新钢筋混凝土构件的裂缝和变形

合集下载

混凝土结构设计原理课件(按新规范GB50010-2010编写)第9章变形和裂缝

混凝土结构设计原理课件(按新规范GB50010-2010编写)第9章变形和裂缝

3、第二批裂缝出现的瞬间
A C B Ncr< N3<Nq
混凝土c 钢筋s 粘结应力 l
砼实际强度
>2l
l
注:l为通过 粘结应力 的 积累可使砼达 到ft 的长度。
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
4、第二批裂缝出现后(裂缝已出齐)
A C B
Ncr < N3 <N4 < Nq
νi —纵筋的相对粘结特性系数,
普通钢筋中的光面钢筋νi=0.7, 带肋钢筋νi=1.0; 详见: 《规范》GB50010表7.1.2-2
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
As te Ate
Ate—有效受拉混凝土截面面积。 对轴拉构件,取构件截面面积; 对受弯、偏压和偏拉构件,见下图:
1、C-裂缝宽度、变形等的限值。
见P422附表1-15、 P423附表1-16 。
S C
附表1-15 最大裂缝宽度的限值(mm)
环境 类别 一 二a 钢筋混凝土结构 裂缝控制 wlim 等级 0.30(0.4) 三级 预应力混凝土结构 裂缝控制 wlim 等级 0.20 三级 0.10
二b 三a 三b
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
第9章 混凝土构件的裂缝宽度、变形 验算与耐久性设计 本章主要内容
9.1 概 述
9.2 裂缝宽度验算
9.3 变形验算
9.4 混凝土结构的耐久性
混凝土结构设计原理(第2版)配套课件,邵永健主编,北京大学出版社2013年8月出版
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
推得
wm cy s lcr cy
sq

第8章 钢筋混凝土构件的裂缝、变形和耐久性

第8章 钢筋混凝土构件的裂缝、变形和耐久性

裂缝的控制等级分为三级: 正常使用阶段严格要求不出现裂缝的构件,裂缝控制 等级属一级; 正常使用阶段一般要求不出现裂缝的构件,裂缝控制 等级属二级; 正常使用阶段允许出现裂缝的构件,裂缝控制等级属 三级。 钢筋混凝土结构构件由于混凝土的抗拉强度低,在正 常使用阶段常带裂缝工作,因此,其裂缝控制等级属于三 级。若要使结构构件的裂缝达到一级或二级要求,必须对 其施加预应力,将结构构件做成预应力混凝土结构构件。 试验和工程实践表明,在一般环境情况下,只要将钢 筋混凝土结构构件的裂缝宽度限制在一定的范围以内,结 构构件内的钢筋并不会锈蚀,对结构构件的耐久性也不会 构成威胁。因此,裂缝宽度的验算可以按下面的公式进行
宽度还需乘以荷载长期效应裂缝扩大系数τ l。对各种受力
构件,《规范》均取τ l=0.9×1.66≈1.5.这样,最大裂缝宽 度为
ω max = τ sτ lω m
安全、适用和耐久,是结构可靠的标志,总称为结构 的可靠性。 对于使用上需要控制变形和裂缝的结构构件,除了要 进行临近破坏阶段的承载力计算以外,还要进行正常使用 情况下的变形和裂缝验算。 因为,过大的变形会造成房屋内粉刷层剥落、填充墙 和隔断墙开裂及屋面积水等后果;在多层精密仪表车间 中,过大的楼面变形可能会影响到产品的质量;水池、油 罐等结构开裂会引起渗漏现象;过大的裂缝会影响到结构 的耐久性;过大的变形和裂缝也将使用户在心理上产生不 安全感。 此外,混凝土结构是由多种材料组成的复合人工材 料,由于结构本身组成成分及承载受力特点,在周围环境
Ψ= 1.1- 0.65ftk/(ρteσ sk)
(8-11)
式中ftk——混凝土抗拉强度标准值,按附表1-1采用。
为避免过高估计混凝土协助钢筋抗拉的作用,当按式 (8-11)算得的Ψ<时,取Ψ=0.2;当Ψ=1.0时,取Ψ=1.0.对直 接承受重复荷载的构件,Ψ=1.0。 (2)最大裂缝宽度ωmax 由于混凝土的非匀质性及其随机性,裂缝并非均匀分 布,具有较大的离散性。因此,在荷载短期效应组合作用 下,其短期最大裂缝宽度应等于平均裂缝宽度ω m乘以荷载 短期效应裂缝扩大系数τ s。根据可靠概率为95%的要求, 该系数可由实测裂缝宽度分布直方图的统计分析求得:对 于轴心受拉和偏心受拉构件,τ s=1.9;对于受弯和偏心受 压构件已τ s=1.66。此外,最大裂缝宽度ω max尚应考虑在 荷载长期效应组合作用下,由于受拉区混凝土应力松弛和 滑移徐变裂缝间受拉钢筋平均应变还将继续增长;同时混 凝土收缩,也使裂缝宽度有所增大。因此,短期最大裂缝

钢筋混凝土构件的裂缝变形和耐久性

钢筋混凝土构件的裂缝变形和耐久性

钢筋混凝土构件的裂缝变形和耐久性钢筋混凝土是建筑中最常用的构件材料之一。

一些大型的建筑物,如大坝、桥梁等,因为需要承受较大的荷载,所以在设计时会有更高的要求。

在施工过程中,如果掌握不好压力和温度的变化等因素,就可能在构件表面产生裂缝。

虽然一些微小的裂缝不会影响建筑结构的安全性,但是大型的裂缝会对建筑的耐久性带来影响。

首先,裂缝的产生是由于建筑内部素材承受的荷载超过了它的承载力。

钢筋混凝土构件在设计时,需要根据其所要承受的荷载大小,选择合适的材料和结构形式。

如果施工时没有正确的按照规定来进行,则很容易引起裂缝的产生。

此外,温度和湿度因素也会影响构件的承载力。

例如,当混凝土中的水分蒸发时,可能会导致构件表面干燥收缩而引起裂缝的产生。

其次,裂缝变形会对建筑的耐久性产生影响。

值得注意的是,建筑耐久性并不只是指其寿命,还涉及到其功能方面和审美方面等。

如果裂缝不得到及时修复,将会更容易扩大、脱落,甚至有可能导致建筑物的倒塌。

此外,裂缝还可能对建筑的外观和形态产生影响,如给人不安全或破损的感觉,同时也影响整座建筑的审美质量。

因此,与其等待裂缝扩大,不如在裂缝刚出现的时候就及时修复,这样有助于提高建筑的耐久性。

裂缝修复的方法有很多种,如针孔注胶、搭接补强、摆筋等,选择不同的方法需要根据具体情况。

在修复过程中,需要注意掌握好所选用材料的特性,在时间和经济上做好合理的计划,以最大限度地避免裂缝的再次出现。

综上所述,钢筋混凝土构件要承受巨大的荷载和多种因素的影响,裂缝的产生是不可避免的。

为使建筑可持续发展,我们需要从多个方面去优化和控制这些因素,从而提高建筑的整体耐久性。

钢筋混凝土构件的裂缝及变形验算

钢筋混凝土构件的裂缝及变形验算

第7章 钢筋混凝土构件的裂缝及变形验算
7.3 受弯构件挠度验算
一、受弯构件挠度验算的特点
对于简支梁承受均布荷载作用时,其跨中挠度:
f
5(g k
qk
)l
4 0
384 EI
Bs ––– 荷载短期效应组合下的抗弯刚度
B Bl ––– 荷载长期效应组合影响的抗弯刚度
f
5(gk qk )l04 384 B
例如,对矩形截面受弯构件,可根据代换前、后弯矩相等原则复 核截面承载力,即
裂缝宽度验算就是要计算构件的在荷载作用下产生的最大裂缝 宽度不应超过《规范》规定的最大裂缝宽度限值,即
wmax≤wlim
混凝土构件的最大裂缝宽度限值wlim见附表A-12。
第7章 钢筋混凝土构件的裂缝及变形验算
一、钢筋混凝土构件裂缝的形成和开展过程
通过理论分析可知, 裂缝之间混凝土和钢筋的 应变沿轴线分布为曲线形, 如图7-1(b)、(c)所示。 裂缝截面钢筋应变最大, 混凝土的应变为零;裂缝 间混凝土的应变最大,钢 筋的应变最小。
(1)等强度代换。当构件受承载力控制时,钢筋可按强度相等 原则进行代换。
(2)等面积代换。当构件按最小配筋率配筋时,钢筋可按面积 相等原则进行代换。
(3)当构件受裂缝宽度或挠度控制时,钢筋代换后应进行裂缝 宽度或挠度验算。
第7章 钢筋混凝土构件的裂缝及变形验算
二、代换方法
1、等强度代换
不同规格钢筋的代换,应按钢筋抗力相等的原则进行代换,即
《规范》规定:对构件进行正常使用极限状态验算时,应按荷载 效应的标准组合和准永久组合,或标准组合并考虑长期作用影响来进 行。标准组合是指对可变荷载采用标准值、组合值为荷载代表值的组 合;准永久组合是指对可变荷载采用准永久值为荷载代表值的组合。

钢筋混凝土构件变形、裂缝和耐久性

钢筋混凝土构件变形、裂缝和耐久性

,此处 为换算截面对其重心轴的惯性矩, 为混
凝土的弹性模量。
图9.2 适筋梁
图9.3 抗弯刚度沿构件 跨度的变化
关系曲线图 9.2 变 形 验 算
9.2 变 形 验 算
裂缝出现以后(第Ⅱ阶段):
裂缝出现以后,
曲线发生了明显的转折,出现了第一个转折点
()
。配筋率
越低的构件,其转折越明显。试验表明,尺寸和材料
202X
钢筋混凝土构件变形、 裂缝和耐久性
单击此处添加正文具体内容
教学提示:本章介绍钢筋混凝土构件正常使用极限状态验算的主要内容。构件 的最大挠度根据截面抗弯刚度,用结构力学的方法计算;钢筋混凝土受弯构件 截面的抗弯刚度不为常数,考虑到荷载作用时间的影响,有短期刚度Bs和长期 刚度B的区别,且二者随弯矩的增加、配筋率的降低而减小。最大裂缝宽度的 计算公式是在平均裂缝间距和平均裂缝宽度理论计算值的基础上,根据试验资 料统计求得并乘以“扩大系数”后加以确定;该式为半经验性理论公式。混凝 土结构的耐久性应根据环境类别和设计使用年限进行设计。
Mk
Mkh0式中
sm cm
1
○ 9.2 变 形 验 算
根据材料力学中刚 度的计算公式和式 (9-3),有 ○ ——荷按载效应标 准组合计算的弯矩 值。
2
裂缝截面处的应变 和 在荷载效应的标准组合下,裂 缝截面处纵向受拉钢筋重心处 拉应变 和受压区边缘混凝土的压应变 按下式计算:
9.2 变 形 验 算
04.
03.
——受压翼缘的加强 系数,。
——裂缝截面处受压 区高度系数;
——裂缝截面处内力 臂长度系数;
——压应力图形丰满 程度系数;
9.2 变 形 验 算
3) 平均应变 s m 和c m

第七讲--钢筋混凝土受弯构件的变形与裂缝

第七讲--钢筋混凝土受弯构件的变形与裂缝
13
5.3 裂缝宽度验算
(3)三级:允许出现裂缝的构件,按荷载效应 准永久组合,并考虑长期作用影响计算时构件的 最大裂缝宽度ωmax,不应超过下页表中规定的最 大裂缝宽度限值ωlim。 即: ω max≤ω lim
注:上述一级、二级裂缝控制属于构件的抗裂能力控制, 对于一般的钢筋混凝土构件来说,在使用阶段都是带裂 缝工作的,故按三级标准来控制裂缝宽度。
11
5.3 裂缝宽度验算
3.2 影响裂缝宽度的主要因素 ①纵向钢筋的应力:裂缝宽度与钢筋应力近似呈线 性关系。 ②纵筋的直径:当构件内受拉纵向钢筋截面总面积 相同时,采用细而密的钢筋,则会增大钢筋表面积, 因而使粘结力增大,裂缝宽度变小。 ③纵筋表面形状:带肋钢筋的粘结强度较光圆钢筋 大得多,可减小缝度宽度。 ④纵筋配筋率:构件受拉区的纵筋配筋率越大,裂 缝宽度越小。
对于因基础不均匀沉降、构件混凝土收缩或温度变化等外加 变形或约束引起的裂缝,主要是通过采用合理结构方案、构 造措施来控制。
(2)荷载(直接作用)引起的裂缝,如受弯、受 拉等构件的垂直裂缝,受弯构件的斜裂缝。
试验结果表明,只要能满足斜截面承载力计算要求,并相应 配置了符合计算及构造要求的腹筋,则构件的斜裂缝宽度不 会太大,能满足正常使用要求。
15
5.3 裂缝宽度验算 4 减小裂缝宽度的措施
1、增大钢筋截面面积; 2、在钢筋截面面积不变的情况下,采用较小直径的钢 筋; 3、提高混凝土强度等级; 4、增大构件截面尺寸; 5、减小混凝土保护层厚度。
注:采用较小直径的变形钢筋是减小裂缝宽度最有效的措施。 需要注意的是,混凝土保护层厚度应同时考虑耐久性和减小裂 缝宽度的要求。除结构对耐久性没有要求,而对表面裂缝造成 的观瞻有严格要求外,不得为满足裂缝控制要求而减小混凝土 保护层厚度。

第9章钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性

第9章钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性
1
§9.1 钢筋混凝土受弯构件的挠度验算 9.1.0 问题的提出 1.挠度验算的要求:满足公式( 22),即荷载产生的挠度应小于 1.挠度验算的要求:满足公式(9-22),即荷载产生的挠度应小于 挠度验算的要求 ), 或等于规定的挠度(限值); 或等于规定的挠度(限值); 2.试验结果发现: 2.试验结果发现:钢筋混凝土受弯构件的实际挠度大于按材料力学 试验结果发现 计算出的挠度; 计算出的挠度; 3.理论和试验指出: 3.理论和试验指出:钢筋混凝土受弯构件的实际截面刚度比弹性刚 理论和试验指出 度减小; 度减小; 4.若仍然应用材料力学的公式形式计算实际挠度, 4.若仍然应用材料力学的公式形式计算实际挠度,则应对弹性刚度 若仍然应用材料力学的公式形式计算实际挠度 加以修正; 加以修正; 5.基于以上原因,构件的挠度计算转化为对其刚度的计算。 5.基于以上原因,构件的挠度计算转化为对其刚度的计算。 基于以上原因
5
受弯构件(长期) 9.1.4 受弯构件(长期)刚度 B 1.荷载长期作用下刚度降低的原因: 1.荷载长期作用下刚度降低的原因:徐变 荷载长期作用下刚度降低的原因 2.(长期) 按公式( 20)计算, 2.(长期)刚度 B 按公式(9-20)计算,其实质是将短期刚度 修正(折减)后得到的。 修正(折减)后得到的。 9.1.5 最小刚度原则与挠度计算 1.问题的提出: 1.问题的提出: 问题的提出 (1)前述刚度是指梁纯弯段的平均刚度的计算方法,工程设计计 前述刚度是指梁纯弯段的平均刚度的计算方法, 算时如何使用此方法值得讨论。 算时如何使用此方法值得讨论。 (2)前述刚度未考虑靠近支座处刚度减小的幅度(若仅考虑弯矩) 前述刚度未考虑靠近支座处刚度减小的幅度(若仅考虑弯矩) 要小些和剪切变形的影响(将减小刚度)。 要小些和剪切变形的影响(将减小刚度)。

筋混凝土构件的变形及裂缝验算

筋混凝土构件的变形及裂缝验算

9钢筋混凝土构件的变形与裂缝验算、目的要求1 .掌握构件在裂缝出现前后沿构件长度各截面的应力状态2•了解裂缝宽度计算公式的推导过程(平均裂缝间距、平均裂缝宽度)3.掌握受弯构件裂缝宽度验算和变形验算的方法二、重点难点1.裂缝的出现与分布规律2.平均裂缝间距、平均裂缝宽度3.短期刚度、长期刚度计算公式的建立三、主要内容9.1概述结构构件应根据承载能力极限状态及正常使用极限状态分别进行计算和验算。

通常,对各类混凝土构件都要求进行承载力计算;对某些构件,还应根据其使用条件,通过验算,使变形和裂缝宽度不超过规定限值,常使用及耐久性的其同时还应满足保证正他要求与规定限值,例如混凝土保护层的最小厚度等。

与不满足承载能力极限状态相比,结构构件不满足正常使用极限状态对生命财产的危害性要小,正常使用极限状态的目标可靠指标P可以小些。

《规范》规定:结构构件承载力计算应采用荷载设计值;对于正常使用极限状态,结构构件应分别技荷载的标准组合、准永久组合进行验算或按照标准组合并考虑长期作用影响进行验算。

并应保证变形、裂缝、应力等计算值不超过相应的规定限值。

由于混凝土构件的变形及裂缝宽度都随时间增大,因此,验算变形及裂缝宽度时, 应按荷载的标准组合并考虑荷载长期效应的影响。

荷载效应的标准组合也称为荷载短期效应,是指按永久荷载及可变荷载的标准值计算的荷载效应;荷载效应的准永久组合也称为荷载长期效应,是按永久荷载的标准值及可变荷载的准永久值计算的荷载效应。

按正常使用极限状态验算结构构件的变形及裂缝宽度时,其荷载效应值大致相当于破坏时荷载效应值的50%—70%。

9.2裂缝验算921裂缝控制的目的与要求确定最大裂缝宽度限值,主要考虑两个方面的原因:一是外观要求,二是耐久性要求,并以后者为主。

从外观要求考虑,裂缝过宽将给人以不安全感,同时也影响对结构质量的评 价。

满足外观要求的裂缝宽度限值,与人们的心理反应、裂缝开展长度、裂缝所 处位置,乃至光线条件等因素有关,难以取得完全统一的意见。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.裂ቤተ መጻሕፍቲ ባይዱ宽度验算
2.2 wmax的计算方法
《规范》的思路:
若干假定 根据裂缝出现机理
建立理论公式,计算平均裂缝宽度wm 按试验资料确定扩大系数
得到最大裂缝宽度wmax
第10页/共32页
A. 裂缝的出现和开展
2.裂缝宽度验算
出现
当c ftk,在某一薄弱环节第一条裂缝出现,由于钢筋
和混凝土之间的粘结,混凝土应力逐渐增加至 ftk 出现第二批 裂缝,一直到裂缝之间的距离近到不足以使粘结力传递至混 凝土达到 ftk –––完成裂缝出现的全部过程。
(d) (e)
3
Nk
sm
第12页/共32页
❖ 无滑移理论 构件表面裂缝宽度
主要是由钢筋周围的 混凝土回缩形成的 ;
2.裂缝宽度验算
我国《规范》是建立在粘结—滑移理论和无滑 移理论的基础上,结合大量试验结果得到的半理论 半经验公式。
第13页/共32页
2.裂缝宽度验算
wm
lcr 0
( s
c )dl
1.1 裂缝成因
1.概述
F
A、截面突变—应力集中
设 B、施加预应力不当(偏心、应力过大)
计 C、构造钢筋过少或过粗
纵向裂缝!!! 垂直裂缝!
原 D、设计中未考虑混凝土收缩、徐变因素
因 E、采用的混凝土等级过高---用灰量过大,对收缩不利
A、集料含泥量过大,级配不良或者采用不当的间断级配----收缩过大
通常,裂缝宽度和挠度一般可分别用控制最大钢筋直径和
最大跨高比来控制,只有在构件截面尺寸小、钢筋应力大时进
行验算。
第6页/共32页
1.概述
❖ 与承载能力极限状态设计相比,正常使用极限状 态设计的目标可靠度可以相对较低。
❖ 裂缝宽度和变形的验算表达式如下:
S≤C
…8-1
式中
S —— 结构构件按荷载效应的标准组合、准永久组 合或标准组合并考虑长期作用影响得到的裂
受 弯:
sq
Mq 0.87h0 As
偏心受拉:
sq
N qe As (h0 as )
偏心受压:
sq
Nq(e z) As z
2.裂缝宽度验算
h b 矩形、T形截面 2
Ate h 2 b (bf b)hf
倒T形截面
➢ 钢筋应力不均匀系数
sm 1.1 0.65 f tk
sq
te sq
…8-8
(0.2 1.0)
第17页/共32页
2.裂缝宽度验算
➢ 裂缝截面处钢筋应力 sk
轴心受拉:
sq
Nq As
❖ 挠度过大影响使用功能,不能保证适用性; 而裂缝宽度过大,则同时影响使用功能和耐久性。
裂缝
荷载引起的裂缝:与构件的受力特征有关。 (约占20%)
非荷载引起的裂缝:由筋材锈料蚀收后缩体、积温增度大变、化地、基钢不 均匀沉降等产生的裂缝。 (约占80%)
第4页/共32页
1.概述
e0
e0
Nk
Nk
(a)
护 C、现场养护不到位,早期脱水,收缩裂缝
原 因
D、模板支模、拆除不当,引起裂缝
使 用 原 因
A、基础不均匀沉降
B、荷载超荷
T
C、环境,如酸、碱、盐的侵蚀 D、火灾、轻度地震等意外事气故温升高时
E、温度裂缝
温度区段
第2页/共32页
1
2
3
钢筋锈蚀导致裂缝
第3页/共32页
1.概述
❖ 构件的裂缝宽度和挠度验算属于正常使用极限状态。
lm
1.9cs
0.08 deq
te
式中:
––– 与受力特性有关的系数
轴心受拉 =1.1 受弯、偏心受压 =1.05 偏拉 =1.0
cs ––– 最外层纵向钢筋至受拉区混凝土底边的距离;
deq –––纵向受拉钢筋的等效直径,mm;
deq
ni
d
2 i
nii di
第15页/共32页
2.裂缝宽度验算
开展
当荷载继续增加到Nk,在一个裂缝间距范围内由钢筋 与混凝土应变差的累积量,即形成了裂缝宽度。
第11页/共32页
B.平均裂缝宽度wm
❖ 粘结 - 滑移理论:
裂缝宽度等于裂缝 间距范围内钢筋和混 凝土的变形差 ;
2.裂缝宽度验算
Ncr+N
1
Ncr+N
2
1
(a)
Nk 1 ss
<ftk 2 (b) (c)
wm
( sm
cm )lcr
1
sm sm
sm
lcr
c
sm
E s
lcr
式中: c 取 0.85 sm = sk
wm
=
0.85
sk
Es
lm
…8-3
cs cm
c分布
(b)
lcr+cmlcr lcr+smlcr
m
(a) m
ss sm
s分布
(c)
第14页/共32页
2.裂缝宽度验算
➢ 平均裂缝间距lm
缝宽度或变形值;
C—— 结构构件达到正常使用要求的规定限值、裂
缝宽度和变形限值。
第7页/共32页
1.概述
在进行荷载效应计算时,荷载组合有两种情况:
荷载效应的标准组合为:
n
Sk SGk SQ1k
Sci Qik
i2
…8-2
荷载效应的准永久组合为:
n
Sq SGk
Sqi Qik
i 1
…8-3
第8页/共32页
2.裂缝宽度验算
裂缝的控制等级分为三级,钢筋混凝土结构构件进 行裂缝宽度的验算。
2.1 验算公式
w w max
lim
…8-4
w —— 按荷载效应准永久组合并考虑长期作用影响计
max
算的最大裂缝宽度;
wlim —— 最大裂缝宽度的限值。对此建筑工程、公路
桥涵工程有不同的要求。
第9页/共32页
材 B、外加剂、掺和料选择不当 料 C、水泥品种原因(比如矿渣硅酸盐水泥收缩比普通硅酸盐水泥收缩大) 原 D、混凝土等级越高,混凝土越脆 因 E、配合比等原因
第1页/共32页
1.概述
施 工 及
A、振捣不当影响混凝土的密实性和均匀性 B、大体积混凝土工程,操作流程缺少,表面易收缩裂缝;

降温及保温措施不够,产生温度裂缝
Mk
Nk
Tk
Nk
(b)
Nk
Nk
(c)
(d)
Mk
(e)
Tk
(a)轴心受拉 ; (b)偏心受拉 ; (c)偏心受压 ; (d)受弯和受剪 ; (e)受扭。
第5页/共32页
1.概述
非荷载引起 的裂缝
为防止温度应力过大引起的开裂,规定了伸缩 缝之间的最大间距。
为防止由于钢筋周围混凝土过快地碳化失去 对钢筋的保护作用,出现锈胀引起的沿钢 筋纵向的裂缝,规定了钢筋的混凝土保护 层的最小厚度。
i ––– 纵向受拉钢筋的表面特征系数
ni –––第i种纵向受拉钢筋的根数 ;
带肋: =1.0 光面: =0.7
te ––– 截面的有效配筋率, te = As / Ate
h h/2
b
(a)
b
h hf h/2
bf
(c)
bf hf h h/2
(bb)
bf hf
b
hf
(bdf )
h h/2
第16页/共32页
相关文档
最新文档