求3a-b+c的平方根
答案
1.A
A. 属于无限不循环小数,是无理数,A符合题意;
B.1是整数,属于有理数,B不符合题意;
C. 是分数,属于有理数,C不符合题意;
D.0是整数,属于有理数,D不符合题意;
2.A
∵22=2,(-2)2=4,∴4的平方根是±2.
3.C
4= ,
与最接近的数为,
4.B
∵,∴,
故的值在3和4之间.
5.B
7的算术平方根是7的正平方根,即7的算术平方根为.
6.A
7.B
|1- |= .
8.D
当x=−3时, = ,故此数据不合题意;
当x=−1时, = ,故此数据不合题意;
当x=0时, = ,故此数据不合题意;
当x=2时, =0,故此数据符合题意;
9.B
∵a× =b×1 =c÷ ,
∴a× =b×1 =c× ,
∵1 >>,
∴b<c<a,
∴a、b、c中最小的数是b.
10.A
由题意得a= ,B=3, a=±B ,故答案为:A.
11.B
A、∵,∴5和两数相等,故此选项不符合题意;
B、∵﹣|﹣|=﹣,﹣(﹣)= ,∴和是互为相反数,故此选项符合题意;
C、∵﹣=﹣2和=﹣2,∴和两数相等,故此选项不符合题意;
D、∵﹣5和,不是互为相反数,故此选项不符合题意.
12.D
根据题意,得:
(舍去),
A. 是无理数,故不符合题意.
B. 是实数,实数和数轴上的点是一一对应的,可以在数轴上表示,故不符合题意.
C.方程的解是:不是,故不符合题意.
D. 是8的算术平方根.符合题意.
13.;;
﹣的相反数是﹣(﹣)= ,倒数是=﹣,绝对值是|﹣|= .
14.
:原式=
=-
15.
原式=2×+1-2+=
16.<
∵32=9,9<10,
∴3<,
17.60000;0.6
18.>
∵≈3.742,
∴﹣3≈0.742,
∵cos45°= ≈0.707,
∵0.742>0.707,
∴﹣3>cos45°,
19.2
根据题意知x+1+x﹣5=0,
解得:x=2,
20.-1
原式=1+4-3-3
=-1.
21.20
解得:
以的值为两边长的三角形是等腰三角形,
所以这个三角形的三边是:或构不成三角形.舍去.
周长为:
22.
由勾股定理,得
斜线的为= ,
由圆的性质,得
点表示的数为,
23.解:原式=﹣8+4+1+3﹣=﹣
24.(1)解:﹣2sin45°+(2﹣π)0﹣()﹣1
=2 ﹣2× +1﹣3
=2 ﹣+1﹣3
= ﹣2
(2)解:•(a2﹣b2)
= •(a+b)(a﹣b)
=a+b,
当a= ,b=﹣2 时,原式= +(﹣2 )=﹣
25.(1)解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2.∵c是的整数部分,∴c=3
(2)解:当a=5,b=2,c=3时,3a﹣b+c=16,3a﹣b+c的平方根是±4。