传热学总结
高等传热学知识点总结2024

引言概述:在高等传热学中,掌握各种传热方式以及其基本原理是非常重要的。
本文将分析五个大点,其中包括传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射。
每个大点都将进一步分解为五到九个小点,详细阐述相关知识。
通过本文的学习和理解,读者将能够深入了解高等传热学的知识点。
正文内容:一、传热方式的分类1.传热方式的基本分类2.对流传热与传导传热的区别3.辐射传热的特点及其应用4.相变传热的机理及其实例5.传热方式在工程中的应用案例二、传热边界条件1.传热边界条件的定义及分类2.壁面传热通量的计算方法3.壁面传热系数的影响因素4.壁面传热条件的实验测定方法5.边界条件的选择与优化三、传热传导1.传热传导的基本原理2.导热系数的计算方法3.等效导热系数的定义及其应用4.传热传导方程的推导和求解方法5.传热传导的数值模拟方法及其应用四、传热对流1.对流传热的基本原理2.传热换热系数的计算方法3.流体流动与传热的耦合关系4.对流传热的实验测定方法5.传热对流的同非稳态传热问题五、传热辐射1.辐射传热的基本原理2.黑体辐射的特性和计算方法3.辐射传热过程的数学模型4.辐射系数的影响因素及其计算方法5.传热辐射的应用案例和工程实例总结:通过对高等传热学知识点的总结,我们深入了解了传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射等重要知识点。
掌握这些知识,可以帮助我们更好地理解传热现象的基本原理及其在工程实践中的应用。
同时,对于热传导与辐射换热和传热对流以及其边界条件的掌握,有助于我们解决工程中的传热问题,优化设计和提高热能利用效率。
在今后的学习和实践中,我们应不断巩固和拓展这些知识,以更好地应对传热学的挑战,并为实际工程问题提供合理的解决方案。
(完整版)传热学知识点总结

Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。
b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。
c 传热学以热力学第一定律和第二定律为基础。
传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。
热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。
热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。
b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。
c .只要温度大于零就有.........能量..辐射。
...d .物体的...辐射能力与其温度性质..........有关。
...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。
稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。
等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。
传热学知识点总结考研

传热学知识点总结考研传热学是热力学的一个重要分支,研究热量在物体之间传递的过程。
在工程学、化学工程、材料科学和环境科学等领域都有着重要的应用。
本文将围绕传热学的基本理论和应用进行系统总结,希望能够对传热学的学习和研究有所帮助。
一、传热学的基本概念1. 传热的定义传热是热量在物体之间传递的过程,可以通过传导、对流和辐射这三种方式进行。
传热的目的是使物体的温度相等或者使热量从高温物体传递到低温物体上。
2. 传热的基本原理传热的基本原理是热量由高温区流向低温区,其基本规律可以用热传导方程、对流传热方程和辐射传热方程来描述。
3. 传热的分类根据传热的方式不同,可以将传热分为传导传热、对流传热和辐射传热。
传导传热是由物体内部的分子传递热量,对流传热是通过流体的运动传递热量,而辐射传热是通过电磁波辐射传递热量。
二、传热学的基本理论1. 传导传热传导传热是由固体内部的分子、原子或离子的运动方式传递热量。
传导传热可以用热传导方程或者傅里叶热传导定律来描述,其中热传导方程可以表达为:q=-kA*(dT/dx),其中q 表示单位时间内通过物体的热量,k表示热导率,A是传热截面积,dT/dx表示温度梯度。
2. 对流传热对流传热是由流体的运动方式传递热量,主要包括自然对流和强制对流两种方式。
自然对流是由温差引起的流体的自然对流运动,而强制对流是通过外力使流体发生运动。
对流传热可以用波亚松定律或者努塞尔数来描述。
3. 辐射传热辐射传热是通过电磁波的辐射方式传递热量,主要取决于物体的温度和表面的发射率等。
辐射传热可以用斯特凡—波尔兹曼定律或者基尔霍夫定律来描述。
4. 传热的复合方式在实际传热过程中,通常会同时存在传导、对流和辐射三种方式,这就需要将它们进行组合计算。
可以通过综合利用传热系数来描述传热的复合方式。
三、传热学的应用1. 传热器设备传热器是用于传热的设备,广泛应用于化工、能源、环保等领域。
常见的传热器包括换热器、蒸发器、冷凝器和加热器等。
传热学知识点总结

传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学知识点概念总结

传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学基本知识总结

传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学知识点总结

传热学知识点总结传热学是研究热量从一个物体或一个系统传递到另一个物体或系统的科学。
它是热力学的一部分,具有广泛的应用领域,包括能源转换、热力学系统设计和工艺优化等。
以下是传热学的一些重要知识点的总结:1.热传导:热量通过直接接触和分子间的碰撞传递。
在固体中,热传导是最主要的传热方式,其传递速率与物质的热导率、温度梯度和传热距离有关。
2.热对流:热量通过流体(液体或气体)的流动传递。
对流传热的速率取决于流体的速度、温度差和传热面积。
3.热辐射:热能以电磁波的形式从热源发出,无需介质介导即可传递热量。
热辐射与物体的温度和表面特性有关,如表面的发射率和吸收率。
4.导热方程:描述了热传导现象,可以用来计算温度随时间和空间的变化。
它与热导率、物体的几何形状和边界条件有关。
5.导热系数:材料的物理性质,描述了材料导热性能的好坏。
较高的导热系数表示材料更好地传递热量。
6.热对流换热系数:描述了流体换热的能力,表示单位面积上的热量传递速率和温度差之间的关系。
7.四能截面:描述了热辐射的性质,反映了物体吸收、反射和透射电磁波的能力。
8.热阻和热导率:用于描述物体或系统中热量传递的难易程度。
热阻与热导率成反比。
9.传热过程中的能量守恒:热量传递过程中,能量守恒定律适用。
传热的总能量输入等于输出。
10.辐射传热公式:根据黑体辐射定律,描述了热辐射的能量传递,常用于计算热源辐射的热量。
11.对流换热公式:根据精细的实验和理论研究,发展了一系列对流换热公式,用于估算流体对流传热。
12.热导率与温度的关系:大多数材料的热导率随温度的升高而增大,但也有一些例外情况。
13. 传热表征:传热通常使用无量纲数值来表征,如Nusselt数、Prandtl数和Reynolds数,它们描述了传热过程中流体的性质和行为。
14.界面传热:当两个物体或系统接触时,它们之间的传热称为界面传热。
界面传热常见的形式包括对流传热和热辐射。
15.传热器件和应用:传热学的知识应用于各种传热器件和系统,如换热器、蒸发器、冷却器等,为工程和科技应用提供了基础。
传热学知识点总结考研真题

传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。
热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。
二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。
第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。
第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。
2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。
对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。
辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。
3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。
热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。
4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。
热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。
三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。
此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。
2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。
传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。
3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学总结1.热流量:单位时间内通过某一给定面积的热量。
2.热流密度:单位面积的热流密度。
3.热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
4.热对流:由物体的宏观运动和冷热流体的混合引起的流体各部分之间的相对位移引起的传热过程。
5.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合作用的热量传递过程。
6.传热系数:单位传热面积上冷热流体温差为1℃时的热流值。
7.辐射传热:物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递。
8.传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程。
1.温度场:物体某一时刻各点温度分布的总称。
它是空间和时间坐标的函数。
2.等温面(线):在温度场中,在同一时刻由相同温度的点连接的表面(或线)。
3.温度梯度:等温表面法向上的最大温度变化率。
4.稳态导热:物体中各点温度不随时间而改变的导热过程。
5.非稳态热传导:物体中每个点的温度随时间变化的热传导过程。
6.傅里叶导热定律:在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向与温度升高的方向相反。
7.热导系数:物性参数,热流密度矢量与温度梯度的比值,数值上等单位温度梯度作用下产生的热流密度矢量的模。
8.保温材料:平均温度不高于350℃时λ≤ 0.12W/(MK)。
9.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
初始条件:初始时刻的温度分布。
第一类边界条件:物体边界上的温度。
第二类边界条件:物体边界上的热流密度。
第三类边界条件:物体边界与周围流体间的表面传热系数h及周围流体的温度tf。
10.肋效率:肋的实际散热量与假设整个肋表面处于肋底温度时的散热量之比。
肋面总效率:肋侧表面实际散热量与肋侧壁温均为肋基温度的理想散热量之比。
11.接触热阻:由于材料表面具有一定的粗糙度,接触表面之间存在间隙,这给热传导过程带来了额外的热阻。
1.速度边界层:在固体表面附近流速发生剧烈变化的薄层。
2.温度边界层:固体表面附近流体温度急剧变化的薄层。
3.管槽内对流传热入口效应:流体入口段由于热边界层较薄而具有较高的对流传热系计数4.定性温度:确定换热过程中流体物性的温度。
5.特征尺度:在对流换热中起决定性作用的几何尺寸。
6.相似准则(如nu,re,pr,gr,ra):由几个变量组成的无量纲的组合量。
7.强制对流换热:机械(泵或风机等)或其他压差作用引起的相对运动。
8.自然对流换热:流体冷热部分密度不同而引起的相对运动,不依赖于泵或风扇等外力。
9.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对循环热量。
1.大空间自然对流处于湍流状态时,表面传热系数与特征长度无关,即自模化特征。
1.膜状凝结:当液体能很好地润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90?,凝结液在壁面上形成一层完整的液膜。
2.珠状冷凝:当冷凝液不能很好地润湿墙壁时(θ>90?)当冷凝液在壁上形成许多小液体时珠。
大型容器的饱和沸腾曲线可分为四个区域:自然对流、核沸腾、过渡沸腾和膜沸腾。
核沸腾具有温差小、热流大的特点。
核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
薄膜沸腾:加热表面形成稳定的蒸汽膜层。
相变过程不是发生在壁面上,而是发生在汽液界面上。
然而,由于蒸汽的导热系数远小于液体的导热系数,表面传热系数大大降低。
临界热流:当壁面过热到一定程度时,气泡没有时间离开受热面,开始形成不稳定的蒸汽膜,临界热流密度:从核态沸腾向膜态沸腾转变过程中所对应的最大热流密度。
为了控制热流加热设备,如电加热器,一旦热流密度超过临界热流密度,沸腾状态将从核沸腾过渡到稳定膜沸腾,?温度将急剧上升到1000℃左右,导致设备烧毁。
比拟理论相似原理1.热辐射:由热引起的电磁波辐射。
2.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
3.反射率:投射到物体表面的热辐射被物体表面反射的比例。
4.穿透比:投射到物体表面的热辐射中穿透物体的比例。
5.黑体:吸收比α=1个物体。
意义:使基尔霍夫定律无条件成立,与波长和温度无关,大大简化了吸收率的测定和辐射传热的计算;它为热辐射的吸收和发射提供了理想的参考。
6.白色:反射率ρ=L对象(漫反射表面)。
7.透明体:透射率τ=1个物体。
8.灰体:光谱吸收比与波长无关的理想物体。
9.黑度:在相同温度下,实际物体的辐射力与黑体辐射力之比。
10.辐射力:单位时间内单位表面积向其上的半球空间的所有方向辐射出去的全部波长的能量。
11.定向辐射力:单位时间内单位立体角内单位可见区域在一定方向上发出的辐射能量。
12.定向辐射强度:在单位时间内从黑体单位可见区域发射的能量,在空间的任何方向落入单位立体角。
13.基尔霍夫定律指出了物体的吸收比与发射率的关系。
14.角度系数:表面1发射的辐射能落在表面2上的百分比。
角系数具有相对性、完整性和可加性。
15.有效辐射:单位时间内从表面单位面积离开的总辐射能,即发射辐射和反射辐射之和。
16.投入辐射:单位时间内投射到单位表面积上的总辐射能。
17.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀输入时,物体表面在半球空间内的所有方向上都有均匀的反射辐射LR,然后表面称为漫反射表面。
18.漫反射表面:如果该表面既是漫反射发射表面又是漫反射反射表面,则该表面称为漫反射表面。
19.表面辐射热阻:由表面辐射特性引起的热阻。
20.气体辐射具有2个特点:气体辐射对波长具有选择性,气体的辐射和吸收在整个容积中进行。
21.隔热板:插入两个辐射传热表面之间的薄板,以减弱辐射传热。
22.当量半球:半球内气体与所研究的气体具有相同的温度、压力和成分,球内气体对球心的辐射力等于所研究的气体对指定地区的辐射力,该当量半球的半径称为平均射线程长。
23.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。
1.加肋系数:加肋后总换热面积与无肋换热面积之比。
2.临界隔热直径:与最小总热阻(或最大传热)相对应的隔热层外径。
换热器:冷、热流体进行热量交换以满足工艺要求的装置。
壁间换热器:冷流体和热流体通过壁面分离,并分别在一侧流动,热量通过壁面从热流体传递到冷流体的换热设备。
回热式换热器:热流体和冷流体交替地流过同一换热表面的换热器。
3.下游:两种流体平行且方向相同。
4.逆流:两种流体平行流动且方向相反。
特点:平均温差大、所需换热面积小、具有较高壁温、冷流体出口温度可以高于热流体的出口温度。
设计中,一般较多选用逆流布置,使换热器更为经济、有效,但如果不希望换热器壁面温度太高,则可以选择顺流布置,或者顺、逆流混合布置方式。
换热器的热设计方法:平均温差法、传热单元数法。
5.效能:换热器实际换热效果与最大可能的换热效果之比。
6.传热单元数:7.污垢热阻:污垢换热表面的传热热阻与清洁换热表面的传热热阻之差。
污垢系数:单位面积的污垢热阻。
1.试用所学的传热学知识说明用温度计套管测量流体温度时如何提高测温精度。
(注:热电偶套管可视为吸热管肋(等截面直肋)。
使用热电偶套管引起的测量误差可通过计算肋端温度th获得,其中等截面直肋δT为δT=tf th=tf?t0ch(mh),其中嗯?惠普?啊??Hh、为使测量误差δ减小,可采取以下措施:(1)降低壁面与流体的温差(tf-t0),也就是想办法使肋基温度t0接近tf,可以通过对流体通道的外表面采取保温措施来实现。
(2)增加(MH)的值以增加分母CH(MH)。
可通过以下方式实现:① 增加h,延长热电偶套管长度;② 减小λ,热电偶套管应由导热系数低的材料制成。
如果使用不锈钢管,则不得使用铜管。
因为不锈钢的导热系数比铜和碳钢的导热系数小。
② 减小δ,减小热电偶套管壁厚,采用薄壁管。
④ 提高h值,增强热电偶套管和流体之间的热交换。
)2.试写出直角坐标系中,一维非稳态无内热源常导热系数导热问题的导热微分方程表达公式还请解释热传导问题常见的三种边界条件。
(提示:直角坐标系下一维非稳态无内热源导热问题的导热微分方程式第一类边界条件:τ>0,tw=fw(x,τ)?? T第二类边界条件:τ>0 fw(x,?)?n??w??t?第三类边界条件:τ>0,??s???h?tw?tf??? NWTA.Tx22影响自然对流传热系数的主要因素:流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质)3.尝试比较横排和直排在强制对流跨管束传热中的优缺点。
(提示:强迫对流横掠管束换热中,管束叉排与顺排的优缺点主要可以从换热强度和流动阻力两方面加以阐述:(1)管束叉排使流体在弯曲的通道中流动,流体扰动剧烈,对流换热系数较大,同时流动阻力也较大;(2)顺排管束中流体在较为平直的通道中流动,扰动较弱,对流换热系数小于叉排管束,其流阻也较小;(3)顺排管束由于通道平直比叉排管束容易清洗。
)4.不可冷凝气体对表面冷凝传热有什么影响?答:不凝结气体的存在,一方面使凝结表面附近蒸汽的分压力降低,从而蒸汽饱和温度降低,使得凝结的动力?t减小;另一方面,凝结蒸汽穿过不凝结气体层到达壁面依靠的是扩散,从而增加了阻力。
凝结换热时的表面传热系数降低。
5.用热电偶测量高温气体温度:导致错误的因素:① 烟气和热电偶之间的小型复合热交换;② 热电偶与炉内壁之间的辐射传热较大。
减少误差的措施:1)降低烟气与热电偶之间的传热电阻,如抽气;2)增加热电偶与炉膛之间的辐射热阻,如增加隔热板;3)设计程序或设备来计算误差并补偿误差。
6.试着用传热原理来解释热带植物可以在冬季种植在玻璃温室里的原理。
玻璃是阳光(短波辐射)下的透明体,透射率超过90%,因此大部分阳光可以通过玻璃加热温室中的物体和空气。
室内物体发出的辐射是一种长波辐射——红外线。
对于长波辐射,玻璃的透射率接近于零,几乎不透明(透热)。
因此,室内物体加热后发出的热辐射被玻璃阻挡在室内,无法通过。
玻璃的这种辐射特性使室内温度不断上升。
7.尝试分析隔热板的原理及其在减弱辐射传热中的作用。
插入两个辐射传热表面之间用削弱辐射传热的薄板,称为遮热板。
其原理是,遮热板的存在增大了系统中的辐射换热热阻,使辐射过程的总热阻增大,系统黑度减少,使辐射换热量减少。
遮热板对于削弱辐射换热具有显著作用,如在两个平行辐射表面之间插入一块同黑度的遮热板,可使辐射换热量减少为原来的1/2,若采用黑度较小的遮热板,则效果更为显著。