2013年高考数学二轮复习学案:专题9数__列(Ⅰ)(江苏专用)

合集下载

2013年高考数学二轮复习学案:专题4导__数_II_(江苏专用)

2013年高考数学二轮复习学案:专题4导__数_II_(江苏专用)

|d|=2 时
两个 同 的根为 1 和 2. |d|<2 时 所 2 因为 f( 1) d=f(2) d=2 1,1,2 都 是 f(x)=d 的根 d>0 f(1) d=f( 2) d= 2 d<0
由(1)知 f (x)=3(x 1)(x 1) x∈(2 理 f(x)=d 在( ∞ x∈(1,2)时 断 所 ∞)时 f (x)>0 于是 f(x)是单调增函数 2) 无实根 f (x)>0 于是 f(x )是单调增函数 又 f(1) d<0 f(2) d>0 y=f(x) d 的图象 间 f(x)=d 在( 2 1)内 惟一实根 f(1) d<0 y=f(x) d 的图象 从而 f(x)>f(2)=2 时 f(x)=d 无实根 同
[典例1] (2012·江 高考)若函数 y=f(x)在 x=x0 处取得极大值或极小值 则 a b 是实数 1 和 1 是函数 f(x)=x3 ax2 bx 的两个极值点 x0 为函数 y=f(x)的极值点 已知
(1)求 a 和 b 的值 (2)设函数 g(x)的导函数 g (x)=f(x) 2 求 g(x)的极值点 (3)设 h(x)=f(f(x)) c 其中 c∈[ 2,2] 求函数 y=h(x)的零点个数 [解] (1)由题设知 f (x)=3x2 f ( 1)=3 2a b=0 解得 a=0 b= 3. (2)由(1)知 f(x)=x3 3x. 因为 f(x) 2=(x 1)2(x 2) 所 是 1 或 2. x< 2 时 g (x)<0 2<x<1 时 g (x)>0 故 2 是 g(x)的极值点 K] g (x)=0 的根为 x1=x2=1 x3= 2.于是函数 g(x)的极值点只可能 2ax b 且

2013高考数学(江苏专版)二轮专题课件:第一部分 专题9 数列(Ⅰ)

2013高考数学(江苏专版)二轮专题课件:第一部分 专题9 数列(Ⅰ)

解析:根据条件可知a1a2a3„a2 012=a2 012, 故a1a2a3„a2 011=1,即a2 011 =1,故a1 006=1,而a1>1,故 1 006 {an}的公比0<q<1,则0<a1 007<1,a1 005>1,故数列{an}的前n 项的积最大时,n=1 005或1 006.
答案:1 005或1 006
和公式,2011年第13题考查等差数列与等比数列,第
返回
20题考查等差数列的综合运用,2012年第6题考查等比数列的通
项公式,第20题考查等差数列与等比数列的综合运用.
预测在2013年的高考题中:
(1)等差数列、等比数列的通项公式、前n项和公式以及其 性质仍然是高考热点,并以中高档低为主; (2)等差数列与等比数列的综合运用仍然可能作为压轴题出 现.
返回
因为p≥2,所以ar<0,与数列{an}为正数相矛盾.因此,当k= 1时,不存在. 1 1 2 当k≥2时,设ak=x,ap=y,ar=z,则x+ z = y, xy 所以z= . 2x-y 令y=2x-1得z=xy=x(2x-1), 此时ak=x=2k-1,ap=y=2x-1=2(2k-1)-1, 所以p=2k-1,ar=z=(2k-1)(4k-3)=2(4k2-5k+2)-1.所以 r=4k2-5k+2. 综上所述,当k=1时,不存在p,r;当k≥2时,存在p=2k- 1,r=4k2-5k+2满足题意.
备考方向锁定
第 一 部 分
专 题 9
小题基础练清 增分考点讲透 配套专题检测
返回
返回
回顾2008~2012年的考题,2008年第10题考查等差数列的 前n项和公式,第19题考查了等差数列、等比数列的综合运用, 2009年第14题考查等比数列,第17题考查等差数列的通项公式、

2013高考数学第二轮复习学案_第1--8讲答案

2013高考数学第二轮复习学案_第1--8讲答案

1第1讲 二次函数一、课前热身1、D 2 110 3、D 4、(-∞,-1) 二、例题探究例1. 解:令sin t x =,[1,1]t ∈-,∴221()(2)24a y t a a =--+-+,对称轴为2at =,(1)当112a -≤≤,即22a -≤≤时,2max 1(2)24y a a =-+=,得2a =-或3a =(舍去).(2)当12a>,即2a >时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递增,由max 111242y a a =-+-+=,得103a =.(3)当12a <-,即2a <-时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递减,由max 111242y a a =---+=,得2a =-(舍去).综上可得:a 的值为2a =-或103a =.例2. 解法一:由题知关于x 的方程22(21)20x a x a --+-=至少有一个非负实根,设根为12,x x则120x x ≤或121200x x x x ∆≥⎧⎪>⎨⎪+>⎩,得94a ≤≤.解法二:由题知(0)0f ≤或(0)0(21)020f a >⎧⎪--⎪->⎨⎪∆≥⎪⎩,得94a ≤. 例3. 解:(1)2()3f x x x =--,0x 是()f x 的不动点,则2000()3f x x x x =--=,得01x =-或03x =,函数()f x 的不动点为1-和3.(2)∵函数()f x 恒有两个相异的不动点,∴2()(1)0f x x ax bx b -=++-=恒有两个不等的实根,224(1)440b a b b ab a ∆=--=-+>对b R ∈恒成立, ∴2(4)160a a -<,得a 的取值范围为(0,1). (3)由2(1)0ax bx b ++-=得1222x x b a +=-,由题知1k =-,2121y x a =-++,2设,A B 中点为E ,则E 的横坐标为21(,)2221b b a a a -++,∴212221b b a a a -=++,∴2112142a b a a a=-=-≥-++,当且仅当12(01)a a a =<<,即2a =时等号成立,∴b的最小值为4-.冲刺强化训练(1)1、A2、A3、C4、,或它们的某个子集。

2013届高考数学考点单元复习教案9

2013届高考数学考点单元复习教案9

数列1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2、理解等差数列的概念,掌握等差数列的通项公式与前n项和的公式,并能解决简单的实际问题.3、理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n项和公式的应用是必考内容,数列与函数、三角、解析几何、组合数的综合应用问题是命题热点.从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的“知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用.第1课时 数列的概念数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n}的函数f(n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项.2.数列的通项公式一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{a n }中,前n 项和S n 与通项a n 的关系为:=n a⎪⎩⎪⎨⎧≥==21n n a n 4.求数列的通项公式的其它方法⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法.⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式.⑴ -312⨯,534⨯,-758⨯,9716⨯…;⑵ 1,2,6,13,23,36,…;⑶ 1,1,2,2,3,3,解: ⑴ a n =(-1)n )12)(12(12+--n n n ⑵ a n =)673(212+-n n(提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得)673(21)43)(1(211)]53(10741[12+-=--+=-++++++=n n n n n a n ⑶ 将1,1,2,2,3,3,…变形为,213,202,211+++,,26,215,204 +++∴4)1(1222)1(111++-++=-++=n n n n n a 变式训练1.某数列{a n }的前四项为0,2,0,2,则以下各式:① a n =22[1+(-1)n ] ② a n =n)(11-+③ a n = ⎩⎨⎧)(0)(2为奇数为偶数n n 其中可作为{a n }的通项公式的是 ( )A .① B .①②C .②③ D .①②③解:D例2. 已知数列{a n }的前n 项和S n ,求通项.⑴ S n =3n -2⑵ S n =n 2+3n +1解 ⑴ a n =S n -S n -1 (n≥2) a 1=S 1解得:a n =⎩⎨⎧=≥⋅-)1(1)2(321n n n ⑵ a n =⎩⎨⎧≥+=)2(22)1(5n n n 变式训练2:已知数列{a n }的前n 项的和S n 满足关系式lg (S n -1)=n ,(n ∈N *),则数列{a n }的通项公式为 .解:,110101)1lg(+=⇒=-⇒=-n n nnnS S n S 当n =1时,a 1=S 1=11;当n≥2时,a n =S n-S n -1=10n -10n -1=9·10 n -1.故a n =⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n 例3. 根据下面数列{a n }的首项和递推关系,探求其通项公式.⑴ a 1=1,a n =2a n -1+1 (n≥2)⑵ a 1=1,a n =113--+n n a(n≥2)⑶ a 1=1,a n =11--n a nn (n≥2)解:⑴ a n =2a n -1+1⇒(a n +1)=2(a n -1+1)(n≥2),a 1+1=2.故:a 1+1=2n ,∴a n =2n -1.⑵a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=3n -1+3n -2+…+33+3+1=)13(21-n.(3)∵nn a a n n11-=-∴a n =⋅--⋅-=⋅⋅⋅⋅⋅-----12111232211n n n n a a a a a a a a an n n n n nnn n 112123=⋅⋅⋅-- 变式训练3.已知数列{a n }中,a 1=1,a n +1=22+nn a a (n ∈N *),求该数列的通项公式.解:方法一:由a n +1=22+nn a a 得21111=-+n n a a ,∴{na 1}是以111=a 为首项,21为公差的等差数列.∴na 1=1+(n -1)·21,即a n =12+n 方法二:求出前5项,归纳猜想出a n =12+n ,然后用数学归纳证明.例4。

2013届高考数学第二轮备考复习教案

2013届高考数学第二轮备考复习教案

2013届高考数学第二轮备考复习教案教案67数列的综合应用一、课前检测1.猜想1=1,1-4=-(1+2),1-4+9=1+2+3,……的第n个式子为。

答案:2.用数学归纳法证明,在验证成立时,左边所得的项为(C)A.1B.1+C.D.二、知识梳理1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题。

⑴生产部门中有增长率的总产量问题.例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为.其中第年产量为,且过年后总产量为:⑵银行部门中按复利计算问题.例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元.因此,第二年年初可存款:=.注意:“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为,则期后本利和为:(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分期还清.如果每期利率为(按复利),那么每期等额还款元应满足:(等比数列问题).⑶分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求an还是求Sn,特别要准确地确定项数n.3.数列与其他知识的综合也是常考的题型,如:数列与函数、不等式、解析几何知识相互联系和渗透,都是常见的题型。

4.强化转化思想、方程思想的应用.三、典型例题分析题型1以等差数列为模型的问题例1由于美伊战争的影响,据估计,伊拉克将产生60~100万难民,联合国难民署计划从4月1日起为伊难民运送食品.第一天运送1000t,第二天运送1100t,以后每天都比前一天多运送100t,直到达到运送食品的最大量,然后再每天递减100t,连续运送15天,总共运送21300t,求在第几天达到运送食品的最大量.剖析:本题实质上是一个等差数列的求通项和求和的问题.解:设在第n天达到运送食品的最大量.则前n天每天运送的食品量是首项为1000,公差为100的等差数列.an=1000+(n-1)•100=100n+900.其余每天运送的食品量是首项为100n+800,公差为-100的等差数列.依题意,得1000n+×100+(100n+800)(15-n)+×(-100)=21300(1≤n≤15).整理化简得n2-31n+198=0.解得n=9或22(不合题意,舍去).答:在第9天达到运送食品的最大量.变式训练1数列{an}中,a1=6,且an-an-1=an-1n+n+1(n∈N*,n≥2),则这个数列的通项an=________.答案:(n+1)(n+2) 解:由已知等式得nan=(n+1)an-1+n(n+1)(n∈N*,n≥2),则ann+1-an-1n=1,所以数列{ann+1}是以a12=3为首项,1为公差的等差数列,即ann+1=n+2,则an=(n+1)(n+2).n=1时,此式也成立.小结与拓展:对数列应用题要分清是求通项问题还是求和问题。

江苏省2013届高考数学(苏教版)二轮复习专题1 集合)

江苏省2013届高考数学(苏教版)二轮复习专题1 集合)

专题1函数的性质及应用(Ⅰ)回顾2008~2012年的高考题,在填空题中主要考查了函数的基本性质(单调性、奇偶性)以及导数的几何意义,即切线问题,基础题、中档题、难题都有涉及.在解答题中,有关函数模型的应用题的考查在2009年和2011年都有涉及,在压轴题中2008年和2009年考查了函数的基本性质,在2010年、2011年和2012年考查了用导数研究函数的性质,在这些问题的考查中都有涉及数学思想方法的考查.值得注意的是在2008~2012年的高考题中没有单独考查:指数和对数的运算、幂函数、函数与方程、导数的概念.这些考试说明中出现的知识要点在复习时要兼顾.预测在2013年的高考题中:(1)填空题依然是对函数的性质、函数的值域和函数图象的运用的相关考查,难度不一. (2)在解答题中,函数模型的实际运用依然会是考查热点,函数综合性质的考查依然是考查的难点,数形结合思想和分类讨论思想是考查的重点.1.(2009·江苏高考)已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.解析:a =5-12∈(0,1),函数f (x )=a x 在R 上递减.由f (m )>f (n )得m <n . 答案:m <n2.(2010·江苏高考)设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:设g (x )=x ,h (x )=e x +a e -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +a e -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.答案:-13.(2010·江苏高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:由题意有⎩⎪⎨⎪⎧ 1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1,∴x 的取值范围为(-1,2-1).答案:(-1,2-1)4.(2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意.综上所述,a =-34.答案:-345.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:由题意f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24.因为f (x )的值域为[0,+∞),所以b -a24=0,即a 2=4b .因为x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax+a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[典例1](2012·如皋测试)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围;(3)若函数y =f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求实数a 的取值范围. [解] (1)当x ∈(0,+∞)时,f (x )=a -1x .则f ′(x )=1x2>0,∴f (x )在(0,+∞)上为增函数.(2)a -1x <2x 在(1,+∞)上恒成立,即a <2x +1x 在(1,+∞)上恒成立.设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2=2x 2-1x2.又x >1,∴h ′(x )>0.∴h (x )在(1,+∞)上单调递增. ∴h (x )>h (1)=3,故a ≤3. ∴a 的取值范围为(-∞,3].(3)∵f (x )的定义域为{x |x ≠0,x ∈R },∴mn >0. 当n >m >0时,由(1)知f (x )在(0,+∞)上单调递增, ∴m =f (m ),n =f (n ).故x 2-ax +1=0有两个不相等的正根m ,n . ∴⎩⎪⎨⎪⎧--a 2>0,Δ=a 2-4>0,解得a >2. 当m <n <0时,可证f (x )=a +1x 在(-∞,0)上是减函数.∴m =f (n ),n =f (m ),即x ∈(0,+∞)时,⎩⎨⎧a +1m =n , ①a +1n =m , ②①-②得1m -1n=n -m ,∴n -m mn =n -m ,而m ≠n ,故mn =1,代入①,得a =0. 综上所述,a 的取值范围为{0}∪(2,+∞).本题综合考查反比例函数、绝对值等内容,对等价转换的要求比较高,第一问很常规,可以通过定义法和导数法解决,入手比较简单;第二问方向发散,分离参数是较好的方法;第三问要求较高,既考查知识点的转化能力,又考查对方程组数据的处理能力,本问就凸显出两种处理方程组的方法:作差和转化成二次方程的根,而这正是这几年江苏高考的一大特色.[演练1](2012·南通学科基地)函数f (x )的定义域为D ,若满足①f (x )在D 内是单调函数,②存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域为[-b ,-a ],那么y =f (x )叫做对称函数,现有f (x )=2-x -k 是对称函数,求k 的取值范围.解:由于f (x )=2-x -k 在(-∞,2]上是减函数,所以⎩⎨⎧2-a -k =-a 2-b -k =-b⇒关于x 的方程2-x -k =-x 在(-∞,2]上有两个不同实根,且k -x ≥0在(-∞,2]上恒成立,通过换元结合图象可得k ∈⎣⎡⎭⎫2,94. [典例2](2012·苏州调研)已知函数f (x )=|x -m |和函数g (x )=x |x -m |+m 2-7m . (1)若方程f (x )=|m |在[4,+∞)上有两个不同的解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[3,+∞),使得f (x 1)>g (x 2)成立,求实数m 的取值范围.[解] (1)由题意可知,|x -m |=|m |在[4,+∞)上有两个不同的解,而方程|x -m |=|m |在R 上的解集为x =0或x =2m ,所以2m ≥-4且2m ≠0.所以m 的取值范围为[-2,0)∪(0,+∞).(2)原命题等价于“f (x )的最小值大于g (x )的最大值”对任意x 1∈(-∞,4],f (x 1)min =⎩⎪⎨⎪⎧0,m ≤4,m -4,m >4.对任意x 2∈[3,+∞),g (x 2)max =⎩⎪⎨⎪⎧m 2-10m +9,m <3,m 2-7m ,m ≥3.①当m <3时,0>m 2-10m +9,解得1<m <3; ②当3≤m ≤4时,0>m 2-7m ,解得3≤m ≤4; ③当m >4时,m -4>m 2-7m ,解得4<m <4+2 3. 综上所述,m 的取值范围为()1,4+23.本题综合考查一次函数、二次函数、绝对值符号等知识,对思维的要求很高,要理解“若对任意x 1∈(-∞,4],均存在x 2∈[3,+∞),使得f (x 1)>g (x 2)成立”的意义,即f (x )的最小值大于g (x )的最大值.[演练2]设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0,其中b >0,c ∈R .当且仅当x =-2时,函数f (x )取得最小值-2.(1)求函数f (x )的表达式;(2)若方程f (x )=x +a (a ∈R )至少有两个不相同的实数根,求a 取值的集合. 解:(1)∵当且仅当x =-2时,函数f (x )取得最小值-2. ∴二次函数y =x 2+bx +c 的对称轴是x =-b2=-2.且有f (-2)=(-2)2-2b +c =-2,即2b -c =6. ∴b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.(2)记方程①:2=x +a (x >0), 方程②:x 2+4x +2=x +a (x ≤0). 分别研究方程①和方程②的根的情况:(ⅰ)方程①有且仅有一个实数根⇒a <2,方程①没有实数根⇒a ≥2.(ⅱ)方程②有且仅有两个不相同的实数根,即方程x 2+3x +2-a =0有两个不相同的非正实数根.∴⎩⎪⎨⎪⎧Δ=9-4(2-a )>02-a ≥0⇒⎩⎪⎨⎪⎧a >-14a ≤2⇒-14<a ≤2;方程②有且仅有一个实数根,即方程x 2+3x +2-a =0有且仅有一个非正实数根.∴2-a <0或Δ=0, 即a >2或a =-14.综上可知,当方程f (x )=x +a (a ∈R )有三个不相同的实数根时,-14<a <2;当方程f (x )=x +a (a ∈R )有且仅有两个不相同的实数根时,a =-14或a =2.∴符合题意的实数a 取值的集合为⎣⎡⎦⎤-14,2. [典例3]已知函数f (x )=ax 2-|x |+2a -1(a 为实常数). (1)若a =1,作函数f (x )的图象;(2)设f (x )在区间[1,2]上的最小值为g (a ),求g (a )的表达式;(3)设h (x )=f (x )x ,若函数h (x )在区间[1,2]上是增函数,求实数a 的取值范围.[解] (1)当a =1时, f (x )=x 2-|x |+1=⎩⎪⎨⎪⎧x 2+x +1,x <0,x 2-x +1,x ≥0.作图(如右图所示). (2)当x ∈[1,2]时, f (x )=ax 2-x +2a -1.若a =0,则f (x )=-x -1在区间[1,2]上是减函数, g (a )=f (2)=-3.若a ≠0,则f (x )=a ⎝⎛⎭⎫x -12a 2+2a -14a -1,f (x )图象的对称轴是直线x =12a.当a <0时,f (x )在区间[1,2]上是减函数, g (a )=f (2)=6a -3. 当0<12a <1,即a >12时,f (x )在区间[1,2]上是增函数,g (a )=f (1)=3a -2.当1≤12a ≤2,即14≤a ≤12时,g (a )=f ⎝⎛⎭⎫12a =2a -14a -1. 当12a >2,即0<a <14时, f (x )在区间[1,2]上是减函数, g (a )=f (2)=6a -3.综上可得g (a )=⎩⎪⎨⎪⎧6a -3, a <14,2a -14a -1, 14≤a ≤12,3a -2, a >12.(3)当x ∈[1,2]时,h (x )=ax +2a -1x-1,在区间[1,2]上任取x 1,x 2,且x 1<x 2, 则h (x 2)-h (x 1)=⎝⎛⎭⎫ax 2+2a -1x 2-1-⎝⎛⎭⎫ax 1+2a -1x 1-1=(x 2-x 1)⎝⎛⎭⎫a -2a -1x 1x 2 =(x 2-x 1)·ax 1x 2-(2a -1)x 1x 2.因为h (x )在区间[1,2]上是增函数, 所以h (x 2)-h (x 1)>0. 因为x 2-x 1>0,x 1x 2>0,所以ax 1x 2-(2a -1)>0,即ax 1x 2>2a -1.当a =0时,上面的不等式变为0>-1,即a =0时结论成立. 当a >0时,x 1x 2>2a -1a ,由1<x 1x 2<4得,2a -1a ≤1,解得0<a ≤1.当a <0时,x 1x 2<2a -1a ,由1<x 1x 2<4得,2a -1a ≥4,解得-12≤a <0.所以实数a 的取值范围为⎣⎡⎦⎤-12,1.本题主要考查二次函数的性质,结合绝对值考查分类讨论思想,第一问主要是画图;第二问二次函数属于轴动区间定的题型,主要考查分类讨论,细心一点即可完成;第三问比较发散,除了用定义法来解决还可以等价转化成h ′(x )≥0对于任意的x ∈[1,2]恒成立来解决.[演练3](2012·苏锡常镇调研)已知a ,b 为正实数,函数f (x )=ax 3+bx +2x 在[0,1]上的最大值为4,则f (x )在[-1,0]上的最小值为________.解析:因为a ,b 为正实数,所以函数f (x )是单调递增的.所以f (1)=a +b +2=4得到a +b =2.所以f (x )在[-1,0]上的最小值为f (-1)=-(a +b )+12=-32.答案:-32[专题技法归纳](1)解决函数问题重点是挖掘出函数性质,利用性质解题,特别是奇偶性和单调性. (2)研究单调区间问题时一定要注意在函数的定义域内进行.(3)研究函数最值问题时,要注意函数的定义域,特别是分段函数,要分别求出最值再比较.1.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2 013)=________.解析:f (x )是周期函数,周期为6, f (2 013)=f (3)=-f (0)=0. 答案:02.已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 解析:若f (0)=2得到t =±2,经检验t =±2都不成立;若f (1)=2得到t =-3,1,经检验t =-3不成立;若f (3)=2得到t =5,1,经检验t =5不成立.综上得t =1.3.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (x -4)=f (-x ).由f (x )为奇函数,得函数图象关于直线x =2对称且f (0)=0,由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示.那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8.答案:-8 4.已知函数f (x )=3-axa -1(a ≠1), (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________. 解析:(1)由3-ax ≥0得定义域为⎝⎛⎦⎤-∞,3a . (2)当a >1时,y =3-ax 递减并且3-ax ≥0对于任意的x ∈(0,1]恒成立,求得a ∈(1,3];当a <1时,y =3-ax 递增并且3-ax ≥0对于任意的x ∈(0,1]恒成立,得到a <0.综上得a <0或1<a ≤3.答案:(1)⎝⎛⎦⎤-∞,3a (2)(-∞,0)∪(1,3] 5.已知函数f (x )=2x2x +1,则f (-5)+f (-4)+…+f (4)+f (5)=________.解析:∵f (x )+f (-x )=1.∴f (-5)+f (5)=f (-4)+f (4)=f (-3)+f (3)=f (-2)+f (2)=f (-1)+f (1)=1. 又f (0)=12,∴f (-5)+f (-4)+…+f (4)+f (5)=112.答案:1126.若函数y =3+x 2ln ⎝ ⎛⎭⎪⎫1+x 1-x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-12,12的最大值与最小值分别为M ,m ,则M +m =________.解析:函数的图象关于(0,3)对称,并且具有中心对称的函数在对称区间上的最大值与最小值之和为对称中心纵坐标的2倍,故答案为6.7.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.解析:y =x n +1的导函数为y ′=(n +1)x n⇒y ′| x =1=n +1.∴切线是y -1=(n +1)(x -1). 令y =0得切点的横坐标x n =n n +1. ∴a 1+a 2+…+a 99=lg (x 1x 2…x 99)= lg ⎝⎛⎭⎫12·23·…·9899·99100=lg 1100=-2. 答案:-28.函数f (x )=log 2x -1log 2x +1,若f (x 1)+f (2x 2)=1(其中x 1,x 2均大于2),则f (x 1x 2)的最小值为________.解析:由f (x 1)+f (2x 2)=1, 得log 2x 1-1log 2x 1+1+log 2(2x 2)-1log 2(2x 2)+1=1, 即log 2x 2=4log 2x 1-1.于是log 2(x 1x 2)=log 2x 1+log 2x 2=log 2x 1+4log 2x 1-1≥5,当且仅当log 2x 1=3时等号成立.所以f (x 1x 2)=log 2(x 1x 2)-1log 2(x 1x 2)+1=1-2log 2(x 1x 2)+1≥23.答案:239.已知函数f (x )=e |x |,m >1,对任意的x ∈[1,m ],都有f (x -2)≤e x ,则最大的正整数m 为________.解析:作出函数y =e |x -2|和y 2=e x 的图象,如图可知x =1时y 1=y 2,又x =4时y 1=e 2<y 2=4e ,x =5时y 1=e 3>y 2=5e ,故m <5,即m 的最大整数值为4.答案:410.已知以T =4为周期的函数f (x ),当x ∈(-1,3]时f (x )=⎩⎨⎧m 1-x 2,x ∈(-1,1],1-|x -2|,x ∈(1,3],其中m >0.若方程3f (x )=x 恰有5个实数解,则m 的取值范围为________.解析:因为当x ∈(-1,1]时,将函数化为方程x 2+y 2m2=1(y ≥0),实质上为一个半椭圆,其图象如图所示,同时在坐标系中作出当x ∈(1,3]的图象,再根据周期性作出函数其它部分的图象,由图易知直线y =x 3与第二个半椭圆(x -4)2+y 2m2=1(y ≥0)相交,而与第三个半椭圆(x -8)2+y 2m 2=1(y ≥0)无公共点时,方程恰有5个实数解.将y =x 3代入(x -4)2+y 2m2=1(y ≥0)得(9m 2+1)x 2-72m 2x +135m 2=0,令t =9m 2(t >0)则(t +1)x 2-8tx +15t =0.由Δ=(8t )2-4×15t (t +1)>0,得t >15.由9m 2>15,且m >0得m >153. 同样将y =x 3代入第三个椭圆(x -8)2+y 2m 2=1(y ≥0).由Δ<0可计算得m <7.综上知m ∈⎝⎛⎭⎫153,7. 答案:⎝⎛⎭⎫153,7 11.设函数f (x )=x 2+|2x -a |(x ∈R ,a 为实数). (1)若f (x )为偶函数,求实数a 的值; (2)设a >2,求函数f (x )的最小值. 解:(1)由已知f (-x )=f (x ), 即|2x -a |=|2x +a |,解得a =0.(2)f (x )=⎩⎨⎧x 2+2x -a ,x ≥12a ,x 2-2x +a ,x <12a ,当x ≥12a 时,f (x )=x 2+2x -a =(x +1)2-(a +1),由a >2,x ≥12a ,得x >1,从而x >-1,故f (x )在x ≥12a 时单调递增,f (x )的最小值为f ⎝⎛⎭⎫a 2=a 24;当x <12a 时,f (x )=x 2-2x +a =(x -1)2+(a -1),则x =1时f (x )取最小值为f (1)=a -1.由a 24-(a -1)=(a -2)24>0知,f (x )的最小值为a -1. 12.函数f (x )对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.解:(1)证明:设x1<x2,∴x2-x1>0.∵当x>0时,f(x)>1,∴f(x2-x1)>1.f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2).∴f(x)在R上为增函数.(2)∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2.∴f(a2+a-5)<2=f(1).∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).11。

2013年高考数学二轮复习课件(江苏专用)第一部分专题16统计与概率、算法

2013年高考数学二轮复习课件(江苏专用)第一部分专题16统计与概率、算法
解析:根据已知条件可得A={2,8,14,20,26,32}, B={1,2,4,8,16,32}. ∴A∪B={1,2,4,8,14,16,20,26,32}, A∩B={2,8,32}. 所以任取x∈A∪B,则x∈A∩B的概率是39=13. 答案:13
4.一组数据9.8,9.9,10,a,10.2的平均数为10,则该组数据的方 差为________. 解析:依题意得,9.8+9.9+10+a+10.2=5×10,a=10.1, 该组数据的方差为s2=[(9.8-10)2+(9.9-10)2+(10-10)2+ (10.1-10)2+(10.2-10)2]=0.02. 答案:0.02
(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为 (A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B, D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E), (D,F),(E,F),共15种.
从中选出的2名教师来自同一学校的结果为(A,B),(A, C),(B,C),(D,E),(D,F),(E,F),共6种.
[演练1] 如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成 绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩 的概率为________.
解析:记其中被污损的数字为x.依题意得甲的五次综合测评的
平均成绩是
1 5
(80×2+90×3+8+9+2+1+0)=90,乙的五次
综合测评的平均成绩是
所以选出的2名教师来自同一学校的概率为165=25.
本题主要考查列举法计算随机事件所含的基本事件数、古 典概型的概率计算公式等基础知识,列举基本事件时要注意按 规律列举,以免重复或遗漏.
[演练2] 一个均匀的正四面体上分别有1,2,3,4四个数字,现随机投掷两 次,正四面体面朝下的数字分别为b,c. (1)记z=(b-3)2+(c-3)2,求z=4的概率; (2)若方程x2-bx-c=0至少有一根x∈{1,2,3,4},就称该方程为 “漂亮方程”,求方程为“漂亮方程”的概率.

2013高考数学教案和学案有答案

2013高考数学教案和学案有答案

2013高考数学教案和学案(有答案)--第1章学案1第1章集合与常用逻辑用语学案1 集合的概念与运算导学目标: 1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用Venn图表达集合的关系及运算.自主梳理12?表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x∈A,都有x∈B,则A?B(或B?A).若A?B,且在B中至少有一个元素x∈B,但x?A,则 A B(或B A).若A?B且B?A,则A=B. 5.集合的运算及性质设集合A,B,则A∩B={x|x∈A且x∈B},A∪B={x|x∈A 或x∈B}.设全集为S,则?SAA∩?=?,A∩B?AA∩B=A?A?B.A∪?=A,A∪B?A,A∪B?B, A∪B=B.A∩?UA=?;A∪?UA=U. 自我检测 1.(2011·无锡高三检测)下列集合表示同一集合的是________(填序号).①M={(3,2)},N={(2,3)};②M={(x,y)|x+y=1},N={y|x+y=1};③M={4,5},N={5,4};④M={1,2},N={(1,2)}.答案③ 2.(2009·辽宁改编)已知集合M={x|-3&lt;x≤5},N={x|-5&lt;x&lt;5},则M∩N=________. 答案{x|-3&lt;x&lt;5}解析画数轴,找出两个区间的公共部分即得M∩N={x|-3&lt;x&lt;5}. 3.(2010·湖南)已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________. 答案 3解析∵A∩B={2,3},∴3∈B,∴m=3.224.(2010·常州五校联考)集合M={y|y=x-1,x∈R},集合N={x|y=-x,x∈R},则M∩N=________. 答案 [-1,3]解析∵y=x2-1≥-1,∴M=[-1,+∞).又∵y=9-x2,∴9-x2≥0.∴N=[-3,3].∴M∩N=[-1,3].5.已知集合A={1,3,a},B={1,a2-a+1},且B?A,则a=________. 答案-1或2解析由a2-a+1=3,∴a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,但集合中有相同元素,舍去,故a=-1或2.探究点一集合的基本概念b例1 若a,b∈R,集合{1,a+b,a}={0,b},求b-a的值.a解题导引解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.b解由{1,a+b,a}={0,b}可知a≠0,则只能a+b=0,则有以下对应法则:aa+b=0,a+b=0,??b?a=a,??b=1由①得???b=a,①或?b??a1.②??a=-1,?b=1,? 符合题意;②无解.∴b-a=2.变式迁移1 设集合A={1,a,b},B={a,a2,ab},且A =B,求实数a,b. 解由元素的互异性知,a≠1,b≠1,a≠0,又由A=B,22???a=1,?a=b,得?或?解得a=-1,b=0. ?ab=b,?ab =1,??探究点二集合间的关系例2 设集合M={x|x=5-4a+a2,a∈R},N={y|y=4b2+4b+2,b∈R},则M与N之间有什么关系?解题导引一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.解集合M={x|x=5-4a+a2,a∈R}={x|x=(a-2)2+1,a∈R}={x|x≥1}, N={y|y=4b2+4b+2,b∈R}={y|y=(2b+1)2+1,b∈R}={y|y≥1}.∴M=N.2变式迁移2 设集合P={m|-1&lt;m&lt;0},Q={m|mx+4mx -4&lt;0对任意实数x恒成立,且m∈R},则集合P与Q之间的关系为________.答案 P Q解析 P={m|-1&lt;m&lt;0},??m&lt;0,Q:?或m=0.∴-1&lt;m≤0. 2?Δ=16m+16m&lt;0,?∴Q={m|-1&lt;m≤0}.∴P Q.探究点三集合的运算例3 设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a&lt;0}.(1)当a=-4时,求A∩B和A∪B;(2)若(?RA)∩B=B,求实数a的取值范围.解题导引解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.1解 (1)A={x≤x≤3}.2当a=-4时,B={x|-2&lt;x&lt;2},1∴A∩B={x≤x&lt;2},2A∪B={x|-2&lt;x≤3}.1(2)?RA={x|x&lt;或x&gt;3}.2当(?RA)∩B=B时,B??RA,即A∩B=?.①当B=?,即a≥0时,满足B??RA;②当B≠?,即a&lt;0时,B={x|-a&lt;x&lt;a},11要使B??RA-a≤a&lt;0.241综上可得,a的取值范围为a≥.4变式迁移 3 已知A={x||x-a|&lt;4},B={x||x-2|&gt;3}. (1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.解 (1)当a=1时,A={x|-3&lt;x&lt;5}, B={x|x&lt;-1或x&gt;5}.∴A∩B={x|-3&lt;x&lt;-1}.(2)∵A={x|a-4&lt;x&lt;a+4},B={x|x&lt;-1或x&gt;5},且A∪B=R, ??a-4&lt;-1∴??1&lt;a&lt;3. ?a+4&gt;5?∴实数a的取值范围是(1,3).分类讨论思想在集合中的应用2例 (14分)(1)若集合P={x|x+x-6=0},S={x|ax+1=0},且S?P,求由a的可取值组成的集合;(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B?A,求由m的可取值组成的集合.【答题模板】解 (1)P={-3,2}.当a=0时,S=?,满足S?P;[2分]1当a≠0时,方程ax+1=0的解为x,[4分]a11为满足S?P3=2,aa11即a=a.[6分]3211故所求集合为{0,}.[7分]32(2)当m+1&gt;2m-1,即m&lt;2时,B=?,满足B?A;[9分] 若B≠?,且满足B?A,如图所示,∴2≤m≤3.[13分]?m+1≤2m-1,?则?m+1≥-2,??2m-1≤5,?m≥2,?即?m≥-3,??m≤3,故m&lt;2或2≤m≤3,即所求集合为{m|m≤3}.[14分]【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a=0时,S=?这种情况.(2)想当然认为m+1&lt;2m-1忽略“&gt;”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y|y=2x},{x|y=2x},{(x,y)|y=2x}表示不同的集合.3.注意?的特殊性.在利用A?B解题时,应对A是否为?进行讨论. 4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A∩B≠?时,可以利用补集思想,先研究A∩B=?.的情况,然后取补集.(满分:90分)一、填空题(每小题6分,共48分) 1.(2010·北京改编)集合P={x∈Z|0≤x&lt;3},M={x∈Z|x2≤9},则P∩M=________. 答案 {0,1,2}解析由题意知:P={0,1,2},M={-3,-2,-1,0,1,2,3},∴P∩M={0,1,2}. 2.(2011·南京模拟)设P、Q为两个非空集合,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q=________________. 答案{1,2,3,4,6,7,8,11}解析 P+Q={1,2,3,4,6,7,8,11}.3.满足{1}A?{1,2,3}的集合A的个数是________.答案 3解析 A={1}∪B,其中B为{2,3}的子集,且B非空,显然这样的集合A有3个,即A={1,2}或{1,3}或{1,2,3}. 4.(2010·天津改编)设集合A={x||x-a|&lt;1,x∈R},B={x|1&lt;x&lt;5,x∈R}.若A∩B=?,则实数a 的取值范围是______________.答案 a≤0或a≥6解析由|x-a|&lt;1得-1&lt;x-a&lt;1,即a-1&lt;x&lt;a+1.由图可知a+1≤1或a-1≥5,所以a≤0或a≥6. 5.设全集U是实数集R,2M={x|x2&gt;4},N={x|≥1},则如图中阴影部分所表示的集合是________.x-1答案 {x|1&lt;x≤2}解析题图中阴影部分可表示为(?UM)∩N,集合M为{x|x&gt;2或x&lt;-2},集合N为 {x|1&lt;x≤3},由集合的运算,知(?UM)∩N={x|1&lt;x≤2}. 6.(2011·泰州模拟)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.*7.(2009·天津)设全集U=A∪B={x∈N|lg x&lt;1},若A ∩(?UB)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________. 答案 {2,4,6,8}*解析 A∪B={x∈N|lg x&lt;1}={1,2,3,4,5,6,7,8,9},A ∩(?UB)={1,3,5,7,9},∴B={2,4,6,8}.28.(2010·江苏)设集合A={-1,1,3},B={a+2,a+4},A∩B={3},则实数a=____. 答案 12解析∵3∈B,由于a+4≥4,∴a+2=3,即a=1. 二、解答题(共42分)229.(14分)集合A={x|x+5x-6≤0},B={x|x+3x&gt;0},求A∪B和A∩B. 解∵A={x|x2+5x-6≤0} ={x|-6≤x ≤1}.(3分)B={x|x2+3x&gt;0}={x|x&lt;-3或x&gt;0}.(6分)如图所示,∴A∪B={x|-6≤x≤1}∪{x|x&lt;-3或x&gt;0}=R.(10分) A∩B={x|-6≤x≤1}∩{x|x&lt;-3或x&gt;0} ={x|-6≤x&lt;-3,或0&lt;x≤1}.(14分)110.(14分)(2011·南通模拟)已知集合A={x|0&lt;ax+1≤5},集合B={x|&lt;x≤2}.若2B?A,求实数a的取值范围.解当a=0时,显然B?A;(2分)当a&lt;0时,若B?A,如图,41-,a2则(6分)1-,a???a≥-8,??1∴?∴-a&lt;0;(8分) 12?a&gt;-2.?当a&gt;0时,如图,若B?A,1-,?-1a2则?4?a2, (11分)??a≤2,∴?∴0&lt;a≤2.(13分) ?a≤2.?1综上知,当B?A时,-a≤2.(14分) 2x-5211.(14分)已知集合A={x|≤0},B={x|x-2x-m&lt;0}, x+1(1)当m=3时,求A∩(?RB);(2)若A∩B={x|-1&lt;x&lt;4},求实数m的值.x-5解由≤0, x+1所以-1&lt;x≤5,所以A={x|-1&lt;x≤5}.(3分)(1)当m=3时,B={x|-1&lt;x&lt;3},则?RB={x|x≤-1或x≥3},(6分)所以A∩(?RB)={x|3≤x≤5}.(10分)(2)因为A={x|-1&lt;x≤5},A∩B={x|-1&lt;x&lt;4},(12分)所以有42-2×4-m=0,解得m=8.此时B={x|-2&lt;x&lt;4},符合题意,故实数m的值为8.(14分)荐小学数学教案[1000字] 荐初二数学教案(800字) 荐生活中的数学教案[1000字] 荐人教版初一上数学教案(全册) [1500字]荐工程数学教案 (500字)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题9数__列(Ⅰ)回顾2008~2012年的考题,2008年第10题考查等差数列的前n 项和公式,第19题考查了等差数列、等比数列的综合运用,2009年第14题考查等比数列,第17题考查等差数列的通项公式、前n 项和公式,2010年第19题考查等差数列的通项公式与前n 项和公式,2011年第13题考查等差数列与等比数列,第20题考查等差数列的综合运用,2012年第6题考查等比数列的通项公式,第20题考查等差数列与等比数列的综合运用.预测在2013年的高考题中:(1)等差数列、等比数列的通项公式、前n 项和公式以及其性质仍然是高考热点,并以中高档低为主; (2)等差数列与等比数列的综合运用仍然可能作为压轴题出现.1.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________.解析:a 1a 4=a 23,(a 2-2)(a 2+4)=(a 2+2)2,2a 2=-12,a 2=-6. 答案:-62.(2012·南京第二次模拟)设S n 是等差数{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________.解析:设{a n }的公差为d ,则由S 3S 6=13可得3a 1+3d 6a 1+15d =13,故a 1=2d .故S 6S 7=6a 1+15d 7a 1+21d =12d +15d 14d +21d =2735. 答案:27353.若lg 2,lg(2x -1),lg(2x +3)成等差数列,则x 的值等于________.[来源:学科网] 解析:lg 2+lg(2x +3)=2lg(2x -1), 2(2x +3)=(2x -1)2,(2x )2-4·2x -5=0,2x =5,x =log 25. 答案:log 254.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是________.解析:a 3=-4,a 7=4,d =2,tan A =2,b 3=13,b 6=9,q =3,tan B =3则tan C =-tan(A +B )=1,A ,B ,C 都是锐角.答案:锐角三角形5.(2012·无锡名校第二次考试)若一个数列的第m 项等于这个数列的前m 项的积,则称该数列为“m 积数列”.若正项等比数列{a n }是一个“2 012积数列”,且a 1>1,则其前n 项的积最大时,n =________.解析:根据条件可知a 1a 2a 3…a 2 012=a 2 012,故a 1a 2a 3…a 2 011=1,即a 2 0111 006=1,故a 1 006=1,而a 1>1,故{a n }的公比0<q <1,则0<a 1 007<1,a 1 005>1,故数列{a n }的前n 项的积最大时,n =1 005或1 006.答案:1 005或1006[典例1](1)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. (2)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 1a 2…a 9=________. [解析] (1)由S 9=S 4,所以a 5+a 6+a 7+a 8+a 9=0,即5a 7=0,所以a 7=0, a 10+a 4=2a 7=0. 所以k =10.(2)由等比数列的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013.所以a 1a 2…a 9=a 95=(a 2a 8)9=5032.[答案] (1)10 (2)5032等差中项和等比中项的本质是整体思想的运用,用来实现等量之间的代换.这是在数列运用基本量研究外的一个重要的处理问题的手段.[演练1]设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________. 解析:由条件可知,a 2=5,从而a 1+a 3=10,a 1a 3=16,得a 1=2,a 3=8,公差为3,所以a 11+a 12+a 13=6+(10+11+12)×3=105.答案:105 [典例2]有n 个首项都是1的等差数列,设第m 个数列的第k 项为a mk (m ,k =1,2,3,…,n ,n ≥3),公差为d m ,并且a 1n ,a 2n ,a 3n ,…,a nn 成等差数列.且d m =(2-m )d 1+(m -1)d 2.(1)当d 1=1,d 2=3时,将数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…(每组中数的个数构成等差数列). 设前m 组中所有数之和为(c m )4(c m >0),求数列{2c n d n }的前n 项和S n ;(2)设N 是不超过20的正整数,当n >N 时,对于(1)中的S n ,求使得不等式150(S n -6)>d n 成立的所有N的值.[解] (1)当d 1=1,d 2=3时,d m =2m -1(m ∈N *).数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),… 按分组规律,第m 组中有(2m -1)个奇数,所以第1组到第m 组共有1+3+5+…+(2m -1)=m 2个奇数. 注意到前k 个奇数的和为1+3+5+…+(2k -1)=k 2, 所以前m 2个奇数的和为(m 2)2=m 4, 即前m 组中所有数之和为m 4.所以(c m )4=m 4.因为c m >0,所以c m =m ,从而2c m d m =(2m -1)·2m (m ∈N *).所以S n =1·2+3·22+5·23+7·24+…+(2n -3)·2n -1+(2n -1)·2n,2S n =1·22+3·23+5·24+…+(2n -3)·2n+(2n -1)·2n +1,故-S n =2+2·22+2·23+2·24+…+2·2n -(2n -1)·2n +1=2(2+22+23+…+2n )-2-(2n -1)·2n +1=2×2(2n -1)2-1-2-(2n -1)·2n +1=(3-2n )2n +1-6.所以S n =(2n -3)2n +1+6.(2)由(1)知d n =2n -1(n ∈N *),S n =(2n -3)2n +1+6(n ∈N *).故不等式150(S n -6)>d n 就是(2n -3)2n +1>50(2n -1).考虑函数f (n )=(2n -3)2n +1-50(2n -1)=(2n -3)(2n +1-50)-100.当n =1,2,3,4,5时,都有f (n )<0, 即(2n -3)2n +1<50(2n -1).而f (6)=9(128-50)-100=602>0,注意到当n ≥6时,f (n )单调递增,故有f (n )>0. 因此当n ≥6时,(2n -3)2n +1>50(2n -1)成立,即150(S n-6)>d n 成立. 所以,满足条件的所有正整数N =6,7, (20)本题第二小问构造了函数f (n )=(2n -3)·(2n +1-50)-100,其中g (n )=2n -3,h (n )=2n +1-50都是单调递增函数,但不是恒正,只有当n ≥6时才能保证恒正,这样得到的函数f (n )才是单调递增函数,前五项的性质,可以代入后一一进行比较.[来源:学+科+网](1)已知数列{a n }为等差数列,若a 5a 6<-1,则数列{|a n |}的最小项是第________项.(2)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.[来源:学科网ZXXK]解析:(1)由a 5a 6<-1得,若a 6>0,则a 5<-a 6<0,此时等差数列为递增数列,|a 5|>|a 6|,此时{|a n |}中第6项最小;若a 6<0,则a 5>-a 6>0,此时等差数列为递减数列,|a 5|>|a 6|,仍然有{|a n |}中第6项最小.故{|a n |}中的最小项是第6项.(2)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2[1+2+…+(n -1)]+33=n 2-n +33,所以a n n =n +33n -1,设函数f (x )=x +33x -1,则f ′(x )=1-33x 2,从而在(33,+∞)上函数f (x )为增函数,在(0,33)上函数f (x )为减函数,因为n ∈N *,所以a n n 在33附近的整数取得最小值,由于a 55=535,a 66=212,所以当n =6时,a n n 有最小值为212. 答案:(1)6 (2)212[典例3][来源:学科网ZXXK]已知数列{a n },{b n }满足b n =a n +1-a n ,其中n =1,2,3,…. (1)若a 1=1,b n =n ,求数列{a n }的通项公式;(2)若b n +1b n -1=b n (n ≥2),且b 1=1,b 2=2.记c n =a 6n -1(n ≥1),求证:数列{c n }为等差数列. [解] (1)当n ≥2时,有a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=1+(n -1)×n 2=n 22-n2+1.又因为a 1=1也满足上式,所以数列{a n }的通项为a n =n 22-n2+1.(2)证明:因为对任意的n ∈N *有 b n +6=b n +5b n +4=1b n +3=b n +1b n +2=b n ,所以c n +1-c n =a 6n +5-a 6n -1=a 6n +5-a 6n +4+a 6n +4-a 6n +3+…+a 6n -a 6n -1=b 6n -1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=1+2+2+1+12+12=7(n ≥1).所以数列{c n }为等差数列.[来源:Z&xx&]本题中{c n }是由{a n }构成,而数列{a n }又由数列{b n }构成,所以本题要证明数列{c n }是等差数列,其本质还是论证数列{b n }的特征,其中b n +6=b n 是数列周期性的体现.已知数列{a n }满足a 1+a 2+…+a n =n 2(n ∈N *). (1)求数列{a n }的通项公式;(2)对任意给定的k ∈N *,是否存在p ,r ∈N *(k <p <r )使1a k ,1a p ,1a r成等差数列?若存在,用k 分别表示p和r ;若不存在,请说明理由.解:(1)当n =1时,a 1=1;当n ≥2,n ∈N *时,a 1+a 2+…+a n -1=(n -1)2, 所以a n =n 2-(n -1)2=2n -1; 当n =1时,也适合.综上所述,a n =2n -1(n ∈N *).(2)当k =1时,若存在p ,r 使1a k ,1a p ,1a r 成等差数列,则1a r =2a p -1a k =3-2p2p -1.因为p ≥2,所以a r <0,与数列{a n }为正数相矛盾.因此,当k =1时,不存在. 当k ≥2时,设a k =x ,a p =y ,a r =z ,则1x +1z =2y ,所以z =xy2x -y .令y =2x -1得z =xy =x (2x -1),此时a k =x =2k -1,a p =y =2x -1=2(2k -1)-1,所以p =2k -1,a r =z =(2k -1)(4k -3)=2(4k 2-5k +2)-1.所以r =4k 2-5k +2.综上所述,当k =1时,不存在p ,r ;当k ≥2时,存在p =2k -1,r =4k 2-5k +2满足题意. [专题技法归纳](1)等差、等比数列性质很多,在高考中以等差中项和等比中项的考查为主,在应用时,要注意等式两边的项的序号之间的关系.(2)在运用函数判断数列的单调性时,要注意函数的自变量为连续的,数列的自变量为不连续的,所以函数性质不能够完全等同于数列的性质.有些数列会出现前后几项的大小不一,从某一项开始才符合递增或递减的特征,这时前几项中每一项都必须研究.(3)由一个数列构造生成的新数列,再判断其是否是等差或等比数列时,如果已经有通项公式,则可以直接由通项公式的特征判断,如果只有递推关系,则需要用定义来证明.(4)数列中恒等关系和有解问题主要是建立关于数列中基本量或相关参数的方程,再进一步论证该方程是否有整数解问题,其中对方程的研究是关键,一般可从奇偶数、约数、有理数、无理数等方面论证,也可以先利用参数范围,代入相关的整数研究.(5)数列中的子数列或衍生数列问题,需要弄清楚该项在原数列中的特征和在新数列中的特征,代入时要注意分辨清楚.1.在等差数列{a n }中,设S 1=a 1+a 2+…+a n ,S 2=a n +1+a n +2+…+a 2n ,S 3=a 2n +1+a 2n +2+…+a 3n ,则S 1,S 2,S 3关系为________.解析:S 1=S n ,S 2=S 2n -S n ,S 3=S 3n -S 2n ,S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 答案:等差数列2.(2012·南京第一次模拟)记等比数列{a m }的前n 项积为T n (n ∈N *),已知a m -1a m +1-2a m =0,且T 2m -1=128,则m =________.解析:因为{a m }为等比数列,所以a m -1·a m +1=a 2m .又由a m -1a m +1-2a m =0,得a m =2.则T 2m -1=a 2m -1m,所以22m -1=128,m =4.答案:43.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 解析:因数列{a n }为等比数列,则a n =2q n -1,因数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0⇒q =1,即a n =2,所以S n =2n .[来源:学科网] 答案:2n4.设f (n )=2+24+27+210+…+23n +10(n ∈N ),则f (n )等于________.解析:f (n )=2[1-23(n +4)]1-23=27(8n +4-1). 答案:27(8n +4-1)5.弹子跳棋共有60颗大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有________个.解析:参考公式12+22+…+n 2=n (n +1)(2n +1)6.依题意第k 层正四面体有1+2+3+…+k =k (k +1)2=k 2+k 2个,则前k 层共有12(12+22+…+k 2)+12(1+2+…+k )=k (k +1)(k +2)6≤60,k 最大为6,剩4. 答案:46.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn 2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是________.解析:由a 4-a 2=8,可得公差d =4,再由a 3+a 5=26,可得a 1=1,故S n =n +2n (n -1)=2n 2-n , ∴T n =2n -1n =2-1n .要使得T n ≤M ,只需M ≥2即可,故M 的最小值为2.答案:27.(2012·镇江联考)若x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则(a 1+a 2)2b 1b 2的取值范围是________.解析:(a 1+a 2)2b 1b 2=(x +y )2xy =2+x y +y x .若x ,y 同号,则x y +y x ≥2,当且仅当x =y 时取等号;若x ,y 异号,则x y +yx ≤-2,当且仅当x =-y 时取等号,得(a 1+a 2)2b 1b 2的取值范围是(-∞,0]∪[4,+∞).答案:(-∞,0]∪[4,+∞)8.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.解析:由条件知数列{a n }中连续四项在集合{-54,-24,18,36,81}中,又|q |>1,所以q <-1且q 2=-54-24=94.则q =-32,6q =-9. 答案:-99.三个互不相等的实数成等差数列,适当交换这三个数的位置后,变成一个等比数列,则此等比数列的公比是________.解析:设这三个数分别为a -d ,a ,a +d (d ≠0),由于d ≠0,所以a -d ,a ,a +d 或a +d ,a ,a -d 不可能成等比数列;若a -d ,a +d ,a 或a ,a +d ,a -d 成等比数列,则(a +d )2=a (a -d ),即d =-3a ,此时q =a a -3a =-12或q =a -3a a =-2;若a ,a -d ,a +d 或a +d ,a -d ,a 成等比数列,则(a -d )2=a (a+d ),即d =3a ,此时q =a -3a a =-2或q =a -3a a +3a=-12.故q =-2或-12.答案:-2或-1210.已知两个等比数列{a n },{b n }满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }惟一,则a =________.解析:设等比数列{a n }的公比为q ,则b 1=a +1,b 2=aq +2,b 3=aq 2+3,(aq +2)2=(a +1)(aq 2+3),即aq 2-4aq +3a -1=0.因为数列{a n }是惟一的,因此由方程aq 2-4aq +3a -1=0解得的a ,q 的值是惟一的.若Δ=0,则a 2+a =0,又a >0.因此这样的a 不存在,故方程aq 2-4aq +3a -1=0必有两个不同的实根,且其中一根为零,于是有3a -1=0,a =13,此时q =4,数列{a n }是惟一的,因此a =13.答案:1311.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7.(1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.[来源:]解:(1)设公差为d ,则由a 22-a 25=a 24-a 23得-3d (a 4+a 3)=d (a 4+a 3).因为d ≠0,所以a 4+a 3=0,即2a 1+5d =0. 又S 7=7得7a 1+7×62d =7,解得a 1=-5,d =2,所以{a n }的通项公式为a n =2n -7, 前n 项和S n =n 2-6n .(2)法一:a m a m +1a m +2=(2m -7)(2m -5)2m -3,设2m -3=t ,则a m a m +1a m +2=(t -4)(t -2)t =t +8t -6,所以t 为8的约数.因为t 是奇数,所以t 可取的值为±1,当t =1,m =2时,t +8t-6=3,2×5-7=3,是数列{a n }中的项;当t =-1,m =1时,t +8t -6=-15,数列{a n }中的最小项是-5,不符合.所以满足条件的正整数m=2.法二:因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数,又由(1)知a m +2为奇数,所以a m +2=2m -3=±1,即m =1,2.经检验,符合题意的正整数m 为2.12.设数列{a n }是一个无穷数列,记T n =∑n +2i =12i -1a i +2a 1-a 3-2n +2a n +1,n ∈N *. (1)若{a n }是等差数列,证明:对于任意的n ∈N *,T n =0; (2)对任意的n ∈N *,若T n =0,证明:{a n }是等差数列;(3)若T n =0,且a 1=0,a 2=1,数列{b n }满足b n =2a n ,由{b n }构成一个新数列3,b 2,b 3,…设这个新数列的前n 项和为S n ,若S n 可以写成a b ,(a ,b ∈N ,a >1,b >1),则称S n 为“好和”.问S 1,S 2,S 3,…中是否存在“好和”,若存在,求出所有“好和”;若不存在,说明理由.解:(1)证明:对于任意的正整数n , ∵T n =∑n +2i =12i -1a i +2a 1-a 3-2n +2a n +1, ∴2T n =2∑n +2i =12i -1a i +4a 1-2a 3-2n +3a n +1. 将上面两等式作差得[来源:学_科_网Z_X_X_K]-T n =a 3-a 1+∑n +1i =12i (a i +1-a i )+2n +2(a n +1-a n +2). ∵数列{a n }是等差数列,设其公差为d ,∴-T n =2d +d ∑n +1i =12i -2n +2d =0,∴T n =0. (2)证明:∵对于任意的正整数n ,T n =∑n +2i =12i -1a i +2a 1-a 3-2n +2a n +1=0, ∴T n +1=∑n +3i =12i -1a i +2a 1-a 3-2n +3a n +2=0,[来源:Z_xx_] 将上面两等式作差得a n +1-2a n +2+a n +3=0. 由T 1=∑3i =12i -1a i +2a 1-a 3-23a 2=0 即a 3-a 2=a 2-a 1,综上,对一切正整数n ,都有a n +1-2a n +a n -1=0, 所以数列{a n }是等差数列.(3)由(2)知{a n }是等差数列,其公差是1,[来源:学*科*网Z*X*X*K]所以a n =a 1+(n -1)=n -1,b n =2a n =2n -1.当n ≥2时,S n =3+2+4+…+2n -1=2n +1,S 1=3,所以对正整数n 都有S n =2n +1.由a b =2n +1,a b -1=2n ,a ,b ∈N ,a >1,b >1,a 只能是不小于3的奇数. 当b 为偶数时,a b -1=(a b 2+1)(a b2-1)=2n ,因为a b 2+1和a b2-1都是大于1的正整数,所以存在正整数t ,s ,使得a b 2+1=2s ,a b2-1=2t ,2s -2t =2,2t (2s -t -1)=2,2t =2且2s -t -1=1,t =1,s =2,相应的n =3,即有S 3=32,S 3为好和;当b 为奇数时,a b -1=(a -1)(1+a +a 2+…+a b -1),由于1+a +a 2+…+a b -1是b 个奇数之和,仍为奇数,又a -1为正偶数,所以(a -1)(1+a +a 2+…+a b -1)=2n 不成立,这时没有好和.。

相关文档
最新文档