超强的指针学习笔记
C语言非常道

谢谢观看
12.7.1乘法 12.7.2除法 12.7.3取余
12.8.1加法 12.8.2减法
12.9.1左移 12.9.2右移
12.18.1简单赋值 12.18.2复合赋值
作者介绍
这是《C语言非常道》的读书笔记模板,暂无该书作者的介绍。
精彩摘录
这是《C语言非常道》的读书笔记模板,可以替换为自己的精彩内容摘录。
9.3进程和线程 9.4变量的存储期
9.1.1函数作用域 9.1.2文件作用域 9.1.3块作用域 9.1.4函数原型作用域 9.1.5作用域的重叠 9.1.6名字空间
9.3.1创建POSIX线程 9.3.2线程同步 9.3.3执行时间的测量
9.4.1线程存储期 9.4.2静态存储期 9.4.3自动存储期 9.4.4指派存储期
5.3.1数组—指针转换 5.3.2指针运算和for语句 5.3.3下标运算符 5.3.4指针的递增和递减
6.1输入输出那点事 6.2系统调用
6.3编译和链接 6.4库
6.5头文件、预处理 和翻译单元
6.6 UNIX和类UNIX 函数库
6.7 Windows动态链 接库
6.8 C标准库
6.6.1限定的类型 6.6.2变参函数 6.6.3认识逐位或、逐位与和逐位异或运算符 6.6.4指向void的指针 6.6.5结构类型
0 6
3.11认识 标号语句和 goto语句
0 5
3.10参数 值的有效性 检查
3.7.1全表达式和序列点
3.10.1认识if语句 3.10.2认识逻辑或运算符 3.10.3未定义的行为 3.10.4摇摆的else子句 3.10.5认识逻辑与运算符
4.1认识一元&和一 元*运算符
lwip学习笔记

2) sys_thread_new sys_arch_timeouts相关的三个全局变量如下struct sys_timeouts lwip_timeouts[LWIP_TASK_MAX];//为每一个由sys_thread_new创建的任务分配一个存放信号量超时信息的列表struct sys_timeouts null_timeouts;//为一个超过任务上限数的任务和不是由sys_thread_new创建的任务取超时列表时返回使用。
MMAC_RTOS_TASK_ID LWIP_TASKS[LWIP_TASK_MAX];//任务id存放顺序与lwip_timeouts相对应sys_thread_new用来创建一个新的任务,保存任务ID。
sys_arch_timeouts//就是通过取得任务ID返回任务对应的timeouts结构,从而可以添加、删除和判断超时的功能/*** Create a one-shot timer (aka timeout). Timeouts are processed in the* following cases:* - while waiting for a message using sys_mbox_fetch()* - while waiting for a semaphore using sys_sem_wait() or sys_sem_wait_timeout()* - while sleeping using the inbuilt sys_msleep()** @param msecs time in milliseconds after that the timer should expire* @param h callback function to call when msecs have elapsed* @param arg argument to pass to the callback function*/voidsys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)sys_timeouts 只是一个指向下一个的sys_timeo的指针1、InternSocketInit();//TCP连接初始化1.1、lwIPInit(sDevPara.chMACAddr, 0, 0, 0, IPADDR_USE_DHCP);//! Initializes the lwIP TCP/IP stack.//!//! \param pucMAC is a pointer to a six byte array containing the MAC//! address to be used for the interface.//! \param ulIPAddr is the IP address to be used (static).//! \param ulNetMask is the network mask to be used (static).//! \param ulGWAddr is the Gateway address to be used (static).//! \param ulIPMode is the IP Address Mode. \b IPADDR_USE_STA TIC will force //! static IP addressing to be used, \b IPADDR_USE_DHCP will force DHCP with//! fallback to Link Local (Auto IP), while \b IPADDR_USE_AUTOIP will force//! Link Local only.//!//! This function performs initialization of the lwIP TCP/IP stack for the//! Stellaris Ethernet MAC, including DHCP and/or AutoIP, as configured.//!//! \return None.1.1.1、tcpip_init(lwIPPrivateInit, 0); 这个地方用到了回调函数tcpip_init(void (* initfunc)(void *),void *arg)什么是指针函数?函数指针是指向函数的指针变量。
【C】Re05指针

【C】Re05指针⼀、变量 & 指针变量 = 内存地址 + 存储值指针变量 = 内存地址 + 存储值【变量的内存地址】作⽤:间接访问内存地址内存地址 = 地址编号地址编号:内存中的每个字节唯⼀的编号,从0开始记录,使⽤⼗六进制显⽰可以使⽤指针变量存储变量的地址不同数据类型就有对应的指针的数据类型⼆、使⽤#define _CRT_SECURE_NO_WARNINGS#include <stdlib.h>#include <stdio.h>void pointer () {// 指针变量int * pointer;// 变量int varA = 100;printf("pointer -> x16 %x, x10 %d, x8 %o\n", pointer, pointer, pointer);printf("varA -> %d\n", varA);printf("- - - - - - - - - - - - - - -\n");// 把varA的地址赋值给指针变量pointerpointer = &varA;// 通过指针变量pointer取地址访问varA变量*pointer = 20;printf("pointer -> x16 %x, x10 %d, x8 %o\n", pointer, pointer, pointer);printf("varA -> %d\n", varA);}int main() {pointer();return EXIT_SUCCESS;}输出格式注意:// %p显⽰完整⼗六进制位数, %x只显⽰进制数语法递进:int tf = (*pointer == *&varA); // 0 false, 1 trueint tf2 = (pointer == &varA);int tf3 = (*pointer == varA);printf(" %d\n",tf);printf(" %d\n",tf2);printf(" %d\n",tf3);三、空指针& 野指针空指针定义void nullPointerAndWildPointer () {// 定义⼀个空指针int * nullPointer = NULL;}指向的NULL常量来⾃于STDLIB标准库头⽂件的这⼀段#else#define NULL ((void *)0)#endif#endif最后指向的还是⼀个0⽽已void nullPointerAndWildPointer () {// 定义⼀个空指针int * nullPointer = 0;}实际上不建议直接写0,容易混淆指针变量与变量空指针不能被访问到:void nullPointerAndWildPointer () {// 定义⼀个空指针int * nullPointer = NULL;printf("nullPointer -> %p", *nullPointer);}int main() {nullPointerAndWildPointer();return EXIT_SUCCESS;}因为内存地址编号0 - 255已经被操作系统占⽤了空指针的作⽤:不知道应该对指针定义多少合适时使⽤野指针定义:void nullPointerAndWildPointer () {int * wildPointer = 0xffff;printf("wildPointer -> %p\n", *wildPointer);}指针变量存储了⾮法的、未知的⼀个内存地址,该地址存储的内容将⽆法访问但是允许查看地址void nullPointerAndWildPointer () {// 定义⼀个空指针// int * nullPointer = NULL;// printf("nullPointer -> %p\n", *nullPointer);// 定义⼀个野指针// int * wildPointer = 0xffff;// printf("wildPointer -> %p\n", *wildPointer);int * nullPointer = NULL;printf("nullPointer -> %p\n", nullPointer);int * wildPointer = 0xffff;printf("wildPointer -> %p\n", wildPointer);}int main() {nullPointerAndWildPointer();return EXIT_SUCCESS;}野指针的第⼆种情况:也是⼀样,地址可以访问,但是内部存储的值⽆法访问// 野指针的第⼆种情况int * wildPointer2;printf("wildPointer2 -> %p\n", wildPointer2);// printf("wildPointer2 value -> %d\n", *wildPointer2);四、⽆类型指针和万能指针1、Void类型概述void voidUsage() {// void 是⼀个数据类型,所以也具备对于的指针类型 void *// void 的⽤途是修饰函数返回类型和形参类型}// 形参修饰了void 表⽰该函数不需要参数void noNeedParam( void ) {}2、函数返回类型省略当函数的返回值类型声明的是void时,我们可以省略,不需要return不过不建议这样书写,C++并不⽀持这样的语法aaa () {printf("void返回类型省略的函数调⽤");}int main() {aaa();return EXIT_SUCCESS;}如果函数不需要注⼊任何类型的参数,编写时是可以明确标注void 数据类型即可3、⽆类型指针与万能指针:⽆类型指针可以强转任意类型接收对于的类型的变量地址void noTypePointer() {void * p = NULL;printf("sizeof p = %d\n", sizeof(p)); // 64位 sizeof p = 8 32位 sizeof p = 4int num = 10;p = #// printf("p = %d\n", *p); int指针类型赋值给void指针类型,类型不匹配错误// 使⽤强转来转换指针类型printf("p = %d\n", *(int *)p);}另外可以作为万能指针使⽤:void anyTypePointer() {void * pointer = NULL;int * varA = NULL;char * varB = NULL;// ⼀个是int指针类型⼀个是char指针类型,直接这样赋值不会有语法错误提⽰// 但是在编译执⾏时会有警告提⽰,另外,如果指针调⽤了就会报错。
《c++程序设计》第7章 指针

(1)取地址运算符&: 取出变量的内存首地址
(2)指针变量的赋值: 指针变量=&变量;或指针变量=指针变量;
3.指针变量的引用
指针运算符* :通过指针变量间接访问变量对应存储单元内容。
【例7.1】定义指针变量
p、p1、q,并将变量a的 地址赋给p、p1,输出a、 p、p1、*p、*p1的值。
【例7.3】指针变量的自加、自减、加n和减n运算。例程
3.指针变量的关系运算
指针变量的关系运算是指针变量值的大小比较,即 对两个指针变量内的地址进行比较,主要用于对数组元 素的判断。
【例7.4】用指针变量求一维实型数组元素和,并输出数组每个元 素的值及数组和。 例程
4.指针运算符的混合运算与优先级
指针数组
例如,指针数组的定义: int *pi[4];
表示定义了由4个整型指针元素pi[0]、pi[1]、pi[2]、pi[3]组成的整型指针数组。 char *pc[4];
表示定义了由4个字符型指针元素pc[0]、pc[1]、pc[2]、pc[3]组成的字符型指针数组。 (3)指针数组元素的引用 【例7.15】用指针数组输出字符串
3.数组元素的引用
对一维数组a[ ]而言,当p=a时: ①第i个元素地址:&a[i]= p+i=a+i。 ②第i个元素值:a[i]= *(p+i) =*(a+i)=p[i]。
一维数组的第i个元素有四种方式引用: a[i]、*(p+i) 、*(a+i)、p[i]。
用数组指针的四种方法求一维数组中的最大值的方法为: 方法一:使用*(a+i)访问a[i] 方法一:用指针变量名p代替数组名a,即用 p[i]代替a[i] 方法二:移动指针变量p++,用*p访问a[i] 方法三:使用*(p+i)访问第 i个元素a[i]
XLink+XPointer学习笔记

XLink 定义了一套标准的在 XML 文档中创建超级链接的方法。
文档中创建超级链接的方法。
什么是 XLink? ?• • • • • • • XLink 是 XML 链接语言(XML Linking Language)的缩写 XLink 是用于在 XML 文档中创建超级链接的语言 XLink 类似于 HTML 链接 - 但是更为强大 XML 文档中的任何元素均可成为 XLink XLink 支持简易链接,也支持可将多重资源链接在一起的扩展链接 通过 XLink,链接可在被链接文件外进行定义 XLink 是 W3C 推荐标准XLink 语法在 HTML 中,我们知道 <a> 元素可定义超级链接。
不过 XML 不是这样工作的。
在 XML 文档中,您 可以使用任何你需要的名称 - 因此对于浏览器来说是无法预知在 XML 文档中可调用何种超级链接元素。
在 XML 文档中定义超级链接的方法是在元素上放置可用作超级链接的标记。
下面是在 XML 文档中使用 XLink 来创建链接的简单实例:<?xml version="1.0"?><homepages xmlns:xlink="/1999/xlink"><homepage xlink:type="simple" xlink:href="">Visit W3School</homepage><homepage xlink:type="simple" xlink:href="">Visit W3C</homepage></homepages>为了访问 XLink 的属性和特性,我们必须在文档的顶端声明 XLink 命名空间。
XLink 的命名空间是:"/1999/xlink"。
(完整版)C++学习笔记

endl换行符,也是std成员函数4).io流运算cout控制台输出—屏幕上终端窗口,带缓冲<<插入运算符cin控制台输入—键盘>>提取运算符5).名字空间Std:标准c++库所提供一切函数、对象、类型都隶属于std名字空间。
::-作用域限定符---名字空间“的”某个对象。
+= -=名字冲突:看作用域。
同一作用域不可使用相同名字。
----解决方法:成员前加名字空间名,中间::3.名字空间namespace 名字空间名{名字空间成员1;名字空间成员2;//名字空间成员可以是变量、函数、类型}名字空间名::名字空间成员1名字空间合并:同一个名字空间可以分别书写在不同的namespace子句中,只要它们的名字相同,仍然会被编译器识别为同一个名字空间。
Namespace名字空间名{名字空间成员1;}namespace名字空间名{名字空间成员2;}名字空间成员的声明和定义可以分开写,但是定义部分需要借助作用域限定符“::”指明所定义的成员隶属于哪个名字空间。
名字空间指令:using namespace名字空间名;名字空间指令以后的代码,对名字空间中的所有成员可见,可以直接引用,无需作用域限定符。
使用时要注意不要引入新的名字冲突。
名字空间声明:using名字空间名::名字空间成员;名字空间声明用于将名字空间中的特定标识符引入当前作用域,可以省略作用域限定符,直接引用之。
使用时注意不要因此引入新的名字冲突。
无名名字空间:不隶属于任何名字空间的标识符,编译器就将其缺省地放入无名名字空间。
对于无名名字空间中的成员,可以直接使用“::”进行访问。
名字空间允许多层嵌套,访问时需要逐层分解。
可利用名字空间别名简化名字空间嵌套路径的书写形式。
Using只能看里面一层。
4.结构、联合和枚举1)所有的类型关键字在声明变量时都可以省略。
struct Date{ //Date结构名int year; //成员变量(成员表列)(类型说明符成员名)int month;int day;void show(void)//成员函数{}};Int main(void){ //全局变量Date d = {2016,8,2},*e = &d;//e是指向d的指针d.show(); //“.”直接成员访问运算符e->show (); //“->”间接成员访问运算符return 0;}struct Date d = {2016,8,2};//C/C++Date d = {2016,8,2};//C++ //类型关键字省略2)C++中结构体可以包含函数(一个int四个字节,函数不放变量中,放代码区)成员函数的调用,前面要写“.”“->”定义结构体时不能同时初始化!3)C++中增加了匿名联合。
ISD1760学习笔记_附全套程序

ISD1700笔记录音完成后会形成一个EOM标志,局部擦除与放音操作遇到此标志时停止独立按键操作1、上电复位后,如果没有存储语音则放音指针和录音指针都指向开始地址,如果有存储的语音信息,放音指针指向最后一段语音段的开始地址,录音指针指向第一行可录音地址2、录音:放音指针受FWD与REC操作影响(什么影响:当REC操作完成后,放音指针会指向新的录音首地址),录音指针在每次REC命令后更新3、在录音之前,先在要录音的单元执行擦除命令非常重要,必须保证在录音期间的供电,否则会毁坏循环存储结构,要使芯片恢复正常工作必须执行全部擦除命令4、放音:两种操作模式:第一种是下降沿触发,当play引脚检测到一个下降沿时芯片开始一次放音操作,在放音期间如果play引脚再次检测到下降沿则会停止当前放音操作,在放音期间LED会闪烁,播放完成时LED熄灭。
在此时重复播放当前语音段。
第二种播放模式是循环播放,当play引脚持续为低电平时,芯片会持续循环播放所有语音段,只有在play引脚被释放时时才会终止循环播放,并且是在当前语音段播放完成后停止,在播放期间,LED会不停的闪烁。
播放停止后,放音指针指向终止语音段的首地址。
在录音,擦除和下一曲时第一种放音模式是不合法操作将不会被执行。
5、快进:当放音指针指向最后的语音段时,下一曲操作将会使放音指针指向第一段语音。
当芯片处于掉电状态并且放音指针没有指向最后一段语音信息时进行FWD操作使放音指针指向下一段语音;当芯片处于掉电状态并且放音指针指向最后一段语音信息时进行FWD操作使放音指针指向第一段语音;当芯片正处于播放非最后一段语音状态时其进行FWD操作将会停止当前播放,将放音指针移向下一段语音首地址,然后播放新语音段,LED全程闪烁;;当芯片正处于播放最后一段语音状态时其进行FWD操作将会停止当前播放,将放音指针移向第一段语音首地址,然后播放新语音段,LED全程闪烁。
在擦除,录音时FWD操作不合法,将不会被执行。
STM32学习笔记-STM32F103ZET6

STM32F103 系列芯片的系统架构:系统结构:在每一次复位以后,所有除SRAM 和FLITF 以外的外设都被关闭,在使用一个外设之前,必须设置寄存器RCC_AHBENR 来打开该外设的时钟。
GPIO 输入输出,外部中断,定时器,串口。
理解了这四个外设,基本就入门了一款MCU。
时钟控制RCC:-4~16M 的外部高速晶振-内部8MHz 的高速RC 振荡器-内部40KHz低速RC 振荡器,看门狗时钟-内部锁相环(PLL,倍频),一般系统时钟都是外部或者内部高速时钟经过PLL 倍频后得到- 外部低速32.768K 的晶振,主要做RTC 时钟源ARM存储器映像:数据字节以小端格式存放在存储器中。
一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。
存储器映像与寄存器映射:ARM 存储器映像4GB0X0000 00000X1FFF FFFF0X2000 00000X3FFF FFFF0X4000 00000X5FFF FFFF寄存器名称相对外设基地址的偏移值编号位表读写权限寄存器位功能说明使用C语言封装寄存器:1、总线和外设基地址封装利用地址偏移(1)定义外设基地址(Block2 首地址)(2)定义APB2总线基地址(相对外设基地址偏移固定)(3)定义GPIOX外设基地址(相对APB2总线基地址偏移固定)(4)定义GPIOX寄存器地址(相对GPIOX外设基地址偏移固定)(5)使用 C 语言指针操作寄存器进行读/写//定义外设基地址#define PERIPH_BASE ((unsigned int)0x40000000) 1)//定义APB2 总线基地址#define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000) 2)//定义GPIOC 外设基地址#define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800) 3)//定义寄存器基地址这里以GPIOC 为例#define GPIOC_CRL *(unsigned int*)(GPIOC_BASE+0x00) 4)#define GPIOC_CRH *(unsigned int*)(GPIOC_BASE+0x04)#define GPIOC_IDR *(unsigned int*)(GPIOC_BASE+0x08)#define GPIOC_ODR *(unsigned int*)(GPIOC_BASE+0x0C)#define GPIOC_BSRR *(unsigned int*)(GPIOC_BASE+0x10)#define GPIOC_BRR *(unsigned int*)(GPIOC_BASE+0x14)#define GPIOC_LCKR *(unsigned int*)(GPIOC_BASE+0x18)//控制GPIOC 第0 管脚输出一个低电平5)GPIOC_BSRR = (0x01<<(16+0));//控制GPIOC 第0 管脚输出一个高电平GPIOC_BSRR = (0x01<<0);2、寄存器封装利用结构体、外设基地址和寄存器地址偏移typedef unsigned int uint32_t; /*无符号32 位变量*/typedef unsigned short int uint16_t; /*无符号16 位变量*//* GPIO 寄存器列表*/typedef struct{uint32_t CRL; /*GPIO 端口配置低寄存器地址偏移: 0x00 */uint32_t CRH; /*GPIO 端口配置高寄存器地址偏移: 0x04 */uint32_t IDR; /*GPIO 数据输入寄存器地址偏移: 0x08 */uint32_t ODR; /*GPIO 数据输出寄存器地址偏移: 0x0C */uint32_t BSRR; /*GPIO 位设置/清除寄存器地址偏移: 0x10 */uint32_t BRR; /*GPIO 端口位清除寄存器地址偏移: 0x14 */uint16_t LCKR; /*GPIO 端口配置锁定寄存器地址偏移: 0x18 */}GPIO_TypeDef;只要给结构体设置好首地址,就能把结构体内成员的地址确定下来,然后就能以结构体的形式访问寄存器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指针学习笔记一。
指针的概念指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。
要搞清一个指针需要搞清指针的四方面的内容:指针的类型,指针所指向的类型,指针的值或者叫指针所指向的内存区,还有指针本身所占据的内存区。
让我们分别说明。
例一:(1)int *ptr;(2)char *ptr;(3)int **ptr;(4)int (*ptr)[3];(5)int *(*ptr)[4];1。
指针的类型从语法的角度看,你只要把指针声明语句里的指针名字去掉,剩下的部分就是这个指针的类型。
这是指针本身所具有的类型。
让我们看看例一中各个指针的类型:(1)int *ptr; //指针的类型是int *(2)char *ptr; //指针的类型是char *(3)int **ptr; //指针的类型是 int **(4)int (*ptr)[3]; //指针的类型是 int(*)[3](5)int *(*ptr)[4]; //指针的类型是 int *(*)[4]怎么样?找出指针的类型的方法是不是很简单?2。
指针所指向的类型当你通过指针来访问指针所指向的内存区时,指针所指向的类型决定了编译器将把那片内存区里的内容当做什么来看待。
从语法上看,你只须把指针声明语句中的指针名字和名字左边的指针声明符 *去掉,剩下的就是指针所指向的类型。
例如:(1)int *ptr; //指针所指向的类型是int(2)char *ptr; //指针所指向的的类型是char(3)int **ptr; //指针所指向的的类型是 int *(4)int (*ptr)[3]; //指针所指向的的类型是 int()[3](5)int *(*ptr)[4]; //指针所指向的的类型是 int *()[4]在指针的算术运算中,指针所指向的类型有很大的作用。
指针的类型(即指针本身的类型)和指针所指向的类型是两个概念。
当你对C越来越熟悉时,你会发现,把与指针搅和在一起的“类型”这个概念分成“指针的类型”和“指针所指向的类型”两个概念,是精通指针的关键点之一3。
指针的值指针的值,或者叫指针所指向的内存区或地址。
指针的值是指针本身存储的数值,这个值将被编译器当作一个地址,而不是一个一般的数值。
在32位程序里,所有类型的指针的值都是一个32位整数,因为32位程序里内存地址全都是32位长。
指针所指向的内存区就是从指针的值所代表的那个内存地址开始,长度sizeof(指针所指向的类型)的一片内存区。
以后,我们说一个指针的值是XX,就相当于说该指针指向了以XX为首地址的一片内存区域;我们说一个指针指向了某块内存区域,就相当于说该指针的值是这块内存区域的首地址。
指针所指向的内存区和指针所指向的类型是两个完全不同的概念。
在例一中,指针所指向的类型已经有了,但由于指针还未初始化,所以它所指向的内存区是不存在的,或者说是无意义的。
以后,每遇到一个指针,都应该问问:这个指针的类型是什么?指针指向的类型是什么?该指针指向了哪里?4。
指针本身所占据的内存区。
指针本身占了多大的内存?你只要用函数sizeof(指针的类型)测一下就知道了。
在32位平台里,指针本身占据了4个字节的长度。
指针本身占据的内存这个概念在判断一个指针表达式是否是左值时很有用。
二。
指针的算术运算指针可以加上或减去一个整数。
指针的这种运算的意义和通常的数值的加减运算的意义是不一样的。
例如:例二:1。
char a[20];2。
int *ptr=a;......3。
ptr++;在上例中,指针ptr的类型是int*,它指向的类型是int,它被初始化为指向整形变量a。
接下来的第3句中,指针ptr被加了1,编译器是这样处理的:它把指针ptr的值加上了sizeof(int),在32位程序中,是被加上了4。
由于地址是用字节做单位的,故ptr 所指向的地址由原来的变量a的地址向高地址方向增加了4个字节。
由于char类型的长度是一个字节,所以,原来ptr是指向数组a的第0 号单元开始的四个字节,此时指向了数组a中从第4号单元开始的四个字节。
我们可以用一个指针和一个循环来遍历一个数组,看例子:例三:int array[20];int *ptr=array;...//此处略去为整型数组赋值的代码。
...for(i=0;i<20;i++){(*ptr)++;ptr++;}这个例子将整型数组中各个单元的值加1。
由于每次循环都将指针ptr加1,所以每次循环都能访问数组的下一个单元。
再看例子:例四:1。
char a[20];2。
int *ptr=a;......3。
ptr+=5;在这个例子中,ptr被加上了5,编译器是这样处理的:将指针ptr的值加上5乘sizeof(int),在32位程序中就是加上了5乘4=20。
由于地址的单位是字节,故现在的ptr所指向的地址比起加5后的ptr所指向的地址来说,向高地址方向移动了20个字节。
在这个例子中,没加5前的ptr指向数组a的第0号单元开始的四个字节,加5后,ptr 已经指向了数组a的合法范围之外了。
虽然这种情况在应用上会出问题,但在语法上却是可以的。
这也体现出了指针的灵活性。
如果上例中,ptr是被减去5,那么处理过程大同小异,只不过ptr的值是被减去5乘sizeof(int),新的ptr指向的地址将比原来的ptr所指向的地址向低地址方向移动了20个字节。
总结一下,一个指针ptrold加上一个整数n后,结果是一个新的指针ptrnew,ptrnew 的类型和ptrold的类型相同,ptrnew所指向的类型和ptrold所指向的类型也相同。
ptrnew的值将比ptrold的值增加了n乘sizeof(ptrold所指向的类型)个字节。
就是说, ptrnew所指向的内存区将比ptrold所指向的内存区向高地址方向移动了n乘sizeof(ptrold所指向的类型)个字节。
一个指针ptrold减去一个整数n后,结果是一个新的指针ptrnew,ptrnew的类型和ptrold的类型相同,ptrnew所指向的类型和 ptrold所指向的类型也相同。
ptrnew的值将比ptrold的值减少了n乘sizeof(ptrold所指向的类型)个字节,就是说, ptrnew 所指向的内存区将比ptrold所指向的内存区向低地址方向移动了n乘sizeof(ptrold所指向的类型)个字节。
三。
运算符&和*这里&是取地址运算符,*是...书上叫做“间接运算符”。
&a的运算结果是一个指针,指针的类型是a的类型加个*,指针所指向的类型是 a的类型,指针所指向的地址嘛,那就是a的地址。
*p的运算结果就五花八门了。
总之*p的结果是p所指向的东西,这个东西有这些特点:它的类型是p指向的类型,它所占用的地址是p所指向的地址。
例五:int a=12;int b;int *p;int **ptr;p=&a;//&a的结果是一个指针,类型是int*,指向的类型是int,指向的地址是a的地址。
*p=24;//*p的结果,在这里它的类型是int,它所占用的地址是p所指向的地址,显然,*p就是变量a。
ptr=&p;//&p的结果是个指针,该指针的类型是p的类型加个*,在这里是int **。
该指针所指向的类型是p的类型,这里是int*。
该指针所指向的地址就是指针p自己的地址。
*ptr=&b;//*ptr是个指针,&b的结果也是个指针,且这两个指针的类型和所指向的类型是一样的,所以用&b来给*ptr赋值就是毫无问题的了。
**ptr=34;//*ptr的结果是ptr所指向的东西,在这里是一个指针,对这个指针再做一次*运算,结果就是一个int类型的变量。
四。
指针表达式一个表达式的最后结果如果是一个指针,那么这个表达式就叫指针表达式。
下面是一些指针表达式的例子:例六:int a,b;int array[10];int *pa;pa=&a;//&a是一个指针表达式。
int **ptr=&pa;//&pa也是一个指针表达式。
*ptr=&b;//*ptr和&b都是指针表达式。
pa=array;pa++;//这也是指针表达式。
例七:char *arr[20];char **parr=arr;//如果把arr看作指针的话,arr也是指针表达式char *str;str=*parr;//*parr是指针表达式str=*(parr+1);//*(parr+1)是指针表达式str=*(parr+2);//*(parr+2)是指针表达式由于指针表达式的结果是一个指针,所以指针表达式也具有指针所具有的四个要素:指针的类型,指针所指向的类型,指针指向的内存区,指针自身占据的内存。
当一个指针表达式的结果指针已经明确地具有了指针自身占据的内存的话,这个指针表达式就是一个左值,否则就不是一个左值。
在例七中,&a不是一个左值,因为它还没有占据明确的内存。
*ptr是一个左值,因为*ptr这个指针已经占据了内存,其实*ptr就是指针pa,既然pa已经在内存中有了自己的位置,那么*ptr当然也有了自己的位置。
五。
数组和指针的关系数组的数组名其实可以看作一个指针。
看下例:例八:int array[10]={0,1,2,3,4,5,6,7,8,9},value;......value=array[0];//也可写成:value=*array;value=array[3];//也可写成:value=*(array+3);value=array[4];//也可写成:value=*(array+4);上例中,一般而言数组名array代表数组本身,类型是int [10],但如果把array 看做指针的话,它指向数组的第0个单元,类型是int *,所指向的类型是数组单元的类型即int。
因此*array等于0就一点也不奇怪了。
同理,array+3是一个指向数组第3个单元的指针,所以* (array+3)等于3。
其它依此类推。
例九:char *str[3]={"Hello,this is a sample!","Hi,good morning.","Hello world"};char s[80];strcpy(s,str[0]);//也可写成strcpy(s,*str);strcpy(s,str[1]);//也可写成strcpy(s,*(str+1));strcpy(s,str[2]);//也可写成strcpy(s,*(str+2));上例中,str是一个三单元的数组,该数组的每个单元都是一个指针,这些指针各指向一个字符串。