关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例

合集下载

缓和曲线圆曲线计算方法

缓和曲线圆曲线计算方法

缓和曲线计算方法(ZH~HY)中线首先计算直线段坐标方位角(即ZH~JD坐标方位角),及ZH点坐标。

备用偏角公式:{30*L2/(π*RL S)缓和曲线}●计算待求点偏角=((L/10)2 *(57296/(RL S))/60。

其中L=待求点至ZH距离、R=圆曲线半径、L S =缓和曲线长。

●待求点方位角=直线方位角±待求点偏角。

(曲线左转-偏角,曲线右转+偏角)●待求点至ZH点弦长=L—L5 /(90*R2 *L S 2),其中L=待求点至ZH距离(里程)、R=圆曲线半径。

●待求点坐标:X=ZH点X坐标+COS(待求点方位角)*弦长Y= ZH点Y坐标+SIN(待求点方位角)*弦长缓和曲线计算左右边线坐标(ZH~HY)1、左侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)—边线与中线夹角。

2、右侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)+边线与中线夹角。

3、左侧边线坐标:X=该点中线X坐标+COS(左侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离4、右侧边线坐标:X=该点中线X坐标+COS(右侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离圆曲线计算方法(HY~YH)中线注:(ZY-YZ)同理,方位角=用直线方位角-待求点偏角首先计算直线段坐标方位角(即Z H~JD坐标方位角),及HY点坐标。

求出缓圆点(HY)偏角=(L S*90)/(π* R)。

1、2、求待求点偏角=(L*90)/(π* R)。

其中:L=待求点至HY距离(里程)、R=圆曲线半径、L S =缓和曲线长。

3、待求点至HY点弦长=2* R*SIN(待求点偏角)。

4、待求点方位角=直线方位角±HY点偏角±待求点偏角,(曲线左转-偏角,曲线右转+偏角)。

5、待求点坐标:X=HY点X坐标+COS(待求点方位角)*弦长Y=HY点Y坐标+SIN(待求点方位角)*弦长圆曲线计算左右边线坐标1、左侧方位角=(待求点方位角±待求点偏角—边线与中线夹角)。

公路缓和曲线段原理及缓和曲线计算公式

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明Fx9750、9860系列程序包含内容介绍:程序共有24个,分别是:1、0XZJSCX2、1QXJSFY3、2GCJSFY4、3ZDJSFY5、4ZDGCJS6、5SPJSFY7、5ZDSPFY8、5ZXSPFY9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX17、PQX-FS 18、PQX-ZS 19、ZD-FS 20、ZD-PQX21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK其中,程序2-14为主程序,程序15-24为子程序。

每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。

刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。

程序1为调度2-8程序;程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序;程序3为主线路中边桩高程计算及路基抄平程序;程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序;程序5为匝道线路中边桩高程计算及路基抄平程序;程序6为任意线型开口线及填筑边线计算放样程序;程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序9为桥台锥坡计算放样程序;程序10为计算两点间的坐标正反算程序;程序11为距离后方交会计算测站坐标程序;程序12为任意多边形面积周长计算程序;程序13为导线近似平差计算程序;程序14为水准近似平差计算程序;程序2-8所用数据库采用的串列,匝道用的File 1;主线用的File 2。

第一步:先用Excel按照文字说明输入完整条线路对应数据;第二步:保存为CSV格式,然后设置单元格格式、数字格式、科学计数、小数位数设置10位以上并保存;第三步:用FA-124导入,匝道数据列表文件选择“File 1”,主线数据列表文件选择“File 2”。

测量道路圆缓曲线

测量道路圆缓曲线

测量道路圆缓曲线道路工程测量(圆曲线缓和曲线计算公式)一、主点(major point) 的测设1、曲线要素的计算若已知:转角α及半径R ,则:切线长:;曲线长:外距:;切曲差:2、主点的测设(1)主点里程的计算ZY 里程=JD 里程-T ;YZ 里程=ZY 里程+LQZ 里程=YZ 里程-L/2 ;JD 里程=QZ 里程+D/2 (用于校核)(2)测设步骤:1)JDi 架仪,照准JDi-1 ,量取T ,得ZY 点;照准JDi+1 ,量取T ,得YZ 点。

2)在分角线方向量取 E ,得QZ 点。

二、单圆曲线详细测设有整桩号法和整桩距法。

一般采用整桩号法。

1、切线支距法(tangent off-set method)(1) 以ZY 或YZ 为坐标原点,切线为X 轴,过原点的半径为Y 轴,建立坐标系。

(2) 计算出各桩点坐标后,再用方向架、钢尺去丈量。

特点:测点误差不积累;宜以QZ 为界,将曲线分两部分进行测设。

[ 例题] 设某单圆曲线偏角α=34°12′00″,R=200m ,主点桩号为ZY :K4+906.90 ,QZ :K4+966.59 ,YZ :K5+026.28 ,按每20m 一个桩号的整桩号法,计算各桩的切线支距法坐标。

(一)主点测设元素计算=61.53m ;=119.38m ;=9.25m ;=3.68m 。

(二)主点里程计算ZY=K4+906.90 ;QZ=K4+966.59 ;YZ=K5+026.28 ;JD= K4+968.43 (检查)(三)切线支距法(整桩号)各桩要素的计算表曲线桩号ZY(YZ )至桩圆心角φi 切线支距法坐标(m) 的曲线长(m) 小数度( °) X i (m) Yi (m) ZY K4+906.904906.9 0 0 0 0 K4+920 4920 13.1 3.752873558 13.090635 0.428871637 K4+940 4940 33.1 9.4 82451509 32.949104 2.732778823 K4+960 4960 53.1 15.21202946 52.478356 7.007714876 QZ K4+96 6.59 ———————————————————————K4+980 4980 46.28 13.25824338 45.868087 5.330745523 K5+000 5000 26.28 7.528665428 26.204441.724113151 K5+020 5020 6.28 1.799087477 6.2789681 0.098587899 YZ K5+026.28 5026.28 0 00 0 注:表中曲线长。

道路工程测量(圆曲线缓和曲线计算公式)

道路工程测量(圆曲线缓和曲线计算公式)

顶岗实习报告道路工程测量(圆曲线缓和曲线计算公式) 实习时间:2013年7月至2013年9月17日 工程项目名称:乌鲁木齐绕城高速公路(东线)WRDX-3实习报告内容:经过实习的一段时间发现道路测量与建筑测量之间有很大的差别,道路测量主要就是曲线上放样,而建筑测量中为直线直角放样。

因此道路测量人员必须掌握曲线放样的内容。

而曲线放样的内容主要就是圆曲线和缓和曲线,一般采用的方法就是交点放样法和偏角法下面就是我在这一段时间内学习到的关于曲线放样的基本内容。

重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。

交点转点转角及里程桩的测设一、 道路工程测量概述分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。

(一) 勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、 初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone)和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。

2、 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。

圆 缓和曲线中线上点位切线方位角计算

圆 缓和曲线中线上点位切线方位角计算

P
曲线左偏时:k -1 HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
圆曲线线路中线点位切线方位角计算
3、HY~HY段切线方切线方位角分析:
• k4+900点在JD3的曲线YH-HZ段上,由所给已知条件知:
• 本曲线为右偏,其HZ点切线方位角为 HZ切 9703526
(3)求k2+300点切线方位角
• k2+300点在JD3的圆+缓和曲线上,由所给已知条件知:
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解: l k p kZH K 2 300 K 2 206.253 93.747
l 2 180 001127 2Rl0
曲线右偏:k 1
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解:
0
l0 2R
180
30 16 57
曲线右偏: k 1
K P K HY 180 104257
R
0 405954
p切 ZH切 k
7102635 405954 7602629
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(1)求p点切线的切偏角
l2 180 2Rl0
l kHZ kP
P切
P
HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(2)求p点切线方位角 p切
p切 HZ切 k
曲线右偏时:k 1
P切
解:
l kHZ kP K4 946.780 K4 900 46.780

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算程序

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算程序

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算培训1、圆曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“QDLC”?Z 曲线起点桩号“R”?R 曲线半径“L1R2”?O 曲线前进方向:左为1、右为2Lbl 0“1N-X,2X-N”?S 1为大转小、2为小转大Pol(P-X,Q-Y):ClsJ+180→K 曲线切线方位角计算If S=1:Then Goto 1:Else Goto 2:IfEndLbl 1“N”?U:“E”?V 测量的大坐标(U-P)cos(K)+(V-Q)sin(K)+Z→Z[1]:(V-Q)cos(K)-(U-P)sin(K)→Z[2] If O=1:Then -R→D:Else R→D:IfEndtan-1((Z[1]-Z)/Abs(D-Z[2]))→Z[3]Abs(D)sin(Z[3])+Z →Z[4]:Abs(D)(1-cos(Z[3])) →Z[5]If O=1:Then –Z[5]→Z[5]:Else Z[5]→Z[5]:IfEndPol(Z[4]-Z,Z[5]-D):ClsJ+180 →Z[6]Z+Z[3](Abs(D)π)/180→Z[7](Z[1]-Z[4])cos(Z[6])+(Z[2]-Z[5])sin(Z[6]) →Z[8]If O=1:Then –Z[8]→Z[8]:Else Z[8]→Z[8]:IfEnd“X=”:Z[7]◢计算后的X小坐标“Y=”:Z[8]◢计算后的X小坐标Goto 0Lbl 2“X”?U:“Y”?V 测量的小坐标180(U-Z)/(Rπ)→Z[1]:Rsin(Z[1])+Z→Z[2]:R(1-cos(Z[1]))→Z[3]If O=1:Then –Z[3]→Z[3]:–V→C:–R→D:Else Z[3]→Z[3]:V→C:R→D:IfEnd Pol(Z[2]-Z,Z[3]-D):ClsJ+180→Z[4]Z[2]+Ccos(Z[4])→Z[5]:Z[3]+Csin(Z[4])→Z[6]P+(Z[5]-Z)cos(K)-Z[6]sin(K)→Z[7]Q+(Z[5]-Z)sin(K)+Z[6]coc(K)→Z[8]“N=”:Z[7] ◢计算后的X大坐标“E=”:Z[8]◢计算后的Y大坐标Goto 02、缓和曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“ZHZH”?Z 曲线起点桩号“R”?R 圆曲线段半径“L”?L 缓和曲线单边曲线长度“L1R2”?O 曲线前进方向左为1右为2Lbl 0“LCZH”?F 测量里程Abs(F-Z)→BIf B<L:Then Goto 1:Else Goto 4:IfEnd 缓和段及圆曲线段计算转换Lbl 1180B2/(2RLπ)→A:RL/B→E:B-B5/(40R2L2)+B9/(3456R4L4)- B13/(599040R6L6)+ B17/(175472640R8L8)- B21/(7.80337152*1010R10L10)→C (红色的为计算小半径增加精度)B3/(6RL)-B7/(336R3L3)+B11/(42240R5L5)- B15/(9676800R7L7)+ B19/(3535596640R9L9)- B23/(1.8802409472*1012R11L11)→D:C-Esin(A) →G(红色的为计算小半径增加精度)If O=1:Then Goto 2:Else Goto3:IfEndLbl 2-D→D:D-Ecos(A) →HGoto 7D→D:D+Ecos(A) →HGoto 7Lbl 4180(B-L/2)/(Rπ)→A:L/2-L3/(240R2)→E:L2/(24R)-L4/(2688R3)→M E+Rsin(A) →C:C-Rsin(A) →GIf O=1:Then Goto 5:Else Goto 6:IfEndLbl 5-(M+R(1-cos(A)) →D:D-Rcos(A) →HGoto 7Lbl 6M+R(1-cos(A)) →D:D+Rcos(A) →HGoto 7Lbl 7Pol(P-X,Q-Y):ClsJ+180→KP+Ccos(K)-Dsin(K) →Z[2]:Q+Csin(K)+Dcos(K) →Z[3]P+Gcos(K)-Hsin(K) →Z[4]:Q+Gsin(K)+Hcos(K) →Z[5]Pol(Z[2]-Z[4],Z[3]-Z[5]):ClsJ+180→Z[1]“U”?U:“V”?V 测量所得大地坐标(U-Z[2])cos(Z[1])+(V-Z[3])sin(Z[1]) →Z[6](V-Z[3])cos(Z[1])-(U-Z[2])sin(Z[1]) →Z[7]If F>Z:Then Goto 9:Else Goto A:IfEndLbl 9If O=1:Then Z[7]→Z[7]:-Z[6]→Z[6]:Else –Z[7]→Z[7]:Z[6]→Z[6] IfEndGoto BLbl AIf O=1:Then –Z[7] →Z[7]:Z[6] →Z[6]:Else Z[7] →Z[7]:-Z[6] →Z[6] IfEndGoto BLbl B“X=”:Z[7] ◢计算后轴线X坐标“Y=”:Z[6] ◢计算后轴线X坐标“0→Goto 0,1→BZZB”?S 0为还回计算过程、1为进行轴线坐标计算大坐标If S=0:Then Goto 0Else Goto 8:IfEndLbl 8“X”?T:“Y”?WIf F>Z:Then Goto C:Else Goto D:IfEndLbl CIf O=1:Then T→Z[8]:-W→Z[11]:Else -T→Z[8]:W→Z[11]:IfEndGoto ELbl DIf O=1:Then -T→Z[8]:W→Z[11]:Else T→Z[8]:-W→Z[11]:IfEndGoto ELbl EZ[2]+Z[11]cos(Z[1])-Z[8]sin(Z[1]) →Z[9]Z[3]+Z[11]sin(Z[1])+Z[8]cos(Z[1]) →Z[10]“N=”:Z[9] ◢计算后X大坐标“E=”:Z[10] ◢计算后Y大坐标Goto 03、竖曲线计算程序:“ZH1”?A 交点1桩号“H1”?B 交点1高程“ZH2”?C 交点2桩号“H2”?D 交点2高程“ZH3”?E 交点3桩号“H3”?F 交点3高程“R”?R 曲线半径(D-B)/(C-A) →Z[1]:(F-D)/( E-C) →Z[2]:Z[2]-Z[1] →W:Abs(RW/2)→T Lbl 0“ZHC”?G:“HC”?H 测量桩号及高程If G≤(C-T):Then Goto 1:Else Goto 2:IfEndLbl 1H-(G-A) Z[1]-B →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 2If G≥(C+T):Then Goto 3:Else Goto 4:IfEnd Lbl 3H-(G-C) Z[2]-D→Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 4(G-(C-T))2/(2R) →Z[4](G-A) Z[1]+B →Z[5]If W>0:Then Goto 5:Else Goto 6:IfEndLbl 5H-(Z[5]+Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 6H-(Z[5]-Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0非完整缓和曲线计算起点和交点方向大坐标Lbl 0“X1”?A 非完整缓和曲线起点X坐标“Y1”?B 非完整缓和曲线起点Y坐标“X2”?C 非完整缓和曲线终点X坐标“Y2”?D 非完整缓和曲线终点Y坐标“A”?E 缓和曲线A值“R”?F 缓和曲线半径“L1”?G 图纸标注缓和曲线长度“L1R2”?R 方向左1右2E2÷F→H 缓和曲线完整计算长度H-G→K 缓和曲线打断长度K-K5÷(40×E4)+K9÷(3456×E8) -K13÷(599040×E12)+K17÷(175472640×E16)-K21÷(78033715200×E20) →LK3÷(6×E2)-K7÷(336×E6)+K11÷(42240×E10)-K15÷(9676800×E14)+K19÷(3530096640×E18)-K23÷(1880240947200×E22) →MH-H5÷(40×E4)+H9÷(3456×E8) -H13÷(599040×E12)+H17÷(175472640×E16)-H21÷(78033715200×E20) →NH3÷(6×E2)-H7÷(336×E6)+H11÷(42240×E10)-H15÷(9676800×E14)+H19÷(3530096640×E18)-H23÷(1880240947200×E22) →OTan-1((O-M)÷(N-L))→PPol(A-C,B-D)J+180→QIf R=1Then Q+P→SElse Q-P→SIfEndAbs(Lcos(S)-Msin(S)-A) →TAbs(Lsin(S)-Mcos(S)-B) →UT+100cos(S) →VU+100sin(S) →W“A0”:T◢完整缓和曲线原点X坐标计算值“B0”:U◢完整缓和曲线原点Y坐标计算值“A1”:V◢完整缓和曲线交点方向X坐标计算值“B1”:W◢完整缓和曲线交点方向Y坐标计算值Goto 0。

公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析

公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析

公路工程测量放线圆曲线、缓和曲线(包括完整缓和曲线、非完整缓和曲线)计算解析例:某道路桥梁中,A匝道线路。

已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。

SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。

由上面“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;1 / 11K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。

求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。

那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。

下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。

2 / 113 / 11y 轴。

过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。

缓和曲线、竖曲线、圆曲线、计算

缓和曲线、竖曲线、圆曲线、计算

速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P(左转为“-”,右转为“+”)1求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于公路测量圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例新浪微博:爱疯记录仪例:某道路桥梁中,A匝道线路。

已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。

SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。

由图纸上“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。

求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。

那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。

下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。

附:A匝道直线、曲线及转角表。

】下载地址:/view/f0677e38cdbff121dd36a32d7375a417866fc18f1 / 102 / 10y 轴。

过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。

那么,α=RL2(弧度) 【注:这里计算出来的α是弧度,不是以度分秒表示的角度,转化为角度,需要换算,换算公式为,1(弧度)=π180︒(度)】 所以如果以度表示,那么α=R L 2×π180︒; 弦切角等于切线角的一半,所以β=2α; ZY 到P 的直线距离为:d =2Rsin α;ZYJDOPL d αβxyYZ3 / 10为y 轴。

过缓和曲线上任意点P 的切线与ZH —JD 相交,夹角(切线角)为β,ZH —P 与ZH —JD 的夹角(弦切角)为α,ZH —P 的弧长为L ,L s 为缓和曲线起点ZH —缓和曲线终点HY 的里程,ZH —P 的直线距离为d ,R 为缓和曲线终点HY 点处的圆曲线半径。

那么,缓和曲线参数:A=s ·L R ;β=s22RL L 转化为角度为β=s 22RL L ×π180︒;当L=L s 时,β=R L 2s ×π180︒;α=31β; 在完整的缓和曲线坐标系中,缓和曲线上任一点P 的坐标为(x ,y ),则缓和曲线的参数方程为:x =L -2s 2540L R L +4s 493456L R L-6s613599040L R L y =s 36RL L -3s37336L R L+5s 51142240L R L -7s 7159676800L R L 当L=L s 时,则缓和曲线终点HY 点或YH 点 坐标(x 0,y 0)为:x 0=s L -23s 40RL +45s 3456R L -67s599040R L y 0=R L 62s -34s 336R L +56s 42240R L -78s9676800R LZH 到P 的直线距离为:d =22y x +;ZHJDOPL dαβxyHY RK9935°17′20″K9+000X=2957714 Y=485768.936.391.7134 / 105 / 10分析:首先,从主线示意图上可以看出,这条线路是具有多段圆曲线和非完整缓和曲线组成的线路。

在计算时,需要分开推算,圆曲线段用圆曲线的推到公式计算,缓和曲线段用缓和曲线的推到公式计算。

我们需要计算的桩号为K9+130,K9+200,K9+230,K9+300,这四个桩号分别处于第一段缓和曲线,第二段圆曲线,第二段缓和曲线,第三段圆曲线上,需要注意的是,这里的缓和曲线是非完整缓和曲线。

【注意:一定要清楚,缓和曲线是从半径为+∞—R 。

】 解:① ,求K9+130的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

K9+130在第一段非完整缓和曲线上,在第一段圆曲线,我们只需要计算出K9+116.282的中桩坐标和切线方位角。

由于是圆曲线,且已知起止桩号、半径、K9+000—JD 的方位角,K9+000的坐标,所以计算非常简单。

K9+000的坐标为(2957714.490,485768.924),L=116.282,R=385.75,K9+000—JD 的方位角为51°16′25″,由圆曲线的相关公式推导,α=R L 2×π180 =8°38′8.64″K9+000—K9+116.282的方位角为: F=51°16′25″+α =59°54′33.64″K9+000—K9+116.282的距离为: d=2Rsin α=115.842 K9+116.282的坐标为:X=2957714.490+d ×cosF=2957772.570 Y=485768.924+d ×sinF=485869.154【利用坐标正算公式直接计算即可,这里不在推导。

】 K9+116.282的切线方位角为: F 切=51°16′25″+β=51°16′25″+2α =68°32′42.28″【注:我们推导下一段缓和曲线的时候,需要用到K9+116.282的坐标和切线方位角。

】51°16′25″K9+000K9+116.282R=385.75βαL d6 / 10在完整缓和曲线的计算中,通常以直线线元与缓和曲线线元衔接点(ZH 点)为原点建立平面直角坐标系进行计算,而非完整缓和曲线只是完整缓和曲线中的一段,其与上一线元的衔接点并非是ZH 点,而是缓和曲线上的任意一点,也就是说它的起点半径不是∞,而是一个具体的数值,其曲率半径变化时由R 1到R 2(R 1>R 2),但是它仍然是回旋线,所以仍具有回旋线的一切特性。

要解决非完整缓和曲线的计算问题,可以将其一端延伸至曲率半径为∞的ZH 点处,将其转换为相对应的完整缓和曲线,然后通过相应的坐标转换,就可以计算出非完整缓和曲线上任意里程的坐标数据了。

如图1所示:已知第一段缓和曲线要素A1=217.335,起点曲率半径为R1=385.75,终点曲率半径为R2=300,且R1>R 2,非完整缓和曲线长Ls=35m ,将其曲率半径较大的一端O1(K9+116.282)端顺延至曲率半径为∞的O 处,形成完整缓和曲线,就可以完整缓和曲线公式来推导非完整缓和曲线计算公式了。

图中:eO 至O 1(K9+116.282)缓和曲线长为:L S1= A 2R 1=122.448O 至O 2(K9+151.282)缓和曲线长为:L S2= A 2R 2=157.448O 1至O 2非完整缓和曲线长为:L S = L S2− L S1=35我们要推算K9+130的中桩坐标,需要先推算出在完整缓和曲线中O 点的坐标和切线方位角。

所以需要先算出K9+116.282—O 点方位角和距离d1。

β1=s221s 2RL L ×π180︒=9°5′37.09″α1=31β1=3°1′52.36″K9+116.282—O 点方位角为: F=68°32′42.28″+180°-γ=68°32′42.28″+180°-(β1-α1) =242°28′57.55″K9+116.282—O 点距离d1为: d1=22y x +=122.31182.28″7 / 10(x ,y 可由缓和曲线的参数方程x =L -2s 2540L R L +4s 493456L R L -6s 613599040L R L ,y =s 36RL L -3s 37336L R L +5s 51142240L R L -7s7159676800L R L 推导出来) 所以:O 点的坐标为(2957716.060,485760.680),O 点的切线方位角为68°32′42.28″-β1=59°27′5.19″;要计算K9+130的中桩及边桩坐标,需要计算出O 点到K9+130的方位角和距离d2,以及K9+130的切线方位角。

O 点到K9+130的弧长为L=(9130-9116.282)β2=s222RL L ×π180︒=11°14′43.13″α2=31β2=3°44′54.38″O 点到K9+130的方位角为:F=59°27′5.19″+α2=63°11′59.57″ O 点到K9+130的距离d2为:d 2=22y x +=135.933(方法同上,此处不再列出计算过程) K9+130的中桩坐标为:(2957777.349,485882.012) K9+130的切线方位角为: F 切=59°27′5.19″+β2=70°41′48.32″【推算切线方位角,是为了后面推算边桩方位角做铺垫。

】 K9+130左侧5米边桩方位角为: F 左= F 切-90°=70°41′48.32″-90° =-19°18′11.68″这里计算出来的边桩方位角为负数,所以我们需要加上36082K9+130左侧5米边桩坐标为:(2957782.068,485880.359);K9+130右侧10米边桩方位角为:F右= F切+90°=70°41′48.32″+90°=160°41′48.32″K9+130右侧10米边桩坐标为:(2957767.911,485885.318)8 / 109 / 10②,求K9+200的中桩坐标,切线方位角,左5米边桩的坐标,右10K9+200在第二段圆曲线上,就是第一段非完整缓和曲线终点K9+151.282的坐标和切线方位角。

相关文档
最新文档