镁碳砖论文

合集下载

镁碳砖 研究

镁碳砖 研究

低碳镁碳砖的实验研究1镁碳砖发展概况MgO–C砖是20世纪70年代兴起的新型耐火材料,最早由日本九洲耐火材料公司渡边明首先开发,它是以镁砂(高温烧结,具有耐火度高、抗热震性优良和抗侵蚀能力强等优良特性而被广泛应用于钢铁企业,如转炉炼钢和电炉炼钢[1]。

我国在1980前后年开始研究含碳耐火材料[2],并被列入国家“七五”(1985~1989)科技攻关项目。

1987年鞍钢三炼钢厂在转炉上试用MgO–C砖后,仅用一年时间就超额完成了“七五”转炉炉龄达千次的攻关目标。

发展到目前,全国各大中小钢厂已普遍推广使用MgO–C 质耐火材料作为转炉和电炉的炉衬。

随着冶炼技术的进步对耐火材料的新要求,低碳镁碳耐火材料成为镁碳耐火材料新的发展热点。

低碳MgO–C砖一般是指总含碳量不超过8%、由镁砂与石墨通过有机结合剂结合而成的MgO–C砖,降低碳含量可明显降低材料的热导率[3]。

近年来,对精炼钢包用低碳量、性能优异的低碳镁碳砖的开发受到国内外业界的重视,这方面的研究开发工作已取得一定的成果,展现了良好的发展前景。

镁碳砖既保持了碱性耐火材料的优点,同时又彻底改变了以往碱性耐火材料中耐剥落性能差,容易吸收炉渣等的固有缺点,如图12 镁碳砖的生产过程影响镁碳砖性能的工艺因素主要有原料、结合剂、添加剂等。

2.1 原料MgO–C砖的主要原料包括电熔镁砂或烧结镁砂、鳞片状石墨、有机结合剂以及抗氧化剂。

2.1.1 镁砂镁砂是生产MgO–C砖的主要原料,有电熔镁砂和烧结镁砂之分。

电熔镁砂与烧结镁砂相比具有方镁石结晶粒粗大、颗粒体积密度大等优点,是生产镁碳砖中主要选用的原料。

生产普通镁质耐火材料,对镁砂原料要求主要具有高温强度和耐侵蚀性能,因此注重镁砂的纯度及化学成分中的C/S比和B2O3含量。

随着冶金工业的发展,冶炼条件日益苛刻,在冶金设备(转炉、电炉、钢包等)上应用的MgO–C砖所用的镁砂,除了化学成分外,在组织结构方面,还要求高密度和大结晶。

镁碳砖的制备与应用设计

镁碳砖的制备与应用设计

毕业论文镁碳砖的制备与应用摘要镁碳砖是国际上新兴的耐火材料产品,镁碳砖具有高耐火性,良好的抗热震性、抗剥落、抗渣性。

它的使用延长了炉衬的使用寿命,是一种广义的新型节能材料,各国都在大力开发镁碳砖生产技术。

但是在生产中仍存在易层裂、韧性差等问题。

调整镁碳砖配合料颗粒级配、控制混合料湿度与优化压制过程等措施可以提高生产质量。

本文开端探讨了镁碳砖的制备。

包括原料的选用,意在着重说明原材料的质量性能对镁碳砖使用效果有较大影响。

并介绍了生产工艺流程上主要工艺参数的确定及生产过程中镁碳砖的层裂问题及解决方法。

随之重点介绍了镁碳砖在转炉上的应用重点阐述了使用环境对其使用效果的影响。

在论文末章介绍了镁碳砖在技术上的发展趋势。

关键词:颗粒级配,转炉,层裂,镁碳砖PREPARATION AND APPLICATION OF MAGNESIAABSTRACTMagnesia refractories is internationally emerging products, magnesia with a high fire resistance, good thermal shock resistance, spalling, slag resistance. Its use extends the life of the lining, is a broad new energy-saving material, countries are vigorously developing magnesia production technology. However, there are still easily in the production of spallation, and poor toughness. Adjust magnesia batch particle size distribution, humidity control and optimization of mixture pressing process and other measures to improve production quality.Beginning of this article discusses the preparation of magnesia. Including the selection of raw materials, intended to highlight the quality of the raw materials used magnesia effect on performance have a greater impact. And describes the main process parameters on the production process and the production process to determine the spall magnesia problems and solutions. Bricks along with highlights on the application of the converter focuses on the use of environmental effect of its use. Paper presented at the end of chapter Bricks in technology trends.KEY WORDS: particle size distribution, converter, spall, magnesia目录前言 (4)第1章原料的选用 (5)1.1 镁砂 (5)1.2 石墨 (6)1.3 结合剂 (7)1.4 添加剂 (7)第2章镁碳砖制备 (8)2.1 镁碳砖主要生产工艺参数的确定 (8)2.1.1 镁砂颗粒级别的确定 (8)2.1.2 泥料混练 (9)2.1.3 成型 (10)2.1.4 热处理 (10)2.2 镁碳砖的层裂问题及解决方法 (10)2.2.1 镁碳砖层裂产生的主要原因 (11)2.2.2 防止镁碳砖层裂的基本方法 (11)第3章镁碳砖的应用 (13)3.1 镁碳砖在转炉上的应用 (13)3.2镁碳砖在转炉上的砌筑 (16)3.3 MgO-C砖在炉外精炼技术中大有前途 (16)第4章镁碳砖技术发展趋势 (17)4.1 纳米结构基质低碳镁碳砖的开发研究 (17)4.2低碳镁碳砖基质结构的优化 (19)结论 (21)谢辞 (22)参考文献 (23)外文资料翻译 (25)前言镁碳砖是一种优质的耐火材料,广泛应用在电炉、转炉及精炼炉上。

镁碳砖

镁碳砖

镁碳砖开发及其在钢包渣线的应用河北瀛都复合材料有限公司王丕轩孙志红摘要:概述了镁碳砖的发展概况、生产过程及在钢包渣线的应用,并对其发展前景进行了展望。

关键词:镁碳砖;渣线;低碳化;精炼11镁碳砖发展概况MgO–C砖是20世纪70年代兴起的新型耐火材料,最早由日本九洲耐火材料公司渡边明首先开发,它是以镁砂(高温烧结镁砂或电熔镁砂)和碳素材料为原料,用各种碳质结合剂制成的耐火材料。

由于MgO–C砖具有耐火度高、抗热震性优良和抗侵蚀能力强等优良特性而被广泛应用于钢铁企业,如转炉炼钢和电炉炼钢[1]。

在日本研发出树脂结合MgO–C砖后,西欧开发了沥青结合的MgO–C砖,其残碳量约为10%,由于价格低于树脂结合MgO–C砖,故被成功地用于水冷电炉中的高温热点部位,同时也用于转炉。

我国在1980前后年开始研究含碳耐火材料[2],并被列入国家“七五”(1985~1989)科技攻关项目。

1987年鞍钢三炼钢厂在转炉上试用MgO–C砖后,仅用一年时间就超额完成了“七五”转炉炉龄达千次的攻关目标。

发展到目前,全国各大中小钢厂已普遍推广使用MgO–C 质耐火材料作为转炉和电炉的炉衬。

随着冶炼技术的进步对耐火材料的新要求,低碳镁碳耐火材料成为镁碳耐火材料新的发展热点。

低碳MgO–C砖一般是指总含碳量不超过8%、由镁砂与石墨通过有机结合剂结合而成的MgO–C砖,降低碳含量可明显降低材料的热导率[3]。

近年来,对精炼钢包用低碳量、性能优异的低碳镁碳砖的开发受到国内外业界的重视,这方面的研究开发工作已取得一定的成果,展现了良好的发展前景。

2 镁碳砖的生产过程2.1 原料MgO–C砖的主要原料包括电熔镁砂或烧结镁砂、鳞片状石墨、有机结合剂以及抗氧化剂。

2.1.1 镁砂镁砂是生产MgO–C砖的主要原料,有电熔镁砂和烧结镁砂之分。

电熔镁砂与烧结镁砂相比具有方镁石结晶粒粗大、颗粒体积密度大等优点,是生产镁碳砖中主要选用的原料。

生产普通镁质耐火材料,对镁砂原料要求主要具有高温强度和耐侵蚀性能,因此注重镁砂的纯度及化学成分中的C/S比和B2O3含量。

镁碳砖化学成分

镁碳砖化学成分

镁碳砖化学成分以镁碳砖化学成分为标题,我们探讨一下镁碳砖的主要成分和特点。

镁碳砖是一种高温材料,主要由镁粉和石墨粉等组成。

镁是化学元素中的一种,原子序数为12,化学符号为Mg。

镁是一种轻金属,具有较高的强度和刚性,同时也有良好的耐腐蚀性和导电性。

在高温下,镁具有良好的氧化还原性能,可以与其他元素形成化合物。

而石墨是一种形态为层状晶体的碳,具有良好的导电性和导热性,同时也是一种高温材料。

在制备镁碳砖的过程中,首先需要将镁粉和石墨粉按照一定比例混合均匀,并加入一定量的粘结剂和流体剂,然后在高温下进行成型和烧结。

在烧结过程中,镁和石墨会发生反应,形成镁碳化合物(MgC2),而粘结剂和流体剂则会发挥固化和流动性的作用,最终形成坚硬的镁碳砖。

镁碳砖的主要成分为镁碳化合物和碳化镁,其中镁碳化合物的含量通常在70%以上,具有较高的硬度和耐磨性。

而碳化镁是一种较为稳定的化合物,具有良好的耐高温性能和导热性能。

除此之外,镁碳砖中还含有一定量的残余碳和氧化镁等杂质,这些杂质的含量会影响镁碳砖的性能和使用寿命。

镁碳砖是一种高温耐火材料,具有良好的抗磨损性、抗冲击性和高温稳定性。

它广泛用于各种高温工业设备和炉膛中,如电炉、转炉、钢包等。

镁碳砖具有优异的性能,但也存在一些问题,比如易受潮、易开裂、易烧损等。

为了提高镁碳砖的性能和使用寿命,需要在制备过程中严格控制成分比例和烧结工艺,并采取一定的后续处理措施,如表面涂层、热处理等。

镁碳砖的化学成分主要包括镁碳化合物、碳化镁和一定量的杂质。

镁碳砖具有良好的高温性能和耐磨性能,广泛应用于各种高温设备和炉膛中。

为了提高镁碳砖的性能和使用寿命,需要在制备和使用过程中注意一些问题。

镁碳砖开发及其在钢包渣线的应用

镁碳砖开发及其在钢包渣线的应用

镁碳砖开发及其在钢包渣线的应用河北瀛都复合材料有限公司王丕轩孙志红摘要:概述了镁碳砖的发展概况、生产过程及在钢包渣线的应用,并对其发展前景进行了展望。

关键词:镁碳砖;渣线;低碳化;精炼11镁碳砖发展概况MgO–C砖是20世纪70年代兴起的新型耐火材料,最早由日本九洲耐火材料公司渡边明首先开发,它是以镁砂(高温烧结镁砂或电熔镁砂)和碳素材料为原料,用各种碳质结合剂制成的耐火材料。

由于MgO–C砖具有耐火度高、抗热震性优良和抗侵蚀能力强等优良特性而被广泛应用于钢铁企业,如转炉炼钢和电炉炼钢[1]。

在日本研发出树脂结合MgO–C砖后,西欧开发了沥青结合的MgO–C砖,其残碳量约为10%,由于价格低于树脂结合MgO–C砖,故被成功地用于水冷电炉中的高温热点部位,同时也用于转炉。

我国在1980前后年开始研究含碳耐火材料[2],并被列入国家“七五”(1985~1989)科技攻关项目。

1987年鞍钢三炼钢厂在转炉上试用MgO–C砖后,仅用一年时间就超额完成了“七五”转炉炉龄达千次的攻关目标。

发展到目前,全国各大中小钢厂已普遍推广使用MgO–C 质耐火材料作为转炉和电炉的炉衬。

随着冶炼技术的进步对耐火材料的新要求,低碳镁碳耐火材料成为镁碳耐火材料新的发展热点。

低碳MgO–C砖一般是指总含碳量不超过8%、由镁砂与石墨通过有机结合剂结合而成的MgO–C砖,降低碳含量可明显降低材料的热导率[3]。

近年来,对精炼钢包用低碳量、性能优异的低碳镁碳砖的开发受到国内外业界的重视,这方面的研究开发工作已取得一定的成果,展现了良好的发展前景。

2 镁碳砖的生产过程2.1 原料MgO–C砖的主要原料包括电熔镁砂或烧结镁砂、鳞片状石墨、有机结合剂以及抗氧化剂。

2.1.1 镁砂镁砂是生产MgO–C砖的主要原料,有电熔镁砂和烧结镁砂之分。

电熔镁砂与烧结镁砂相比具有方镁石结晶粒粗大、颗粒体积密度大等优点,是生产镁碳砖中主要选用的原料。

生产普通镁质耐火材料,对镁砂原料要求主要具有高温强度和耐侵蚀性能,因此注重镁砂的纯度及化学成分中的C/S比和B2O3含量。

镁碳砖中碳的作用

镁碳砖中碳的作用

镁碳砖中碳的作用
镁碳砖是一种高温材料,常常在高温环境下使用。

它由镁粉和碳素原料混合而成,经过压制、烧结等工艺制成。

砖中的碳起到了重要作用,影响着砖的性能和应用。

本文将探讨镁碳砖中碳的作用。

碳的存在使得镁碳砖具有一些优良特性,比如高耐火性、抗热震性、导热性等。

首先,碳的加入可以增加镁碳砖的热稳定性。

当镁碳砖在高温下遭受热震的冲击时,碳能够吸收部分热量和冲击力,从而减轻砖的受损程度,提高砖的抗热震性。

其次,碳还可以提高镁碳砖的导热性。

镁碳砖的热传导主要依赖于镁粉的导热,而碳的加入可以增加砖体的导热系数,提高热传导效果,使得镁碳砖更适合在需要高热传导性的场合应用,如电磁炉等。

此外,碳还能促进镁碳砖的石墨化反应。

镁碳砖在高温下会发生石墨化反应,生成石墨相,从而提高砖的耐火性和热稳定性。

碳可以作为石墨化反应的催化剂,加速反应的进行。

砖中的碳含量越高,石墨化反应的速度也就越快,从而生成的石墨晶须也就越长越密集,提高砖的耐火性。

与此相反,过多的碳会对镁碳砖的性能产生负面影响。

过高的碳含量会使得镁碳砖在高温下易剥落,降低其使用寿命。

而过低的碳含量则会影响石墨化反应,影响耐火性。

因此,在生产镁碳砖时需严格控制碳的加入量,以达到适当的碳含量。

总之,碳在镁碳砖中起着重要作用。

它能提高砖的耐火性、抗热震性和导热性,促进石墨化反应。

在生产和应用中,需要根据具体情况,精确掌握碳的含量和配比,以达到最佳的性能和效果。

低碳镁碳砖的高温力学性能比较

低碳镁碳砖的高温力学性能比较
四 种 试 样 在 10  ̄ 埋 碳 ( 墨 ) 件 下 的 高 温 抗 折 强 度 数 据 如 图 4 0C、 条
对 其 物 相 组 成 和 显 微 结 构 分 析 进 行 比较 ,j -  ̄得 到 性 能 较 优 越 的 低 碳 镁 碳 砖 与 物 相 和 结 构 关 系。 . -
[ 关键词 ] 低碳镁碳砖
2试 验 .
本试验根据提供的 4种不 同类型镁碳砖 , 测其常温物理性能 、 检 高 温抗 折强度 、 热震稳定性并对其物相和显微结构 分析进行对 比, 而得 从 到性能优异的低碳镁碳砖的类型 ,并 总结 和研究 如何进一步改善其低 碳 镁碳砖的性能 。
21检 测 项 目 . ( ) 温 物 理 性 能 : 国 家 标 准 G /2 9 — 0 0检 测 试 样 的 显 气 孔 1常 按 BT 9 7 20 率 、 积密 度 、 体 常温 抗折 强度 和耐 压强 度 ; 样 尺寸 为 2 mm ̄ 5 试 5 2 mm ̄
增 多
பைடு நூலகம்
显气孔率
/ % 41 . 29 . 38 . 41 .
抗折强度
/ MPa 1 . 6O 1 . 94 2 . 4J 2 3 9-
耐压强度
/ MPa 8 9 3. 6l 8 _ 9 7 8. 9 1 0.
222高 温 抗 折 强 度 ..
2 / 。
22试 验 结果 .
试 梓 骗 号
221常温 物理性 能 .. 试样的常温物理性能如表 l 所示 。钢包 渣线 常用低碳镁碳砖 的体 积密度 约为 30 gc , . ・m 而碳 含量 高 ( 0 C约 4 7 的镁碳砖体 积密度 略 — %) 低 , 2 5 ・n 。四种来 自不同厂家的镁碳 砖的体积密度均与常用低 约 . gcl 9 。 碳镁碳砖 的体积密度相 当; 四种试样 的显气孔 率值均较低 ; 抗折强 度和 耐压强度也都满足生产 的要求 。 表 1四种不 同试样 的常温物理性能 试样编号 体积密度

对镁炭砖多次再生

对镁炭砖多次再生

对镁炭砖多次再生利用的研究田守信(上海宝钢集团公司,上海201900)摘要:本文分析探讨了用后镁碳砖多次再生对使用性能的影响,探讨了多次再生而又保证产品质量的方法。

得出了只要制造技术和使用技术相结合,就可以对用后镁碳砖进行多次再生,实验结果证明再再生镁碳砖具有良好的理化性能。

关键词:再生资源镁碳砖使用技术镁碳砖使用后,再生出优质的镁碳砖,并取得了良好的使用效果,这已经为实践所证明[1,2]。

那么再生镁碳砖经过使用后,是否还可以再生,即再再生镁碳砖或多次再生是否质量下降,特别是使用效果是否下降?有些人心存疑虑。

为了解除人们的这种疑虑,特进行了这方面的探讨。

作者[2]已经就如何提高再生镁碳砖的质量和控制再生镁碳砖质量的稳定性进行了探讨。

只要严格管理,按照科学的工艺技术做,就能够生产出理化性能稳定的优质再生镁碳砖,优质再生镁碳砖与使用技术相结合,就会取得良好的使用效果。

用后镁碳砖,经过再次使用后,是否还可以再生?即再再生镁碳砖是否质量下降?本文通过分析后认为只要管理和做好,再再生镁碳砖质量完全能够达到原始新镁碳砖的水平,镁碳砖可以多次再生利用。

在使用条件一定的情况下,镁碳砖的使用效果由镁碳砖的质量所决定的。

而镁碳砖的质量主要由与实用性能相对应的镁碳砖理化指标和显微结构来表征的。

通过控制镁碳砖的理化指标和设计显微结构来控制镁碳砖的质量。

从而达到良好的使用效果。

镁碳砖的理化指标分为物理指标和化学指标。

本文就再再生镁碳砖的理化指标进行了分析和试验。

先报导如下:1 再再生镁碳砖的理化指标再生的MT-14镁炭砖(含有80%的用后镁碳砖再生料)在宝钢300t钢包上使用82次(含20次LF)和89次(含22次LF),达到了新镁碳砖的使用水平后,停下来拆除。

把用后的再生镁碳砖再次回收,按照第一次用后镁碳砖的再生工艺过程进行加工处理,然后根据用途设计再再生镁碳砖的配料和工艺技术路线,制造再再生镁炭砖,其配方和性能指标见表1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐火材料课程论文题目:镁碳砖的制备及应用
院系建筑与材料工程系
专业材料工程技术
班级09材料工程技术班
学生姓名许江涛
学号**********
任课教师倪佳苗
2011 年 06月 10 日
镁碳砖的制备及应用
专业材料工程技术学生许江涛学号0961020066
摘要:镁碳砖是广泛使用的耐火材料,目前,生产中仍存在易层裂、韧性差等问题。

调整镁碳砖配合料颗粒级配、控制混合料湿度与优化压制过程等措施可以提高生产质量。

关键词:镁碳砖;耐火材料;颗粒级配;应用
一、原料的选用
1、镁砂:一般选用含氧化镁95%~99%的电熔镁或烧结镁砂。

CaO/SiO2(物质的量比)大于2和杂质含量少。

MgO含量越高,杂志相对越少,硅酸盐相分割程度降低,方镁石直接结合程度越高,镁碳砖的抗渣侵蚀性越强(在组织结构方面要求镁砂高密度并且结晶大)菱镁矿等为原料经电弧炉熔炼达到熔融状态冷却后形成的称为电熔镁砂;从海水中提取氧化镁制成的称为海水镁砂。

镁砂是耐火材料最重要的原料之一,用于制造各种镁砖、镁铝砖、捣打料、补炉料等。

电熔镁砂是用精选的特A级天然菱镁石或高纯轻烧镁颗粒,在电弧炉中熔融制得。

该产品具有纯度高,结晶粒大,结构致密,抗渣性强材料,热震稳定性好,是一种优良的高温电气绝缘材料,也是制作高档镁砖,镁碳砖及不定形耐火材料的重要原料。

理化指标:
2、石墨:一般选用结晶发育完整且纯度高达92%~99%的天然鳞片状石墨。

石墨越纯,固定碳含量越高,则灰分及挥发分越少,生产出来的镁碳砖在高温下使用时结构好,高温抗折强度大,耐侵蚀性越好。

镁碳砖的碳源选用石墨,碳能防止炉渣向砖内浸入,有益于提高砖的抗侵蚀性;但另一方面碳容易氧化又是其固有属性。

众所周知,当砖中的碳被氧化时,砖的特性也随之消失。

氧化越剧,损毁越快。

碳氧化的主要途径:一是与炉渣中的FeO反应;二是与气氛中的O2与CO2反应;三是与砖中的MgO反应。

FeO+CFe+CO①C+O2CO②
2CO2+2C4CO③
≥1400℃时
C+MgOMg↑+CO④
反应①是主要的氧化反应,FeO含量越高,氧化速度越快,见图4。

反应②、③只是在MgO-C砖使用后的降温过程中才有可能发生,当温度降到1000℃以下时反应开始进行,见图5。

温度降低时,由于炉渣的保护,反应不会剧烈,如果没有炉渣保护,这时②③反应是很猛烈的。

反应④在温度达到1400℃后才发生的可能,但由于Mg蒸气的重新凝聚,形成致密的MgO层,封密砖的气孔,使砖的抗侵蚀性提高,无疑是有益的。

但温度达到1700℃以后,Mg蒸气分压变高,重新凝聚难以进行,反应④对砖的抗侵蚀性产生了不利影响。

因此,当冶炼温度超过1700℃时,对MgO-C炉衬侵蚀和破坏是显而易见的。

所以,冶炼操作要求控制高温钢的比例是十分必要的。

2、1 防止石墨氧化
作为防氧化的主要手段是向砖中引入易氧化的活泼的金属粉末,如Al粉、Mg粉、Al-Mg合金、Si粉,以及氮化物、硼化物、碳化物等易氧化物质。

其理由在于砖被加热时,这些物质即与C或者CO发生反应生成碳化物,并且使C重新凝聚,最终生成Al4C3、Al2O3、MA等高熔点物质并随之产生体积膨胀,使砖体致密化,形成陶瓷结合,从而提高了抗氧化性和高温强度,现以加入Al粉为例,列式于以说明:
Al(S)+3/4C(S)→1/4Al4C3(S)⑤
2Al(S)+3CO(g)→Al2O3+3C⑥
Al(S)+3/2CO(g)+1/2MgO(S)→1/2MA+3/2C⑦
1/2Al4C3+3CO(g)+MgO(S)→MA+9/2C(S)⑧
大量的研究和实践证明,加入防氧化剂对提高MgO-C砖的抗侵蚀性
是行之有效的。

经验证明,加入复合防氧化剂效果比加入单一防氧化剂效果要好。

3、结合剂:镁碳砖在生产早期使用焦油沥青作结合剂,多用酚醛树脂。

其本身具有良好的弹性和有抛光作用,形成磨具后,仍具有良好的自锐性,不易堵塞,修整少,而且磨削效率较高,磨削温度较低,磨削的表面光洁度高,所以应用范围十分广泛。

与金刚石磨料结合形成树脂结合剂金刚石磨具,经常应用于硬质合金工件、钢基硬质合金工件,以及部分非金属材料的半精磨、精磨等;与树脂结合剂结合形成树脂结合剂立方氮化硼磨具,主要用于高钒高速钢刀具的刃磨和工具钢、模具钢、不锈钢和耐热合金工件的半精磨、精磨等。

但树脂结合剂对磨料的把持性较差,耐热性也较差,导致高温磨削下磨具的磨损大,尤其在大负荷磨削时尤为明显,常以采用镀附金属衣磨料来加以改善。

其优点如下⑴酚醛树脂系性结构的高分子,对石墨有优良的润湿性,热解生成非晶态碳;⑵混炼与成型性能好,在室温下可直接混炼与成型,压制的砖坯强度高;⑶可降低烟尘质量浓度,减少环境污染;⑷残碳量高。

4、添加剂:镁碳砖的优良性能依赖于砖中碳的存在,但在使用过程中碳极易被氧化,使制品组织劣化,降低转的使用寿命。

目前主要通过添加抗氧化剂(金属铝粉,硅粉,铝镁合金粉,碳化硅,碳化硼)的手段来提高镁碳砖的抗氧化性能。

抗氧化机理:Ⅰ.抗氧化剂与氧反应,避免碳与氧反应;Ⅱ.氧化后形成的新物相(如碳化物,氧化物及尖晶石)产生体积膨胀,封闭气孔,使砖的致密度提高,阻止了熔渣的渗透;Ⅲ.新生成的物相在石墨和氧化镁间“搭桥”,使其形成牢固结合。

抗氧化剂的加入量一般为1%~6%。

二、产品制备
镁碳砖一般为不烧制品,生产工艺主要包括原料准备,配料,混炼,成型和热处理。

采用高纯镁砂粉粒、碳素材料(包括石墨)和焦油沥青或树脂等为原料,经配料、热混、成型后,再经300℃左右或1000℃以上焙烧而成。

为抑制砖中的碳的氧化,常添加铝、硅、镁等金属或氮化硼,加入量不超过5%。

采用高压力成型机成型,以提高专的密度。

成型时应该严格按照先轻后重、多次加压的操作规程进行压制,以免产生裂纹,最好采用抽真空、排气加压装置,成型后砖坯浸防滑剂进行防滑处理,避免施工时发生安全事故。

三、镁碳砖的应用
转炉各部位炉衬的工作条件见表 4 ,转炉结构示意图见图 4 。

炉口、炉帽部位温度变化剧烈,受渣蚀较严重,应选用抗热震性好,抗渣性强的镁碳砖。

耳轴区两侧除受吹炼时损毁作用外,表面无保护渣层覆盖,不易修补,砖中碳易氧化,应砌筑抗渣性优良、抗氧化性好的优质镁碳砖。

渣线部位与熔渣长期接触,受渣蚀严重,需砌筑具有优良抗渣性的镁碳砖。

装料侧吹气时炉渣和锵水的喷溅作用容易造成化学侵蚀、磨损、冲刷以及装人废钢和铁水时的直接撞击和冲蚀,应选用具有抗渣性强、高温强度高、抗热震性好的镁碳砖。

炉缸、炉底与其他部位相比侵蚀较轻,可选用普通镁碳砖。

当采用顶底复合吹炼技术时,尤其是底吹CO、O2等气体时,损毁更为严重,应选用抗氧化性和抗热震性好高温强度高,抗渣性强的高级镁碳砖。

根据转炉炉体部位损毁的特点,使用不同品级的镁碳砖配合砌筑,形成均衡损毁的综合炉衬。

四、镁碳砖技术发展趋势
(1)纳米技术在镁碳砖中的应用。

日本某研究机构已经应用纳米技术生产镁碳砖在RH炉上试验使用,但是该镁碳砖成本惊人。

纳米技术能否在镁碳砖生产上得到推广现在还不乐观。

(2)超低碳镁碳砖。

在冶炼超低碳钢和不锈钢时对镁碳砖中碳含量提出了新的要求,要求制品具有高碳镁碳砖的性能的同时,碳含量尽可能低,目前碳含量在5%以下的低碳镁碳砖已经是比较成熟的制品,进步研发碳含量在3 %以下的镁碳砖是某些生产企业正在攻关的主要课题。

(3)利用新工艺对废弃镁碳砖的综合利用是今后科技工作者研究的课题之一,对提高企业经济效益和社会效益具有重要意义,有利于推动我国循环经济的快速发展和构建“节约型社会”,走可持续发展道路。

减少耐火材料废弃量,加大耐火材料的利用率,是未来该领域研究发展的方向。

参考文献
1、何文谰.宝钢3000t转炉炉龄与炉衬材料耐火材料 1992
2、殷毅、王一心.不烧复合 MgO-C砖的研制及在转炉上的应用.耐火
材料,1992
3、许晓海、冯改山.耐火材料技术手册.北京:冶金工业出
版社,2000
4、张江伟,张治广.邢钢炼钢系统耐火材料的使用情况.耐火材料、
2007
课程论文评分表。

相关文档
最新文档