伺服电机编码器调零
伺服电机编码器调零对位方法

伺服电机编码器调零对位方法伺服电机编码器调零对位是一项重要的操作,它确保了伺服系统运行的准确性和稳定性。
在对伺服电机编码器进行调零对位时,首先需要明确编码器的作用和原理。
编码器是用来测量旋转角度和位置的装置,通过编码器可以准确地监测电机的位置,实现精准控制。
一、调零对位的原理伺服电机编码器的调零对位是通过将电机控制系统中的位置反馈信号归零来实现的。
在电机停止运动的时候,通过调整编码器信号,使得当前位置被定义为零点位置,从而实现对位。
这样可以确保电机在后续的运动过程中,能够准确地控制位置和角度。
二、调零对位的步骤1.停止电机运动:在进行编码器调零对位之前,必须先停止电机的运动,确保安全性和操作的准确性。
2.进入编码器调零模式:根据具体的伺服系统和编码器类型,进入编码器调零的设置界面或模式。
3.调整位置:根据系统的要求,调整编码器信号,使当前位置被定义为零点位置。
4.确认对位:确认调零后的位置是否准确,可以通过系统的显示界面或其他功能进行验证。
5.保存设置:对于一些系统来说,调零对位是一次性的操作,需要保存设置以确保后续操作的准确性。
三、注意事项1.在进行编码器调零对位时,需要谨慎操作,以避免对系统造成不必要的损坏。
2.在调零对位的过程中,要确保环境安全,避免因误操作导致事故发生。
3.对于初次进行编码器调零对位的操作者,建议在有经验的人员的指导下进行操作。
4.在进行编码器调零对位之前,需要确保系统处于正常工作状态,避免出现意外情况。
四、总结伺服电机编码器调零对位是伺服系统中重要的操作之一,它确保了电机位置控制的准确性和稳定性。
通过本文介绍的调零对位原理、步骤和注意事项,希望可以帮助操作者正确地进行编码器调零对位操作,保证系统的正常运行和工作效率。
伺服电机编码器的调整方法

伺服电机编码器的调整方法增量式编码器的相位对齐方式在此谈论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和一般的增量式编码器,一般的增量式编码用具备两相正交方波脉冲输出信号 A 和 B,以及零位信号 Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差 120 度的电子换相信号 UVW,UVW 各自的每转周期数与电机转子的磁极对数一致。
带换相信号的增量式编码器的 UVW 电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法以下:1.用一个直流电源给电机的 UV 绕组通以小于额定电流的直流电, U 入, V 出,将电机轴定向至一个均衡地点;2.用示波器观察编码器的U 相信号和 Z 信号;3.调整编码器转轴与电机轴的相对地点;4.一边调整,一边观察编码器 U 相信号跳变沿,和 Z 信号,直到 Z 信号稳固在高电平上(在此默认 Z 信号的常态为低电平),锁定编码器与电机的相对地点关系;5.往返扭转电机轴,松手后,若电机轴每次自由回复到均衡地点时,Z 信号都能稳固在高电平上,则对齐有效。
撤掉直流电源后,考据以下:1.用示波器观察编码器的U 相信号和电机的UV 线反电势波形;2.转动电机轴,编码器的 U 相信号上涨沿与电机的 UV 线反电势波形由低到高的过零点重合,编码器的 Z 信号也出此刻这个过零点上。
上述考据方法,也可以用作对齐方法。
需要注意的是,此时增量式编码器的 U 相信号的相位零点即与电机 UV 线反电势的相位零点对齐,因为电机的U 相反电势,与UV 线反电势之间相差30 度,因此这样对齐后,增量式编码器的 U 相信号的相位零点与电机 U 相反电势的-30 度相位点对齐,而电机电角度相位与 U 相反电势波形的相位一致,所以此时增量式编码器的 U 相信号的相位零点与电机电角度相位的 -30 度点对齐。
有些伺服企业习惯于将编码器的 U 相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1.用 3 个阻值相等的电阻接成星型,而后将星型连接的 3 个电阻分别接入电机的 UVW 三相绕组引线;2.以示波器观察电机 U 相输入与星型电阻的中点,就可以近似获取电机的 U 相反电势波形;3.依照操作的方便程度,调整编码器转轴与电机轴的相对地点,或许编码器外壳与电机外壳的相对地点;4.一边调整,一边观察编码器的U 相信号上涨沿和电机U 相反电势波形由低到高的过零点,最后使上涨沿和过零点重合,锁定编码器与电机的相对地点关系,完成对齐。
各种编码器的调零办法

精心整理各种编码器的调零方法增量式编码器的相位对齐方式?增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ 输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。
带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:?1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;?2.用示波器观察编码器的U相信号和Z信号;?3.调整编码器转轴与电机轴的相对位置;?4.5.?1.2.Z信号也UU相U相信1.用3?2.3.?4.也1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;?2.用示波器观察绝对编码器的最高计数位电平信号;?3.调整编码器转轴与电机轴的相对位置;?4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;?5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。
?这类绝对式编码器目前已经被采用EnDA T,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下:?1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳;?2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;?3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中;?4.对齐过程结束。
伺服电机编码器的调整方法

伺服电机编码器的调整方法增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW, UVW各自的每转周期数与电机转子的磁极对数一致。
带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;2•用示波器观察编码器的U相信号和Z信号;3. 调整编码器转轴与电机轴的相对位置;4•一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z 信号的常态为低电平),锁定编码器与电机的相对位置关系;5•来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。
撤掉直流电源后,验证如下:1. 用示波器观察编码器的U相信号和电机的UV线反电势波形;2•转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。
上述验证方法,也可以用作对齐方法。
需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30 度,因而这样对齐后,增量式编码器的U 相信号的相位零点与电机U 相反电势的-30 度相位点对齐,而电机电角度相位与U 相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。
有些伺服企业习惯于将编码器的U 相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1. 用3 个阻值相等的电阻接成星型,然后将星型连接的3 个电阻分别接入电机的UVW 三相绕组引线;2. 以示波器观察电机U 相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;3. 依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4. 一边调整,一边观察编码器的U 相信号上升沿和电机U 相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。
伺服电机编码器调零

万能增量式光电编码器控制的伺服电机零位调整技巧下述述两种调法完全取决于你的手工能力和熟练程度,一般来说,每款伺服电机都有自己专门的编码器自动调零软件•不外传仅是出于商业羸利和技术保密•如果你是一家正规的维修店,请不要采用以下方法,应通过正常渠道购买相应的专业设备•实践证明,手工调整如果技巧掌握得当,工作仔细负责,也可达到同样的效果・大批量更换新编码器调零方法第一步:折下损坏的编码器第二步:把新的编码器按标准固定于损坏的电机上第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V.第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z信号线接到断线报警器的两个光耦隔离输入JLLLl I炳上第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制・第六步:所有连线接好后用手一点点转动电机轮子直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整,经实际使用完全合格•报警器也可用示波器代替,转动时当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V左右即是编码器的零位•这个也很方便而且更精确•杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱•只要用耳朵感知就行了・在编码器的转子与定圈相邻处作好零位标记,然后拆下编码器第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记・第八步:引出电机的uVW动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置•这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了・如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的试运行模式来进行测试•有关资料是必须的,否则不要轻易动手,以免损坏编码器・第九步:把编码器装上电机后端,这一步要小心,以确保编码器零位记号和电机械械零位位置无偏移,最后固定柱头镖钉和可调固定底座・・对于同类电机来说获得了一个正确的零位位置后以后也就知道了24V的正负极该正确地连接至UVW的哪两个端子上,以后就不必再逐个搞试验了,这一型号的编码器调零算是搞定了・第十步:正确连接电机与伺服放大器,并把工作模式定为试运行,各厂商的测试方式均有些差异,请仔细阅读说明书,如无任何硬件损坏,测试应当一次成功・第十一步:用自动调谐功能自动设定合适的PID数据•以保证平稳运行的实际需要.由于损坏的有些电机很难判别电机轴承是否能承受额定高速运转的要求,经这样处理的电机还应进行抽样力矩测试和轴承测试,如果轴承磨损严重,应同时更换轴承・-:应急调零方法,简单而且实用•但必须把电机拆离设备并依靠设备来进行调试试好后再装回设备再可・事实上经过大量的调零试验,每个伺服电机都有一个角度小于10度的零速静止区域,和350度的高速反转区域,如果你是偶而更换一只编码器,这样的做法确实是太麻烦了,这里有一个很简便的应急方法也能很快搞定・第一步:拆下损坏的编码器第二步:装上新的编码器,并与轴固定•而使可调底座悬空并可自由旋转,把电机重新连入电路,把机器速度调为零,通电正常后按启动开关后有几种情况会发生,一是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止・二是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域•这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象•然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可・对于一个新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加•用电流表测量则空载电流明显增加.找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可•待502干了后再在上机涂上一层在硅橡胶即可投入正常运行•实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镰钉的位置也便固定了・用上述方法最大的问题是偏离了原来的固定镖丝口造成无法固定•但由于502胶可快速定位,硅橡胶的耐温又超过150度,硬度又不像环氧树脂,用了后难以清除,第二次更换时只要用刮刀刮干净即可・如果编码器再次损坏从硅橡胶外表即可看出是轴承的缘故还是电路损坏・一般情况下总是电机的轴承先坏,从而导致电机温度过大进而使编码器的轴承也接着损坏,一旦出现轴承高度磨损的现象,应立即更换轴承,以防编码器也跟着损坏・。
BS_KEB伺服控制器 手调零位

手调KEB 伺服控制器只有在以下环境下使用手调KEB 伺服控制器:1、KEB 伺服控制器在正常生产时突然丢失伺服电机编码器零位(报警如E .E n C 1);2、KEB 伺服控制器在正常生产时突然伺服电机损坏;3、KEB 伺服控制器在正常生产时突然硬件损坏,更换新的KEB 伺服控制器,新的KEB 伺服控制器出厂前程序已载入好;注:进入伺服控制器参数后,不可乱修改参数,只能按下以下步骤操作,否则会烧毁伺服控制器,后果自负,请切记。
1、按FUNC 键如果不是出现C P 开头的可进接跳到第2步;向上调参数图(1)C P 开头的参图(2)图(3)按向上键,用变成数字一直变大。
等数字变成440;如图(4)图(4)按ENTER键,参数确定。
确定后显示后如图(5)图(5)2、先将小数点移到U d后(按FUNC键时不一定现示U d,默认是r u .9),按向上键或向下下键,找到d i(大小都可以),再把小数点移到数字后,按向上键把数值更改成1(图(7));按FUNC键进入指令内,按向下键把数值变成1(图(8)),按ENTER键确定刚修改的值,再按FUNC键退出(图(9))。
图(6)图(7)di . 11、按向上键,将数值改为1 图(8)图(9)2、进入ru 。
0,观看此数值是否为noP ,是为正确,说明伺服控制器的已断矢能。
3、将E c 。
2值变成2206,按ENTER 键,会出现一个英文(PASS ),再按一次ENTER 键,此时刚修改的2206会变成一个任意的值,不理它,按FUNC 键退出。
4、将di 。
1 值变成0按一次ENTER 键(图(12)),等待二分钟(此时机械不能做任何动作,伺服控制器进行找伺服电机零位);二分钟后或r u 。
0的值现示为Cd d r 如图(13)所示,就将di 。
1 值0改成1,按一次ENTER 键,再将将1改成0,再按一次ENTER 键。
图(10)图(11)5、伺服电机的零位找好,机器可工作了。
伺服电机编码器如何调零

伺服电机编码器如何调零伺服电机编码器是一种重要的传感器,用于检测电机的位置。
调零是在安装和维护过程中必须经常进行的操作,它可以确保电机在正常运行时保持准确的位置信息。
本文将介绍如何调零伺服电机编码器。
第一步:准备工作在调零之前,需要确保电机系统处于关闭状态,并且没有通电。
另外,请查阅设备的技术手册以了解调零过程的具体步骤和要求。
第二步:进入调零模式启动电机控制器,进入编码器调零模式。
具体的操作方式因不同控制器而有所不同,通常需要通过按动某个特定的按钮或者输入特定的命令来进入调零模式。
第三步:调零操作在调零模式下,根据设备手册的指导,选择调零操作。
通常有两种调零方式:软件调零和手动调零。
•软件调零:通过电脑或者控制器的设置界面来实现调零操作。
在程序中指定一个位置作为零点,系统会将这个位置对应的编码器值设为零点。
•手动调零:在调零模式下,手动将电机旋转到一个已知的零点位置,然后按下确认按钮进行保存。
第四步:测试与验证完成调零后,需要进行测试和验证以确保调零操作正确无误。
可以通过手动操作电机或者运行预设的程序来检查调零效果,确保电机能够准确地返回到零点位置。
注意事项•在调零过程中,务必小心操作,避免误操作导致错误。
•调零前要确保所有相关设备处于安全状态,避免发生意外。
•如遇到问题或调零失败,应及时查阅设备技术手册或联系技术人员进行处理。
通过以上步骤,您可以成功地调零伺服电机编码器,确保电机系统正常运行并保持准确的位置信息。
希望本文对您有所帮助!。
伺服电机编码器调零对位方法

本信息来源于网络,不代表本站观点
如若转载请注明来源:中国自动化网
通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.
对于一个新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加.用电流表测量则空载电流明显增加.
伺服电机编码器调零对位方法
2013-1-9 10:24:00 来源:
[闭][打印]
一台AB伺服电机(MPL-B640F-MJ24AA),拆开检查刹车时由于客户无知,连装在电机尾部固定的编码器也拆了下来(没做标记),编码器是sick的SRM50-HFA0-K01。装上后刹车没问题,但出现飞车故障。伺服驱动器报错E18OVERSPEED或者E24velocityerror。
找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了.
1、是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.、是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服电机编码器调零
万能增量式光电编码器控制的伺服电机零位调整技巧
下述两种调法完全取决于你的手工能力和熟练程度,一般来说,,每款伺服电机都有自己专门的编码器自动调零软件,不外传仅是出于商业盈利和技术保密,如果你是一家正规的维修点,请不要采用以下方法,应通过正常渠道购买相应的专业设备,实践证明,手工调整如果技巧掌握得当,工作仔细负责,也可达到同样的效果。
大批量更换新编码器调零方法
第一步:拆下损坏的编码器
第二步:把新的编码器按标准固定于损坏的电机上
第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z信号线接到断线报警器的两个光耦隔离输入端上
第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制
第六步:所有连线接好后用手一点点转动电机轮子直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得更佳的位置,经实测用这种方法校正的零位误差极小,很适合批量调整,经实际使用完全合格,报警器也可用示波器代替,转动时,当示波器上的电压波形电位由4V左右跳转0V时或由0V跳转为4V左右即可是编码器的
零位,这个也很方便而且更精确。
杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱,只要用耳朵感知就行了,在编码器的转子与定圈相邻处做好零位标记,然后拆下编码器
第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处做好电机的机械零位标记
第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所做的机械零位标记是同一个位置,这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了。
如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的运行模式来进行测试,有关资料是必须的,否则不要轻易动手,以免损坏编码器
第九步:把编码器转上电机后端,这一步要小心,以确保编码器零位记号和电机机械零位位置无偏移,最后固定柱头螺钉和可调固定底座。
对于同类电机来说,获得了一个正确的零位位置后以后也就知道了24V正负极该正确地连接至U V W的哪两个端子上,以后就不必再逐个搞试验了,这一型的编码器调零算是搞定了
第十步:用自动调谐功能自动设定合适的PID数据,以保证平稳运行的实际需要。
由于损坏的有些电机很难判断别电机轴承是否能承
受额定高速运转的要求,经这样处理的电机还应进行抽样力矩测试和轴承测试,如果轴承磨损严重,应同时更换轴承。
二、应急调零方法,简单而其实用,但必须把电机拆离设备并依靠设备来进行调试,试好后再装回设备即可。
事实上经过大量的调零试验,每个伺服电机都有一个角度小于10度的零速静止区域,和350度的高速反转区域,如果你是偶尔更换一直编码器,这样的做法确实是太麻烦了,这里有一个很简便的应急方法也能很快搞定:
第一步:拆下损坏的编码器
第二步:装上新的编码器,并与轴固定,而使可调底座悬空并可自由旋转,把电机重新连入电路,把机器速度调位零,通电正常后按启动开关后,有几种情况会发生:
一是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来位置;
二是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一点要慢,直到电机开始高速反转,记下该位置,同时立即往回调至静止区域,这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象,然后按顺时针继续缓慢转动直到又一次告诉反转的出现,记下该位置并立即往回调至静止区,通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的
中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可。
对于一个新的编码器来说这个精致区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加,用电流表测量则空载电流明显增加。
找到中心位置后把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可,待502干了后再在上机涂上一层在硅橡胶即可投入正常运行。
实践证明,正常情况下这样处理厚的伺服电机使用一年是没问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头螺钉的位置也便固定了。
用上述方法最大的问题是偏离了原来的固定螺丝口造成无法固定,但由于502胶可快速定位,硅橡胶的耐温又超过150度,硬度又不像环氧树脂,用了后难以清除,第二次更换时只要用刮刀刮干净即可。
如果编码器再次损坏从硅橡胶外表即可看出是轴承的缘故还是电路损坏,一把情况下总是电机轴承先坏,从而导致电机温度过大进而使编码器的轴承也接着损坏,一旦出现轴承高度磨损的现象,应立即更换轴承,以防编码器也跟着损坏。