五年级奥数.应用题.牛吃草问题(A级).学生版

合集下载

小学五年级奥数:牛吃草问题(题目+答案)资料讲解

小学五年级奥数:牛吃草问题(题目+答案)资料讲解

牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)①一个牧场,草每天匀速生长,每头牛每天吃的草量相同,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完。

现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。

问没有卖掉4头牛之前,这一群牛一共有多少头?设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9(份)牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x头:6x+2(x-4)=312x=40②一片牧草,可供9头牛12天,也可供8头牛吃16天,开始只有4头牛吃,从第7天起增加了若干头牛来吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×12=108(份)8头牛16天吃的草:8×16=128(份)每天新增量:(128-108)÷(16-12)=5(份)原有草量:108-12×5=48(份)从开始4头牛到6天后增加牛后再吃6天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的4头牛12天吃的草:4×12=48(份)增加的牛数:108-48)÷6=10(头)③有一片草地,可供8只羊吃20天,或供14只羊吃10天。

小学五年级奥数:牛吃草问题

小学五年级奥数:牛吃草问题

小学五年级奥数:牛吃草问题
小学五年级奥数:牛吃草问题
【小学五年级奥数:牛吃草问题】
一、基本思路
假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的`原因,即可确定草的生长速度和总草量。

二、基本特点
原草量和新草生长速度是不变的;
三、关键问题
确定两个不变的量。

四、基本公式
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
五、解题口诀
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

五年级奥数专题 牛吃草问题(学生版)

五年级奥数专题 牛吃草问题(学生版)

学科培优数学“牛吃草问题”学生姓名授课日期教师姓名授课时长知识定位牛吃草问题的概念:英国伟大的科学家牛顿,曾经写过一本数学书。

书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”,也就是我们今天要学的牛吃草问题。

牛吃草问题实际上是在教我们一种分析题的思想,这种题的类型和解题思想是小升初的考试热点知识梳理“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

”分析本题就给了牛的头数,和吃草的时间。

设想如果题目给我们操场原有的草量和草的生长速度那么题目就变得简单多了,所以需要我们通过设每头牛每天的吃草速度为“1”来求这两个量。

解决牛吃草问题常用到四个基本公式:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=(牛头数-草的生长速度)×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度【授课批注】关于牛吃草这样的题有很多的变例,像抽水问题,超市开口人等待问题,扶梯行走,行程中的追及问题等等,所以不提倡大家生搬这个公来做题,要理解解题的思路和解题的目的,用画图或列表法来解题。

才能做到举一反三。

本讲主要解决纯牛吃草问题,关于牛吃草变型题我们留下以后解决。

解决“牛吃草”问题的步骤可以概括为三步:1、设定1头牛1天吃草量为“1”;2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量),根据表格求出草的生长速度和草的总量;也可以画图来解题。

3、根据每头牛单位时间吃草数量和草的生长速度不变这一关系根据题目要求解题。

【重点难点解析】1.牛吃草关键是要求两个量:(1)草的生长速度(2)原有草量2.牛吃草问题的关键是求出工作总量的变化率【竞赛考点挖掘】1.多种动物参与的牛吃草问题2.多块草地上的牛吃草问题例题精讲【试题来源】【题目】牧场上长满牧草,每天牧草都匀速生长。

小学奥数 经典应用题 牛吃草问题(一).学生版

小学奥数  经典应用题    牛吃草问题(一).学生版

1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、一块地的“牛吃草问题” 【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20例题精讲知识精讲教学目标6-1-10.牛吃草问题(一)【巩固】牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【巩固】一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【例2】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

牛吃草问题-五年级奥数

牛吃草问题-五年级奥数

第五讲牛吃草问题例1 牧场上有一片匀速生长的青草,可供20头牛吃9周或者供25头牛吃6周,那么这片青草地可供15头牛吃几周?尝试训练1 一个牧场长满青草,牛在吃草而草又不断生长,27头牛6天可以把牧场的草全部吃完,23头牛吃完全部牧场的草则要9天。

若是让21头牛来吃,多少天可以吃完?例2 八一水库原有一定的存水量,河水每天均匀入库,5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干。

若要求6天抽干,需要多少台同样的抽水机?尝试训练2 有一口井,井底有泉水不断涌出,每分钟涌出的水量相等,如果用4台抽水机来抽水,40分钟可以抽完;如果用5太抽水机来抽水,30分钟可以抽完。

现在要求24分钟内抽完井水,需要抽水机多少台?例3 有一片青草地,每天都在匀速生长。

这片草地供16头牛吃20天,可供80只羊吃12天。

如果1头牛的吃草量等于四只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?尝试训练3 有一片青草,每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天。

如果一头牛的吃草量相当于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?例4 甲、乙、丙三人骑车同时从某地出发,追赶前面的一个行人。

他们分别用6分、9分、12分追上行人,已知甲每分钟行400米,乙每分钟行360米,丙每分钟行多少米?尝试训练4 有甲、乙、丙三辆汽车同时从同一地点出发,沿同一公路追赶前面的一个骑自行车的人。

他们的速度分别为24千米/小时、20千米/小时、19千米/小时,甲车追上骑车人用了6小时,乙车追上骑车人用了10小时。

丙车追上骑车人要多少小时?基础训练1、一片草地上长满了匀速生长的牧草,可供10头牛吃20天,15头牛吃10天。

问可供25头牛吃多少天?2、一艘船有一个漏洞,水以均匀的速度进入船内,当发现漏洞时船内有些水,现在派人将水淘出船外,如果派10人3小时可以淘完,如果派5人8小时可淘完。

五年级奥数牛吃草问题(2021年整理)

五年级奥数牛吃草问题(2021年整理)

(完整)五年级奥数牛吃草问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)五年级奥数牛吃草问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)五年级奥数牛吃草问题(word版可编辑修改)的全部内容。

牛吃草问题专题分析:“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草"换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1、牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?例2、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?例3、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?例4、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?例5、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

五年级牛吃草问题练习题

五年级牛吃草问题练习题

牛吃草问题
1、牧场上有一片青草,每天匀速生长,这片草地可供24头牛吃6周,或可供18头牛吃10周,问可供19头牛吃多少周
2、有一片青草,每天匀速生长,这片草地可供8头牛吃20天,或可供14头牛吃10天,问如果要在12天内吃完牧草,需要几头牛
3、有一片青草,每天匀速生长,这片草地可供40头牛吃10天,或可供30头牛吃20天,那么可供几头牛吃12天
4、由于天渐冷,牧场上的草不仅不长,反而以固定的速度减少,已知草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么可供几头牛吃10天
5、一片牧草,每天生长速度相同,现在这片牧草可供16头牛吃20天,或者供80只羊吃12天,如果1头牛的吃草量等于4只羊的吃草量,那么这批牧草可供10头牛与60只羊一起吃多少天
6、假设地球上每年新生成的资源的量是一定的;据测算地球上的全部资源可供110亿人口生活90年而耗尽,或者可供90亿人生活210年而耗尽;世界总人口必须控制在多少以内,才能保证地球上的资源足以使人类不断繁衍下去
7、一只船发现漏水时,已经进了一些水,现在水匀速地进入船内,如果10人舀水,3小时舀完;如果5人舀水,8小时舀完;现在要求2小时舀完,要安排多少人舀水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上
吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.
(2) “牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也
在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.
(3) 解“牛吃草”问题的主要依据:
草的每天生长量不变; 每头牛每天的食草量不变;
草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值 新生的草量=每天生长量⨯天数.
(4) 同一片牧场中的“牛吃草”问题,一般的解法可总结为:
⑴设定1头牛1天吃草量为“1”;
⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);
⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数; ⑷吃的天数=原来的草量÷(牛的头数-草的生长速度); ⑸牛的头数=原来的草量÷吃的天数+草的生长速度.
(5) “牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题
的本质和解题思路,才能以不变应万变,轻松解决此类问题.
(1) 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.
知识框架
重难点
牛吃草问题
(2) 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系
一、 一块草地的牛吃草
【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头
牛吃18周?
【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20
天?
【例 2】 一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,
要几个星期才可以吃完?(注:牧场的草每天都在生长)
【巩固】 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供
25头牛可吃几天?
例题精讲
【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?
【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?
【例 4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?
【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?。

相关文档
最新文档