基于单片机的智能温度控制系统
基于STM32单片机的温度控制系统设计

基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
基于单片机的室内温度控制系统设计与实现

基于单片机的室内温度控制系统设计与实现1. 本文概述随着科技的发展和人们生活水平的提高,室内环境的舒适度已成为现代生活中不可或缺的一部分。
作为室内环境的重要组成部分,室内温度的调控至关重要。
设计并实现一种高效、稳定且经济的室内温度控制系统成为了当前研究的热点。
本文旨在探讨基于单片机的室内温度控制系统的设计与实现,以满足现代家居和办公环境的温度控制需求。
本文将首先介绍室内温度控制系统的研究背景和意义,阐述其在实际应用中的重要性和必要性。
随后,将详细介绍基于单片机的室内温度控制系统的设计原理,包括硬件设计、软件编程和温度控制算法等方面。
硬件设计部分将重点介绍单片机的选型、传感器的选取、执行机构的搭配等关键环节软件编程部分将介绍系统的程序框架、主要功能模块以及温度数据的采集、处理和控制逻辑温度控制算法部分将探讨如何选择合适的控制算法以实现精准的温度调控。
在实现过程中,本文将注重理论与实践相结合,通过实际案例的分析和实验数据的验证,展示基于单片机的室内温度控制系统的实际应用效果。
同时,还将对系统的性能进行评估,包括稳定性、准确性、经济性等方面,以便为后续的改进和优化提供参考。
本文将对基于单片机的室内温度控制系统的设计与实现进行总结,分析其优缺点和适用范围,并对未来的研究方向进行展望。
本文旨在为读者提供一种简单、实用的室内温度控制系统设计方案,为相关领域的研究和实践提供有益的参考。
2. 单片机概述单片机,也被称为微控制器或微电脑,是一种集成电路芯片,它采用超大规模集成电路技术,将具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种IO口和中断系统、定时器计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、AD转换器等电路)集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机以其体积小、功能齐全、成本低廉、可靠性高、控制灵活、易于扩展等优点,广泛应用于各种控制系统和智能仪器中。
基于单片机的pid温度控制系统设计

一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。
在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。
PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。
本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。
二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。
比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。
PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。
2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。
常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。
在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。
三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。
在设计单片机PID温度控制系统时,需要选择合适的单片机。
常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。
2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。
常见的温度传感器接口有模拟接口和数字接口两种。
模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。
3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。
在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。
四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。
常见的PID算法包括位置式PID和增量式PID。
在设计时需要考虑控制周期、控制精度等因素。
2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。
基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计引言:随着科技的不断进步,温度控制系统在我们的生活中扮演着越来越重要的角色。
特别是在一些需要精确控制温度的场合,如实验室、医疗设备和工业生产等领域,温度控制系统的设计和应用具有重要意义。
本文将以基于51单片机的温度控制系统设计为主题,探讨其原理、设计要点和实现方法。
一、温度控制系统的原理温度控制系统的基本原理是通过传感器感知环境温度,然后将温度值与设定值进行比较,根据比较结果控制执行器实现温度的调节。
基于51单片机的温度控制系统可以分为三个主要模块:温度传感器模块、控制模块和执行器模块。
1. 温度传感器模块温度传感器模块主要用于感知环境的温度,并将温度值转换成电信号。
常用的温度传感器有热敏电阻、热敏电偶和数字温度传感器等,其中热敏电阻是最常用的一种。
2. 控制模块控制模块是整个温度控制系统的核心,它负责接收传感器传来的温度信号,并与设定值进行比较。
根据比较结果,控制模块会输出相应的控制信号,控制执行器的工作状态。
51单片机作为一种常用的嵌入式控制器,可以实现控制模块的功能。
3. 执行器模块执行器模块根据控制模块输出的控制信号,控制相关设备的工作状态,以实现对温度的调节。
常用的执行器有继电器、电磁阀和电动机等。
二、温度控制系统的设计要点在设计基于51单片机的温度控制系统时,需要考虑以下几个要点:1. 温度传感器的选择根据具体的应用场景和要求,选择合适的温度传感器。
考虑传感器的测量范围、精度、响应时间等因素,并确保传感器与控制模块的兼容性。
2. 控制算法的设计根据温度控制系统的具体要求,设计合适的控制算法。
常用的控制算法有比例控制、比例积分控制和模糊控制等,可以根据实际情况选择适合的算法。
3. 控制信号的输出根据控制算法的结果,设计合适的控制信号输出电路。
控制信号的输出电路需要考虑到执行器的工作电压、电流等参数,确保信号能够正常控制执行器的工作状态。
4. 系统的稳定性和鲁棒性在设计过程中,需要考虑系统的稳定性和鲁棒性。
基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用温度控制系统是一种常见的自动控制系统,用于维持设定温度范围内的温度稳定。
本文将介绍基于单片机的温度控制系统的设计与应用。
一、系统设计1.功能需求:(1)温度检测:获取环境温度数据。
(2)温度显示:将检测到的温度数据以数字方式显示。
(3)温度控制:通过控制输出信号,自动调节温度以维持设定温度范围内的稳定温度。
2.硬件设计:(1)单片机:选择适合的单片机,如51系列、AVR系列等,具有较强的计算和控制能力。
(2)温度传感器:选择适当的温度传感器,如DS18B20、LM35等,能够准确检测环境温度。
(3)显示屏:选择适当的数字显示屏,如LCD显示屏、数码管等,用于显示温度数据。
(4)执行机构:根据具体需求选择合适的执行机构,如继电器、风扇等,用于控制温度。
3.软件设计:(1)温度检测:通过单片机采集温度传感器的模拟信号,并通过数字转换获得温度数据。
(2)温度显示:将获取到的温度数据进行处理,通过数字显示屏显示。
(3)温度控制:通过控制执行机构,如继电器等,根据温度数据的变化进行调节,将温度维持在设定范围内。
二、系统应用1.家居温控系统:家庭中的空调、暖气等设备可以通过单片机温度控制系统实现智能控制。
通过温度传感器检测室内温度,并将温度数据显示在数字显示屏上。
通过设定温度阈值,当室内温度超出设定范围时,系统控制空调或暖气进行启停,从而实现室内温度的调节和稳定。
这不仅提高了居住舒适度,还能节约能源。
2.工业过程控制:在工业生产过程中,一些特定的应用需要严格控制温度,以确保产品质量或生产过程的稳定。
通过单片机温度控制系统,可以实时检测并控制生产环境的温度。
当温度超过或低于设定的阈值时,系统可以自动调整控制设备,如加热器、冷却器等,以实现温度的控制和稳定。
3.温室农业:温室农业需要确定性的环境温度来保证作物的生长。
通过单片机温度控制系统,可以监测温室内的温度,并根据预设的温度范围,自动启停加热或降温设备,以维持温室内的稳定温度。
《2024年基于单片机的温度智能控制系统的设计与实现》范文

《基于单片机的温度智能控制系统的设计与实现》篇一一、引言随着科技的进步和工业自动化的发展,对温度控制系统的要求越来越高。
为了满足这一需求,本文设计并实现了一种基于单片机的温度智能控制系统。
该系统利用单片机的高效计算能力和灵活的编程特点,实现对温度的精确控制,为各种需要温度控制的设备提供有效的解决方案。
二、系统设计1. 硬件设计本系统以单片机为核心,包括温度传感器、执行器、电源等部分。
其中,温度传感器负责实时检测环境温度,执行器则根据单片机的指令进行相应的动作以调节温度。
此外,为了保护系统免受过电压、过电流等影响,还设计了相应的保护电路。
2. 软件设计软件设计主要包括系统初始化、数据采集、数据处理、控制算法和输出控制等部分。
系统初始化包括单片机的初始设置和参数配置;数据采集由温度传感器完成,并将数据传输给单片机;数据处理包括对采集到的数据进行滤波、转换等处理;控制算法是系统的核心部分,根据处理后的数据计算出执行器的动作指令;输出控制则根据指令控制执行器进行相应的动作。
三、系统实现1. 硬件实现硬件实现主要包括电路设计和元器件选择。
在电路设计方面,我们采用了模块化设计,将系统分为电源模块、单片机模块、传感器模块和执行器模块等。
在元器件选择方面,我们选择了性能稳定、价格适中的元器件,以保证系统的稳定性和可靠性。
2. 软件实现软件实现主要包括编程和调试。
我们采用了C语言进行编程,利用单片机的编程接口,实现了系统的各项功能。
在调试过程中,我们采用了仿真和实际测试相结合的方法,对系统的各项功能进行了验证和优化。
四、系统测试与结果分析1. 系统测试我们对系统进行了严格的测试,包括功能测试、性能测试和稳定性测试等。
在功能测试中,我们验证了系统的各项功能是否正常;在性能测试中,我们测试了系统的响应速度和精度等性能指标;在稳定性测试中,我们测试了系统在长时间运行下的稳定性和可靠性。
2. 结果分析经过测试,我们发现系统的各项功能均正常,性能指标均达到了预期要求,且在长时间运行下表现出良好的稳定性。
基于STM32智能温控箱控制系统的设计

基于STM32智能温控箱控制系统的设计智能温控箱控制系统是一种常见的应用于工业控制领域的智能化控制系统。
本文基于STM32单片机,对智能温控箱控制系统进行设计和实现。
一、系统需求分析智能温控箱控制系统需要实现以下功能:1.对温度进行精确测量和控制;2.实时监测温度,并显示在控制面板上;3.能够根据设定的温度进行自动控制,实现温度稳定在设定值附近;4.通过人机界面(HMI)使用者可以对温度设定值、报警温度等进行设置和调整;5.当温度超过设定的报警温度时,能够及时报警;6.提供通讯接口,与上位机或其他设备进行通信,实现远程监控和控制。
二、系统硬件设计1.采用STM32单片机作为主控芯片,具有强大的计算和处理能力;2.温度传感器使用DS18B20数字温度传感器,可以实现对温度的高精度测量;3.控制面板采用LCD显示屏,用于显示温度和参数设置,并提供操作按键;4.报警部分使用蜂鸣器进行报警,并可以通过控制面板上的开关进行开启或关闭。
三、系统软件设计1.硬件初始化:初始化STM32芯片、温度传感器和控制面板;2.温度测量:通过DS18B20传感器读取温度值,并进行数字转换,得到实际温度值;3.温度控制:根据设定的温度值进行控制,通过PID算法控制温度稳定在设定范围内;4.参数设置:通过控制面板上的键盘输入,可以设置温度设定值、报警温度等参数;5.报警检测:检测当前温度是否超过设定的报警温度,若超过则触发报警;6.通讯接口:通过串口或其他通讯方式,实现与上位机或其他设备的数据传输和控制。
四、系统测试和验证搭建好硬件系统后,使用示波器等设备对系统进行测试和验证。
首先测试温度测量功能,将温度传感器放置在不同温度环境下,通过控制面板上的显示屏观察温度值是否准确。
然后测试温度控制功能,设定不同的温度值,观察系统是否能够控制温度稳定在设定范围内。
接着测试参数设置功能,通过控制面板上的键盘输入不同的参数值,并观察系统是否能够正确设置参数。
《2024年基于单片机的温度智能控制系统的设计与实现》范文

《基于单片机的温度智能控制系统的设计与实现》篇一一、引言随着科技的进步,人们对环境舒适度、工业生产以及农业种植等领域中的温度控制需求越来越高。
基于单片机的温度智能控制系统作为一种高效率、低成本的解决方案,得到了广泛的应用。
本文将详细介绍基于单片机的温度智能控制系统的设计与实现过程。
二、系统设计1. 硬件设计本系统以单片机为核心,包括温度传感器、执行器(如加热器、制冷器等)、电源模块、显示模块等部分。
其中,温度传感器用于实时检测环境温度,执行器负责根据单片机的指令进行温度调节,电源模块为系统提供稳定的电源,显示模块用于显示当前环境温度和设定温度。
在硬件设计过程中,我们需要根据实际需求选择合适的单片机型号和传感器类型。
此外,还需要考虑电路的布局和抗干扰能力,以确保系统的稳定性和可靠性。
2. 软件设计软件设计包括系统初始化、数据采集、数据处理、指令输出等部分。
系统初始化包括单片机的时钟设置、I/O口配置等;数据采集通过温度传感器实时获取环境温度;数据处理包括温度数据的滤波、转换和存储等;指令输出则是根据处理后的数据,控制执行器进行温度调节。
在软件设计过程中,我们需要编写相应的程序代码,并采用合适的算法进行数据处理和温度控制。
此外,还需要考虑系统的实时性和稳定性,以确保系统能够快速响应并保持长时间的稳定运行。
三、系统实现1. 硬件制作与组装根据硬件设计图,制作出相应的电路板和元器件,并进行组装。
在制作和组装过程中,需要严格按照工艺要求进行操作,以确保硬件的稳定性和可靠性。
2. 软件编程与调试根据软件设计要求,编写相应的程序代码,并进行调试。
在调试过程中,需要检查程序的逻辑是否正确、数据传输是否稳定等。
同时,还需要对系统进行实际测试,以验证其性能和稳定性。
3. 系统集成与测试将硬件和软件进行集成,并进行系统测试。
在测试过程中,需要检查系统的各项功能是否正常、响应速度是否满足要求等。
同时,还需要对系统进行长时间的运行测试,以验证其稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的智能温度控制系统的设计摘要该水温控制系统采用单片机进行温度实时采集与控制。
温度采集由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-55~25固有测温分辨率为0.5 ℃。
水温实时控制采用双向可控硅BT134和光隔离器MOC3041控制电热丝和风扇进行升温、降温控制。
系统具备较高的测量精度和控制精度,能完成升温和降温控制。
通过对基于单片机的相对温度控制器设计,加深对传感器技术及检测技术的了解,巩固对单片机知识的掌握,并系统的复习本专业所学过的知识。
关键词:AT89C51 DS18B20 BT134 MOC3041 水温控制AbstractThis system uses the microcontroller. an measure the relative humidity of the surrounding air automatically and accurately , and after measuring the data and changing through, send it in the processor, Then through the programming of the software, after changing the value of relative humidity of the environment at present into the decimal digit, and then in charge of the number to show; And, through software programming, in addition, corresponding control circuit (such some circuit as photoelectric coupling and relay ,etc. make up ), design the relative humidity of the present environment of regulation that can be automatic: When the indoor air humidity is too high.Through designing the controller of relative humidity based on one-chip computer , strengthen the knowledge of the technology of the sensor and detection technique, the ones that consolidated to knowledge of the one-chip computer were mastered, and the systematic knowledge that a speciality has been studied of review. Keyword: AT89C51 DS18B20 BT134 MOC3041 水温控制目录1.系统方案选择和论证 (3)1.1任务 (3)1.2要求 (3)1.2.1基本要求.................................................................................. 错误!未定义书签。
1.2.2发挥部分.................................................................................. 错误!未定义书签。
1.3 系统基本方案 (3)1.3.1各模块电路的方案选择及论证 (4)1.3.2系统各模块的最终方案 (7)2.系统硬件设计 (8)2.1温度采集部分设计 (8)2.2 矩阵键盘的设计 (9)2.3液晶显电路 (9)2.4 水温升温将温控制. (10)3.系统软件设计 (11)3.1读取DS18B20温度模块子程序 (11)3.2数据处理子程序 (11)3.3键盘扫描子程序 (14)3.4主程序流程图 (15)4. 系统测试 (16)4.1 静态温度测试 (16)4.2动态温控测量 (16)4.3结果分析 (17)附录1.参考文献 (18)附录2.源代码 (19)1.系统方案选择和论证1.1任务设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。
水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。
1.2要求技术指标为-40~+100度控制精度为1度温度检测精度为0.5度控制对象为电炉丝加热器,介质为水,LED数码直读显示1.3 系统基本方案根据题目要求系统模块分可以划分为:温度测量模块,显示电路模块,加热模块,控制模块。
为实现各模块的功能,分别做了几种不同的设计方案并进行了论证。
1.3.1各模块电路的方案选择及论证(1)控制器模块根据题目要求,控制器主要用于对温度测量信号的接受和处理、控制电热丝和风扇使控制对象满足设计要求、控制显示电路对温度值实时显示以及控制键盘实现对温度值的设定等。
对控制器的选择有以下二种方案:方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
方案二:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。
(2)加热装置有效功率控制模块根据题目,可以使用电热炉进行加热,控制电热炉的功率即可以控制加热的速度。
当水温过高时,关掉电热炉进行降温处理,让其自然冷却。
在制作中,我们装设一个小电风扇,当水温超高时关闭电炉开启风扇散热,当需要加热时开启电炉关闭风扇。
由于加热的功率较大,考虑到简化电路的设计,我们直接采用220V电源。
对加热装置控制模块有以下两种方案:方案一:采用可控硅来控制加热器有效功率。
可控硅是一种半控器件,应用于交流电的功率控制有两种形式:控制导通的交流周期数达到控制功率的目的;控制导通角的方式控制交流功率。
由交流过零检测电路输出方波经适当延时控制双向可控硅的导通角,延时时间即移相偏移量由温度误差计算得到。
可以实现对交流电单个周期有效值周期性控制,保证系统的动态性能指标。
该方案电路稍复杂,需使用光耦合驱动芯片以及变压器等器件。
但该方案可以实现功率的连续调节,因此响应速度快,控制精度高。
方案二:采用继电器控制。
使用继电器可以很容易实现地通过较高的电压和电流,在正常条件下,工作十分可靠。
继电器无需外加光耦,自身即可实现电气隔离。
这种电路无法精确实现电热丝功率控制,电热丝只能工作在最大功率或零功率,对控制精度将造成影响。
通过比较,我们选择方案一。
(3)温度采集模块题目要求温度静态误差小于等于0.2℃,温度信号为模拟信号,本设计要对温度进行控制和显示,所以要把模拟量转换为数字量。
该温度采集模块有以下三种方案:方案一:利用热电阻传感器作为感温元件,热电阻随温度变化而变化,用仪表测量出热电阻的阻值变化,从而得到与电阻值相应的温度值。
最常用的是铂电阻传感器,铂电阻在氧化介质中,甚至在高温的条件下其物理,化学性质不变。
由铂电阻阻值的变化经小信号变送器XTR101将铂电阻随温度变化的转换为4~20mA线形变化电路,再将电流信号转化为电压信号,送到A/D转换器——ADC0809.即将模拟信号转换为数字信号。
该方案线性度优于0.01%。
方案二:采用温度传感器AD590K。
AD590K具有较高精度和重复性,良好的非线性保证±0.1℃的测量精度。
加上软件非线性补偿可以实现高精度测量。
AD590将温度转化为电流信号,因此要加相应的调理电路,将电流信号转化为电压信号。
送入8为A/D转换器,可以获得255级的精度,基本满足题目要求。
方案三:采用数字温度传感器DS18B20。
DS18B20为数字式温度传感器,无需其他外加电路,直接输出数字量。
可直接与单片机通信,读取测温数据,电路简单。
基于以上分析和现有器件所限,温度采集模块选用方案三。
DS18B20与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,因而使用DS18B20可使系统结构更趋简单,可靠性更高。
他在测温精度、转换时间、传输距离、分辨率等方面带来了令人满意的效果。
(4)键盘与显示模块根据题目要求,水温要由人工设定,并能实时显示温度值。
对键盘和显示模块有下面两种方案:方案一:采用液晶显示屏和通用矩阵键盘。
液晶显示屏(LCD)具有功耗小、轻薄短小无辐射危险,平面直角显示以及影象稳定不闪烁,可视面积大,画面效果好,抗干扰能力强,并可灵活的现实多种状态。
方案二:采用三位LED七段数码管分别显示温度的十位、个位和小数位。
按键采用单列3按键进行温度设定。
数码管具有:低能耗、低损耗、低压、寿命长、耐老化,对外界环境要求较低。
同时数码管采用BCD 编码显示数字,程序编译容易,资源占用较少。
根据以上论述,51单片机资源丰富,根据需要,我们选用方案一。
1.3.2 系统各模块的最终方案根据以上分析,结合器件和设备等因素,确定如下方案:1. 采用AT89C51单片机作为控制器,分别对温度采集、LCD显示、温度设定、加热装置功率控制。
2. 温度测量模块采用数字温度传感器DS18B20。
此器件经软件设置可以实现高分辨率测量。
3. 电热丝有效功率控制采用光隔离器和双向可控硅控制。
4. 显示用LCD液晶显示实时温度值。
系统的基本框图如图1.1所示。
CPU(AT 89C51)首先写入命令给DS18B20,然后DS18B20开始转换数据,转换后通过89S52来处理数据。
数据处理后的结果就显示到数码管上。
另外由键盘设定温度值送到单片机,单片机通过数据处理发出温度控制信息到继电器。
1.1系统基本框图2.系统硬件设计2.1温度采集部分设计本系统采用半导体温度传感器作为敏感元件。
传感器我们采用了DS18B20单总线可编程温度传感器,来实现对温度的采集和转换,DQ接上拉电阻,与单片机P2.6口相连,直接与单片机通讯,大大简化了电路的复杂度。