南开大学 2004年数学分析

合集下载

南开各院系参考书目

南开各院系参考书目

电话:23503593 何曼君等 朱常英编讲义 王积涛等 邢其毅等编著 朱志昂、阮文娟编 朱志昂、阮文娟编 傅献彩等 潘瑞炽等 陆时万、吴国芳 高玉葆、石福臣 刘凌云、郑光美主编 南开大学等五校合编 志等 2001 年 李博主编 孙儒泳等编著 沈萍 复旦大学出版社 2003 年第 十次印刷 南开大学高分子教研室 2003 年 南开大学出版社 2003 年第 二版 高等教育出版社(第三版) 科学出版社 2008.6 科学出版社 2007.6 月第 二次印刷 南京大学出版社 1990 年 高等教育出版社(六) 高等教育出版社(二) 科学出版社 2008 年 高等教育出版社 1997 年第 三版 彩万 人民教育出版社 1980 年 中国农业出版社 2001 年 高等教育出版社,2000 高等教育出版社,2002 高等教育出版社 2000 年第 一版
院系所名称: 化学学院 《无机化学》 综合化学 《定量化学分析》 《有机化学》
电话:23508473 吉林大学、武汉大学、南开大 高等教育出版社 2004 年第 学 合编 许晓文等 王积涛等 一版 南开大学出版社 96 年 8 月 南开大学出版社 2003 年第 二版 科学出版社 2004 年 9 月 一版 高等教育出版社 2002、1 Gosport,2001 南开大学出版社 96 年 8 月 北京大学出版社 1997 年 5 月 南开大学出版社 2003 年第 二版 南开大学出版社 2004 年 1 月
有机化学与农药化 学
院系所名称: 生命科学学院 高分子化学与物理 (生科院) «高分子物理» «高分子化学» «有机化学» 有机化学(生科院) «基础有机化学» «近代物理化学»第四版 物理化学(生科院)«物理化学学习指导» «物理化学»(上、下) 植物生理学 植物学 动物学 昆虫学 普通生态学 微生物学 植物生理学 植物学(上册、下册) 植物生物学与生态学实验 《普通动物学》 《昆虫学》 《普通昆虫学》 《生态学》 《基础生态学》 《微生物学》

2004数学四--考研数学真题详解

2004数学四--考研数学真题详解

B 2004 − 2 A2 =

⎛3 0 0 ⎞
【答】
⎜ ⎜
0
3
0
⎟ ⎟
⎜⎝ 0 0 −1⎟⎠
【详解】因为
⎜⎛ −1 A2 = ⎜ 0
0 −1
0 ⎟⎞ 0⎟ ,
B 2004 = P −1 A2004 P .
⎜⎝ 0 0 1⎟⎠

B 2004 = P −1 ( A2 )1002 P = P −1EP = E ,
∑ Y
=
1 n
n i =1
Xi


(A)
D( X 1
+
Y
)
=
n
+ n
2
σ
2

(B)
D( X 1
−Y)
=
n
+ n
2
σ2

(C)
Cov( X1,Y )
=
σ2 n

(D) Cov( X1,Y ) = σ 2 .
【答】 [C]
【详解】 由于随机变量 X1, X 2 ,", X n (n > 1) 独立同分布, 于是可得
由极限的保号性,至少存在一点 x0 ∈ (a,b)
使得
f
(x0 ) x0
− −
f (a) a
>
0 ,即
f
(x0 )
>
f
(a) .
同理,至少存在一点 x0 ∈ (a,b) 使得 f (x0 ) > f (b) .
所以,(A) (B) (C)都正确,故选(D).
(12) 设 n 阶矩阵 A 与 B 等价, 则必须 (A) 当| A |= a(a ≠ 0) 时, | B |= a . (B) 当| A |= a(a ≠ 0) 时, | B |= −a .

2004考研数一真题及答案解析

2004考研数一真题及答案解析

令 Y
1 n
n i 1
Xi
,

(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)

e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0

lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1

2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。

2004考研数一真题及解析

2004考研数一真题及解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

2004年数二试题解析

2004年数二试题解析

2004年数学(二)试题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。

(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】11201101)arcsin 2dt tt π+∞-===⎰⎰⎰.(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数. 23(23)x z z z e x x -∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e--∂=∂+, 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x z F x y z e y z -=+-= 则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x z x zz z e x y e e ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得即 2323213x z x z z e x e --∂=∂+, 23213x z z y e-∂=∂+ 从而 32z zx y∂∂+=∂∂ (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解: 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为1615x yC ==⇒=, 故所求通解为315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得6(1)15y C =⇒=, 从而所求的解为315y x =.(6)设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值.【详解1】 2ABA BA E **=+ 2A B A B A E**⇔-=, (2)A E B A E *⇔-=,21A E B A E *∴-==, 22111110(1)(1)392100001B A E A A *====-⋅---. 【详解2】由1A A A *-=,得二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dttdtγα++→→=⎰320lim lim 02x x x x++→→===, 即o ()γα=.又 2000tan lim limxx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点.(B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).(9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式。

2004考研数一真题答案及详细解析

2004考研数一真题答案及详细解析

一、填空题(1)【答案】 y =x −1【详解】方法 1:因为直线 x +y =1的斜率k 1 − =1,所以与其垂直的直线的斜率k 2 满足121k k =-,所以21k -=-,即21k =,曲线l n y x =上与直线1=+y x 垂直的切线方程的斜率为1,即11)(ln =='='xx y ,得1x =,把1x =代入l n y x =,得切点坐标为)0,1(,根据点斜式公式得所求切线方程为:)1(10-⋅=-x y ,即1-=x y 方法2:本题也可先设切点为)l n ,(00x x ,曲线l n y x =过此切点的导数为11=='=x y x x ,得10=x ,所以切点为()00(,ln )1,0x x =,由此可知所求切线方程为)1(10-⋅=-x y ,即1-=x y .(2)【答案】2)(ln 21x 【详解】先求出)(x f '的表达式,再积分即可.方法1:令t e x=,则t x l n =,1xet -=,于是有t t t f ln )(=',即.ln )(xx x f ='两边积分得2ln 1()ln ln (ln )2xf x dx xd x x C x ===+⎰⎰.利用初始条件(1)0f =,代入上式:21(1)(ln1)02f C C =+==,即0C =,故所求函数为()f x =2)(ln 21x .方法2:由l n xx e =,所以xx x ee f -=')(l n ln xx xx e e ee-=⋅=,所以.ln )(x x x f ='下同.(3)【答案】23【详解】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.2004 年全国硕士研究生入学统一考试数学一试题解析L 为正向圆周222=+y x 在第一象限中的部分,用参数式可表示为.20:,s in 2,cos 2πθθθ→⎩⎨⎧==y x 于是2Lx dy ydx -=⎰202cos 2sin 22sin 2cos d d πθθθθ⎡⎤-⎣⎦⎰20[2cos 2cos 22sin 2sin ]d πθθθθθ=⋅+⋅⎰()22222220[2cos 4sin ][2cos sin 2sin ]d d ππθθθθθθθ=+=++⎰⎰222220[22sin ]22sin d d d πππθθθθθ=+=+⎰⎰⎰()220021cos 2d ππθθθ=+-⎰222000131cos 22sin 2222d πππππθθθθ=+-=-⎰()3133sin sin 002222ππππ=--=-=(4)【答案】221x c x c y +=【详解】欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.令te x =,有1ln ,dt t x dx x ==,则1dy dy dt dy dx dt dx x dt=⋅=,221d y d dy dx dx x dt ⎛⎫= ⎪⎝⎭()211dy d dy d uv vdu udv x dt x dx dt ⎛⎫=+ -+ ⎪⎝⎭211dy d dy dt x dt x dt dt dx ⎛⎫=-+⋅⎪⎝⎭2222222111dy d y d y dy x dt x dt x dt dt ⎛⎫=-+=- ⎪⎝⎭代入原方程:222211420d y dy dyx x y x dt dt x dt⎛⎫⋅-+⋅+= ⎪⎝⎭,整理得02322=++y dt dy dt y d ,此式为二阶齐次线性微分方程,对应的特征方程为2320r r ++=,所以特征根为:121,2r r =- =- ,12r r ≠ ,所以02322=++y dt dydty d 的通解为1221212r t r t t ty c e c e c e c e --=+=+又因为te x =,所以2211,tt ee x x --= =,代入上式得212122.t t c cy c e c e x x--=+=+(5)【答案】91【详解】方法1:已知等式两边同时右乘A ,得**2ABA A BA A A =+,由伴随矩阵的运算规律:**A A AA A E ==,有2A B A B A A =+,而210120001A =3321(1)12+=-2211=⨯-⨯3=,于是有A B A B +=63,移项、合并有A B E A =-)63(,再两边取行列式,由方阵乘积的行列式的性质:矩阵乘积的行列式等于矩阵行列式的积,有(36)363A E B A E B A -=-==,而36A E -21010031206010001001⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦630600030360060300003006003⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3303(1)(3)(3)3330+=--=-⨯⨯27=,故所求行列式为B 33627A A E ==-19=方法2:由题设条件**2ABA BA E =+,得**2ABA BA -=*(2)A E BA E-=由方阵乘积行的列式的性质:矩阵乘积的行列式等于矩阵行列式的积,故两边取行列式,有**(2)21A E BA A EB A E -=-==其中210120001A =3321(1)12+=-2211=⨯-⨯3=;由伴随矩阵行列式的公式:若A 是n 阶矩阵,则1n A A-*=.所以,312A A A -*===9;又0102100001A E -=1210(1)01+=-=1.故1192B A E A*==-.(6)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{D X X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题(7)【答案】(B)【详解】方法1:202200tan tan 2lim limlim 0cos cos x xx x x tdt x xxt dtβα+++→→→⋅= =⎰⎰洛必达,则β是α的高阶无穷小,根据题设,排在后面的是前一个的高阶无穷小,所以可排除(C),(D)选项,又23230001sin sin 2lim lim lim 2tan tan xx x x x x t dtx x xtdtγβ+++→→→⋅= ⎰⎰洛必达201lim4x x x +→=∞等价无穷小替换,可见γ是比β低阶的无穷小量,故应选(B).方法2:用kx (当0x →时)去比较.221000cos cos limlimlim ,xkkk x x x t dt x xxkxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,有220lim cos cos lim lim 1lim x x x x t txxxα++++→→→→===,所以(当+→0x 时)α与x 同阶.211300000tan tan 222lim limlim lim lim xk k k k k x x x x x tdtx x x x x x kx kx kx β+++++---→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取3k =,有3320002tan 2tan 2lim lim lim 333x x x x x x x x β+++-→→→===,所以(当+→0x 时)β与3x 同阶.31313222211100000sin sin lim lim lim lim lim ,222xk kk k k x x x x x t dtx x x x xx x kx kx kx γ+++++-----→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取2k =,有221001lim lim 224x x xx x γ++-→→==⋅,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B).(8)【答案】(C)【详解】函数()f x 只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B).由导数的定义,知0)0()(lim)0(0>-='→xf x f f x 根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f .即当)0,(δ-∈x 时,0x <,有()(0)f x f <;而当),0(δ∈x 时,0x >有()(0)f x f >.(9)【答案】(B)【详解】对于敛散性的判定问题,若不便直接推证,往往可通过反例排除找到正确选项.方法1:排除法.取()()11ln 1n a n n =++,则n n na ∞→lim =0,又()()1111ln 11pn p n n p ∞= >⎧⎨++ ≤⎩∑收敛,当发散,当,所以()()1111ln 1n n n a n n ∞∞===++∑∑发散,排除A ,D ;又取n n a n 1=,因为p 级数1111p n p n p ∞= >⎧⎨ ≤⎩∑收敛,当发散,当,则级数111n n n a n n ∞∞===∑∑收敛,但221lim lim lim n n n n n a n n n n→∞→∞→∞=⋅==∞,排除(C),故应选(B).方法2:证明(B)正确.l im 0n n na λ→∞=≠,即l im 1nn a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑也发散,故应选(B)..(10)【答案】(B)【详解】在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x :⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f 否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.方法1:交换积分次序,使得只有外面这道积分限中才有t ,其他地方不出现t由⎰⎰=t tydx x f dy t F 1)()(知:1y x ty t <<⎧⎨<<⎩,交换积分次序11x t y x <<⎧⎨<<⎩,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdxx x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有)2()2(f F =',故应选(B).方法2:设()()x f x 'Φ=,于是1()()t t yF t dy f x dx =⎰⎰11()()t t t tyydy x dx dy d x '=Φ=Φ⎰⎰⎰⎰1[()()]t t y dy =Φ-Φ⎰1()(1)()tt t y dy=Φ--Φ⎰所以()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=-所以(2)(2)F f '=,选(B).(11)【答案】(D)【详解】由题设,将A 的第1列与第2列交换,即12010100001AE A B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,将B 的第2列加到第3列,即100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D).(12)【答案】(A)【详解】方法1:由矩阵秩的重要公式:若A 为n m ⨯矩阵,B 为n p ⨯矩阵,如果0A B =,则()()r A r B n+≤设A 为n m ⨯矩阵,B 为s n ⨯矩阵,由0A B =知,()()r A r B n +≤,其中n 是矩阵A 的列数,也是B 的行数因A 为非零矩阵,故()1r A ≥,因()()r A r B n +≤,从而()1r B n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知B 的行向量组线性相关.因B 为非零矩阵,故()1r B ≥,因()()r A r B n +≤,从而()1r A n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知A 的列向量组线性相关.故应选(A).方法2:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,将B 按列分块,由0A B =得,[]12,,,0,0,1,2,,.s i AB A A i s ββββ==== 因B 是非零矩阵,故存在0i β≠,使得0i A β=.即齐次线性方程组0A x =有非零解.由齐次线性方程组0A x =有非零解的充要条件()r A n <,知()r A n <.所以A 的列向量组线性相关.又()0T T T AB B A ==,将TA 按列分块,得12[,,,]0,0,1,2,,.T T T T T TT T m i B A B B i m αααα==== 因A 是非零矩阵,故存在0T i α≠,使得0TT i Bα=,即齐次线性方程组0Bx =有非零解.由齐次线性方程组0Bx =有非零解的充要条件,知TB 的列向量组线性相关,由TB 是由B 行列互换得到的,从而B 的行向量组线性相关,故应选(A).方法3:设(),i j m n A a ⨯=()i j n s B b ⨯=,将A 按列分块,记()12n A A A A =由0A B =⇒()11121212221212s s n n n ns b b b b bb A A A b b b ⎛⎫⎪⎪ ⎪⋅⋅⋅⎪⎝⎭()111111,,0n n s ns n b A b A b A b A =++++= (1)由于0B ≠,所以至少有一个0i j b ≠(1,1i n j s ≤≤≤≤),又由(1)知,11220j j i j i nj n b A b A b A b A +++++= ,所以12,,,m A A A 线性相关.即A 的列向量组线性相关.(向量组线性相关的定义:如果对m 个向量12,,,nm R ααα∈ ,有m 个不全为零的数12,,,m k k k R ∈,使11220m m k k k ααα++=成立,则称12,,,m ααα 线性相关.)又将B 按行分块,记12n B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,同样,0A B =⇒11121121222212n n m m mn n a a a B a a a B a a a B ⎛⎫⎛⎫⎪⎪⎪⎪ ⎪⎪⋅⋅⋅⎪⎪⎝⎭⎝⎭ 111122121122221122n n n n m m mn n a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪=⎪ ⎪ ⎪+++⎝⎭ 0=由于0A ≠,则至少存在一个0i j a ≠(1,1i m j n ≤≤≤≤),使11220i i i j j in n a B a B a B a B ++++= ,由向量组线性相关的定义知,12,,,m B B B 线性相关,即B 的行向量组线性相关,故应选(A).方法4:用排除法.取满足题设条件的,A B .取001000,10010001A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有00100100,10001AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A 的行向量组,列向量组均线性相关,但B 的列向量组线性无关,故(B),(D)不成立.又取110100,00000100A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有1101000000100AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,A 的行向量组线性无关,B 的列向量组线性相关,故(C)不成立.由排除法知应选(A).(13)【答案】C【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C).方法2:Oxy()f x {}P X u αα>=图1图2如图1所示题设条件.图2显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n 独立同分布,所以必有:2, (,)0, i j i jCov X X i jσ⎧==⎨≠⎩又222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑Oxy{}P X x α<=12α-()f x下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n=21n σ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算.可以看本题(C),(D)选项.因为X 与Y 独立时,有()()()D X Y D X D Y ±=+.所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n nσσ++-+=+++=+ =222233σσn n n n n +=+,222222111)1()111()(σσnn n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=-所以本题选(A)三、解答题(15)【详解】根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.方法1:因为函数()2l n f x x =在()2[,],a b e e ⊂上连续,且在(),a b 内可导,所以满足拉格朗日中值定理的条件,对函数()2ln f x x =在[,]a b 上应用拉格朗日中值定理,得()()()22222ln ln ln ln ,b a b a b a e a b e ξξξξ'-=-=- <<<<下证:22ln 4eξξ>.设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ,当t e >时,1ln 1ln 0t e -<-=,即,0)(<'t ϕ所以)(t ϕ单调减少,又因为2e ξ<,所以)()(2e ϕξϕ>,即2222ln ln e e e =>ξξ,得22ln 4eξξ>故)(4ln ln 222a b ea b ->-.方法2:利用单调性,设x ex x 224ln )(-=ϕ,证()x ϕ在区间()2,e e 内严格单调增即可.24ln 2)(e x x x -='ϕ,(222222ln 444()20e e e e e eϕ'=-=-=,)2ln 12)(x x x -=''ϕ,当x e >时,1ln 1ln 0x e -<-=,,0)(<''x ϕ故)(x ϕ'单调减少,从而当2e x e <<时,2()()0x e ϕϕ''>=,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即a e a b e b 22224ln 4ln ->-,故)(4ln ln 222a b ea b ->-.方法3:设2224()ln ln ()x x a x a eϕ=---,则2ln 4()2x x x e ϕ'=-,21ln ()2x x x ϕ-''=,⇒x e >时,1ln 1ln 0x e -<-=,得()0x ϕ''<,⇒()x ϕ'在2(,)e e 上单调减少,从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=,⇒()x ϕ在2(,)e e 上单调增加.从而当2e a x b e <<≤<时,()()0x a ϕϕ>=.⇒()0b ϕ>,即2224ln ln ()b a b a e ->-.(16)【详解】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.方法1:由题设,飞机质量9000m kg =,着陆时的水平速度h k m v /7000=.从飞机接触跑道开始计时,设t 时刻飞机的滑行距离为()x t ,速度为()v t ,则0)0(,)0(0==x v v .根据牛顿第二定律,得kv dt dv m -=.又dx dv v dt dx dx dv dt dv =⋅=.由以上两式得dv k m dx -=,积分得.)(C v kmt x +-=由于0)0(,)0(0==x v v ,所以0(0)0.mx v C k=-+=故得0v k m C =,从而)).(()(0t v v kmt x -=当0)(→t v 时,).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.方法2:根据牛顿第二定律,得kv dtdvm-=,分离变量:dv k dt v m =-,两端积分得:1ln kv t C m=-+,通解:t mk C ev -=,代入初始条件00v vt ==,解得0v C =,故.)(0t mk ev t v -=飞机在跑道上滑行得距离相当于滑行到0v →,对应地t →+∞.于是由d x vdt =,有00() 1.05().k k t t mmmv mv x v t dt v edt e km kk+∞--+∞+∞===-==⎰⎰或由()0kt mdx v t v e dt-==,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→方法3:由kv dt dv m -=,dx v dt =,化为x 对t 的求导,得dt dxk dtx d m -=22,变形为022=+dtdxm k dt x d ,0(0)(0),(0)0v x v x '===其特征方程为02=+λλm k ,解之得mk-==21,0λλ,故.21t m ke C C x -+=由2000000,kt m t t t t kC dxx v e v dt m-=======-=,得,021km v C C =-=于是).1()(0t m k e kmv t x --=当+∞→t 时,).(05.1)(0km k mv t x =→所以,飞机滑行的最长距离为1.05km .(17)【详解】这是常规题,加、减曲面片高斯公式法,转换投影法,逐个投影法都可用.方法1:加、减曲面片高斯公式.取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdyzdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233133212223(1)x dydz y dzdx z dxdy I I ∑-++-=-⎰⎰由高斯公式:设空间闭区域Ω是由分段光滑的闭曲面∑所围成,函数()()(),,,,,,,,P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有P Q R Pdydz Qdzdx Rdxd y dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里3322,2,3(1)P x Q y R z = == -,2226,6,6P QR x y z x y z∂∂∂===∂∂∂,所以2216()I x y z dvΩ=++⎰⎰⎰利用柱面坐标:c os sin ,01,02,x r y r r dv rdrd dz z z θθθπθ=⎧⎪= ≤≤ ≤≤ =⎨⎪=⎩,有:2216()I x y z dxdydz Ω=++⎰⎰⎰=r dzr z dr d r )(620101022⎰⎰⎰-+πθ()()221221123200011212122r r z r r z dr rr r drππ--⎛⎫=+=+- ⎪⎝⎭⎰⎰()13246011124346r r r π⎛⎫- ⎪=-⋅+- ⎪⎝⎭11226ππ=⋅=记D 为1∑在x oy 平面上的投影域(){}22,1D x y xy =+≤,则0z =,0d z =,又1∑为220(1)z x y =+≤的下侧,从而:()13322223(1)301DI x dydz y dzdx z dxdy dxdy ∑=++-=--⎰⎰⎰⎰33Ddxdy π==⎰⎰(其中Ddxdy ⎰⎰为半径为1圆的面积,所以11Ddxdy ππ=⋅=⎰⎰)故1223.I I I πππ=-=-=-方法2:用转换投影法:若(),z z x y =,z 对,x y 具有一阶连续偏导数,则,z zdzdx dxdy dydz dxdy x y∂∂=-=-∂∂.曲面22221:1,(1),2,2z zz x y x y x y x y∂∂=--+≤=-=-∂∂∑,由转换投影公式332223(1)I x dydz y dzdx z dxdy∑=++-⎰⎰332[2()2()3(1)]z zx y z dxdy x y∑∂∂=-+-+-∂∂⎰⎰44222[443(1)3]Dx y x y dxdy=++---⎰⎰利用极坐标变换:c os ,01,02,sin x r r dxdy rdrd y r θθπθθ=⎧ ≤≤ ≤≤ =⎨=⎩,所以214444220[4cos 4sin 3(1)3]I d r r r rdrπθθθ=++--⎰⎰215454530[4cos 4sin 3(2)]d r r r r drπθθθ=++-⎰⎰24404413(cos sin )6622d πθθθ=++-⎰()2222222004cos sin 2cos sin 6d d ππθθθθθθ⎡⎤=+--⎢⎥⎣⎦⎰⎰2220412cos sin 26d πθθθπ⎡⎤=--⎣⎦⎰22220041cos sin 2263d d ππθθθθπ=--⎰⎰()20411cos 4236d ππθθπ=---⎰22004112cos 4sin 433624d πππππθθπθ=---=--⎰0ππ=--=-或244044(cos sin )66d πθθθ+⎰直接利用公式44220031cos sin 422d d πππθθθθ==⋅⋅⎰⎰及224444220cos 4cos 4sin sin d d d d ππππθθθθθθθθ===⎰⎰⎰⎰则244044431(cos sin )24666422d ππθθθπ+=⋅⋅⋅⋅⋅=⎰所以,原式2πππ=-=-(18)【分析】利用零点定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.零点定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 内至少存在一点ξ,使()0f ξ=;单调性:设函数()f x 在闭区间[],a b 上连续,在(),a b 内可导,如果在(),a b 内()0f x '>,那么函数()f x 在[],a b 上单调增加;比较审敛法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且n n u v ≤,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛.【证明】记()1nn f x x nx =+-,则()n f x 是连续函数,由01)0(<-=n f ,0)1(>=n f n ,对照连续函数的零点定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x 当0x >时,0)(1>+='-n nxx f n n ,可见)(x f n 在),0[+∞上单调增加,故方程01=-+nx x n 存在惟一正实数根.n x 由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,函数y x α=单调增,所以αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.(19)【分析】根据极值点存在的充分条件:设函数(,)z f x y =在点()00,x y 的某领域内连续且有一阶及二阶连续偏导数,又0000(,)0,(,)0x y f x y f x y = =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C = = =,则(,)z f x y =在()00,x y 处是否取得极值的条件如下:(1)20A C B ->时具有极值,且当0A <时有极大值,当0A >时有极小值;(2)20A C B -<时没有极值;(3)20A C B -=时,可能有极值,也可能没有极值,需另外讨论.所以对照极值点存在的充分性定理,先求出一阶偏导,再令其为零确定极值点,接下来求函数二阶偏导,确定是极大值还是极小值,并求出相应的极值.求二元隐函数的极值与求二元显函数的极值的有关定理是一样,差异仅在于求驻点及极值的充分条件时,用到隐函数求偏导数.【详解】因为0182106222=+--+-z y z y xy x ,所以两边对x 求导:02262=∂∂-∂∂--xz z x z yy x ,①两边对y 求导:0222206=∂∂-∂∂--+-yzz y z yz y x .②根据极值点存在的充分条件,令00zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得303100x y x y z -=⎧⎨-+-=⎩,故⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z y z y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 对照极值点存在的充分条件,为判别两点是否为极值点,再①分别对,x y 求偏导数,②分别对,x y 求偏导数①式对x 求导:02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,②式对x 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z ①式对y 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z ②式对y 求导:02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,将⎪⎩⎪⎨⎧===3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz代入,于是61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是(,)z x y 的极小值点,极小值为(9,3)3z =.类似地,将⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 代入,于是22(9,3,3)16z A x ---∂==-∂,2(9,3,3)12zB x y---∂==∂∂,22(9,3,3)53z C y ---∂==-∂,可知03612>=-B AC ,又061<-=A ,从而点(-9,-3)是(,)z x y 的极大值点,极大值为(9,3)3z --=-.(20)【详解】方法1:对方程组的系数矩阵A 作初等行变换,有11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦1()(2,)i i i n ⨯-+= 行行111120000a a a B na a +⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦对||B 是否为零进行讨论:当0a =时,()1r A n =<,由齐次方程组有非零解的判别定理:设A 是m n ⨯矩阵,齐次方程组0A x =有非零解的充要条件是()r A n <.故此方程组有非零解,把0a =代入原方程组,得其同解方程组为,021=+++n x x x ()*此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,得基础解系,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)12,3i i n ⨯-+= 行()(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ ,可知2)1(+-=n n a 时,n n A r <-=1)(,由齐次方程组有非零解的判别定理,知方程组也有非零解,把2)1(+-=n n a 代入原方程组,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.方法2:计算方程组的系数行列式:11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦00011110002222000a a a n n n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵加法a E =+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111aE Q ∆ +,下面求矩阵Q 的特征值:11112222E Q n n n n λλλλ---------=---- 11112001(-)(2,3,,)00i i i n n λλλλλ-----⨯+=- 行行(1)1112()1000(2,3,,)000n n i i i n λλλ+----⨯+=列列1(1)2n n n λλ-+⎛⎫=- ⎪⎝⎭则Q 的特征值2)1(,0,,0+n n ,由性质:若A x x λ=,则()(),m m kA x k x A x x λλ==,因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故,A 的特征值为(1),,,2n n a a a ++,由特征值的乘积等于矩阵行列式的值,得A 行列式.)2)1((1-++=n a n n a A 由齐次方程组有非零解的判别定理:设A 是n 阶矩阵,齐次方程组0Ax =有非零解的充要条件是0=A .可知,当0=A ,即0a =或2)1(+-=n n a 时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有11112222A n n n n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1)(2,)i i i n ⨯-+= 行(行1111000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,.故方程组的同解方程组为,021=+++n x x x 此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,由此得基础解系为,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)1(2,3)i i n ⨯-+= 行(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,即00002100001n ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦ ,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.(21)【详解】A 的特征多项式为12314315E A aλλλλ---=----2(2)021114315aλλλλ---⨯-+----行()行1101(2)14315a λλλ------提出行公因数1101(1)2(2)03315a λλλ-⨯-+-----行行11012(2)033015a λλλ-+-----行行33(2)15a λλλ-=----(2)[(3)(5)3(1)]a λλλ=---++2(2)(8183).a λλλ=--++已知A 有一个二重特征值,有两种情况,(1)2=λ就是二重特征值,(2)若2=λ不是二重根,则28183a λλ-++是一个完全平方(1)若2=λ是特征方程的二重根,则有,03181622=++-a 解得2a =-.由E A λ-2(2)(8183(2))λλλ=--++⨯-2(2)(812)λλλ=--+2(2)(6)0λλ=--=求得A 的特征值为2,2,6,由1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦1231(-1)2,000113000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行倍加到行行的倍加到行,知()21E A -=秩,故2=λ对应的线性无关的特征向量的个数为312n r -=-=,等于2=λ的重数.由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,从而A 可相似对角化.(2)若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得.32-=a 当32-=a 时,由E A λ-=22(2)(8183())3λλλ=--++⨯-2(2)(816)λλλ=--+2(2)(4)0λλ=--=知A 的特征值为2,4,4,由32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦1133⨯+ 行行323103000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦知()42E A -=秩,故4=λ对应的线性无关的特征向量有321n r -=-=,不等于4=λ的重数,则由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,知A 不可相似对角化.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I)由于1()()(|)12P AB P A P B A ==,所以,61)()()(==B A P AB P B P利用条件概率公式和事件间简单的运算关系,有121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-====21()()()3P A P B P AB =--+=(或32121611211}0,0{=---===Y X P ),故(,)X Y 的概率分布为Y X1032121161121(II),X Y 的概率分布分别为213{0}{0,1}{0,0},3124P X P X Y P X Y ====+===+=111{1}{1,1}{1,0},6124P X P X Y P X Y ====+===+=111{1}{0,1}{1,1},12126P Y P X Y P X Y ====+===+=215{0}{0,0}{1,0}.366P Y P X Y P X Y ====+===+=所以,X Y 的概率分布为X 01Y 01P4341P6561由01-分布的数学期望和方差公式,则61,41==EY EX ,1334416DX =⨯=,1566DY =⨯536=,{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅====112=,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY (23)【分析】本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.似然函数的定义:121()(,,,;)(;)nn ii L f x x x f x θθθ===∏ 【详解】X 的概率密度为11,,(;) 1.0,x f x xx βββ+⎧>⎪=⎨≤⎪⎩(I)矩估计.由数学期望的定义:1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x x f EX ,用样本均值估计期望有E X X =,令X =-1ββ,解得1-=X Xβ,所以参数β的矩估计量为.1ˆ-=X X β其中11nii X X n ==∑(II)最大似然估计.设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,()L β与l n ()L β在相同的β点取得最大值;所以等式两边取自然对数,得1ln ()ln (1)ln ni i L n x βββ==-+∑,两边对β求导,得∑=-=n i i x nd L d 1ln )(ln βββ,令0)(l n =ββd L d ,可得∑==ni ixn1ln β,解得β的最大似然估计值为: 1ln nii nxβ==∑。

数学分析_各校考研试题及答案

数学分析_各校考研试题及答案

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。

三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年南开大学数学分析试题答案
1. 1lim )()(lim
)
()(')()(ln
1
===⎪⎪⎭
⎫ ⎝⎛-→-→a f a f a
x a f x f a
x a
x a x e
e
a f x f
2.
y x f x
y
y f x z 2-=∂∂, yy yx y xy xx x f x
y f x y f x f x y yxf f y x z 3221---++=∂∂∂=yy y xx x f x y
f x yxf f 321--+
3.即证明
x x x ++<+111)1ln(2,即证x
x x +-+<+11
1)1ln(2 设=)(x f x
x x ++--+11
1)1ln(2,0)0(=f ,
2)1(1
112)('x x x f +--+=0)
1(2
2<+-=x x ,0)0()(=<f x f ,证完。

4.
⎰⎰+D
dxdy y x y x )ln(2
222=
⎰⎰
1
2520
22ln cos sin dr
r r d π
θθθ=
⎰⎰1
520
22ln cos sin 8rdr r d πθθθ= 72
π
-
5.设P=22y x -,Q=xy 2-,
y
P
y x Q ∂∂=-=∂∂2,积分与路径无关,则 ⎰=

π0
3
2
3
dx x J
6.
α
αn
e
n n n
n
n
1ln 1-=-1ln +≈αn n ,又当0>α时,∑∞
=+11
ln n n
n α收敛,当0≤α时,级数∑∞
=+11
ln n n
n α发散,原题得证 7.由拉格朗日定理,
n
f n f n f n )(')()2(ξ=-,其中
n
n n 2<<ξ0
)
()2(lim
)('lim =-=∞
→∞
→n n f n f f n n n ξ,原题得证
8.(1)应用数学归纳法,当1
=n 时命题成立,
若当
k
n =时命题也成立,则当1
+=k n 时,
2
)(},min{1
111++++--+=
=k k k k k k k f F f F f F F ,由归纳假设
1
+k F 连续。

(2) (3)由
)}
({1x F k +单调递减趋于
)
(x F ,
)}
({1x F k +与
)
(x F 都连续,由地尼定
理,该收敛为一致收敛。

9.(1)证明:2
100),,(x x x b a x <<∀∈∀
取02210
20
1,,x x x x x x x x ==--=
λ,代入式中得, )]()([)()(02020101x f x f x x x x x f x f ---+
≤即0
2020101)
()()()(x x x f x f x x x f x f --≤--,所以函数0
0)
()()(x x x f x f x g --=
单调递增有下界,从而存在右极限,则
=+)(0'x f 0
0)
()(lim
0x x x f x f x x --+
→;
4321x x x x <<<∀,由题设可得32322121)()()()(x x x f x f x x x f x f --≤--4
343)
()(x x x f x f --≤,

2121)()(x x x f x f --4343)()(x x x f x f --≤从而2121)
()(lim 12x x x f x f x x --→4
343)()(lim 34x x x f x f x x --≤→,
所以导函数递增。

(2)参考实变函数的有关教材。

相关文档
最新文档