集成运放电路的设计
第四章集成运放内部电路设计文档ppt

(1)采用有源负载的放大器具有很高的电压增益。 (2) 有源负载放大器的增益与电源电压无关。 (3) 可以大大节约芯片面积。
4. 2. 3 电流源的主要应用----有源负载 有源负载共射放大电路
Au1
rce1//rce2//RL RBrbe1
有源负载射级跟随器
4.3 差分放大电路
4.1 集成运放电路电路概述
集成电路(IC:Integrated Circuit)是在同一块微 小的硅片上经过氧化、光刻、扩散、外延、蒸铝等 工艺,将电阻、二极管、晶体管、场效应管及小电 容和它们之间的连线组成的完整电路制作在一起, 最后再进行封装,形成的一个实现特定功能的完整 电路。
集成电路分类: 通用型运放: 专用型运放:高阻型、高速型、高精度型、
4.3.1 零点漂移现象
所谓的零点漂移,就是当 输入信号为零时,输出信号是 一个随时间变化,漂移不定的 非零信号
4.3.2一般差分放大电路的特性分析
结构特点: 结构高度对称, 有两个输入端,两个输出端,
1、抑制零漂原理
IC1
T (C)
IC1
I E1
IC2
IE2
IC2
2IE
U Rg
U BE1
I B1
4、共模抑制比
K CMR
Ad Ac
KCMR
dB 20lg
Ad Ac
差模电压增益越大,共模电压增益越小, 则共模抑制能力越强,抑制零漂的能力愈强, 放大电路的性能越优良。
5、典型差分放大电路及四种工作方式
(a)双端输入、 双端输出
(b)单端输入、 双端输出
(c)双端输入、 单端输出
(d)单端输入、 单端输出
U BE 2
实验五 集成运算放大器的基本运算电路(2)

实验五 集成运算放大器的基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、正确理解运算电路中各组件参数之间的关系和“虚短”、“虚断”、“虚地”的概念。
二、设计要求1、设计反相比例运算电路,要求|A uf |=10,R i ≥10K Ω,确定外接电阻组件的值。
2、设计同相比例运算电路,要求|A uf |=11,确定外接电阻组件值。
3、设计加法运算电路,满足U 0=-(10U i1+5U i2)的运算关系。
4、设计差动放大电路(减法器),要求差模增益为10,R i >40K Ω。
5、应用Multisim8进行仿真,然后在实验设备上实现。
三、实验原理1、理想运算放大器特性集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。
理想运放,是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽f BW =∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
2、基本运算电路 (1)反相比例运算电路电路如图2.5.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1//R F 。
图2.5.1反相比例运算电路图2.5.2反相加法运算电路(2) 反相加法电路i 1F O U R R U -=电路如图2.5.2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-=R 3=R 1//R 2//R F (3)同相比例运算电路图2.5.3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U +=R 2=R 1//R F 当R 1→∞时,U O =U i ,即得到如图2.5.3(b)所示的电压跟随器。
集成运放应用电路设计360例

集成运放应用电路设计360例1. 引言集成运放是一种广泛应用于电子电路设计中的集成电路元件,它具有高增益、高输入阻抗、低输出阻抗等特点,常用于放大、滤波、比较、积分等各种电路应用。
本文将介绍360个集成运放应用电路设计例子,涵盖了各种常见的电路应用,帮助读者更好地理解和运用集成运放。
2. 非反相放大器2.1 原理非反相放大器是一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压相比较,然后放大输出。
非反相放大器的输入信号与输出信号之间的相位关系相同,但是幅度不同。
2.2 设计例子以下是一些非反相放大器的设计例子:1.使用集成运放LM741设计一个非反相放大器,放大倍数为10。
2.使用集成运放LM358设计一个非反相放大器,放大倍数为100。
3.使用集成运放TL071设计一个非反相放大器,放大倍数可调。
3. 反相放大器3.1 原理反相放大器是另一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压相比较,然后放大输出。
反相放大器的输入信号与输出信号之间的相位关系相反,但是幅度相同。
3.2 设计例子以下是一些反相放大器的设计例子:1.使用集成运放LM741设计一个反相放大器,放大倍数为10。
2.使用集成运放LM358设计一个反相放大器,放大倍数为100。
3.使用集成运放TL071设计一个反相放大器,放大倍数可调。
4. 比较器4.1 原理比较器是一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压进行比较,然后输出一个高电平或低电平的信号。
比较器常用于电压比较、信号检测等应用。
4.2 设计例子以下是一些比较器的设计例子:1.使用集成运放LM741设计一个电压比较器,当输入电压大于参考电压时输出高电平,否则输出低电平。
2.使用集成运放LM358设计一个电压比较器,当输入电压小于参考电压时输出高电平,否则输出低电平。
3.使用集成运放TL071设计一个电压比较器,当输入电压与参考电压之差大于某个阈值时输出高电平,否则输出低电平。
详解运放七大应用电路设计

详解运放七大应用电路设计运放(Operational Amplifier,简称OPAMP)是一种高增益、直流耦合、差分放大器电路,常用于各种模拟电路和信号处理电路中。
它具备高增益、高输入阻抗、低输出阻抗、宽带宽等特点,适用于各种应用场景。
以下是运放的七大应用电路设计:1. 反相放大器(Inverting Amplifier):用于放大输入信号,但输出信号与输入信号具有180度相位差。
在反相放大器中,输入信号通过一个电阻R1作用在运放的反相端,而反相端还通过一个电阻R2与运放的输出端相连。
这种电路可以得到具有指定放大倍数的输出信号。
2. 同相放大器(Non-Inverting Amplifier):该电路与反相放大器结构类似,但是反相输入引脚和接地相连,而非反相输入引脚通过一个电阻与输出端相连。
同相放大器输出信号与输入信号相位相同。
3. 集成运放比例器(Integrator):该电路可将输入信号积分,输出信号与输入信号成正比。
集成运放比例器的电路还包括一个电容器,它与运放的反相输入端连接。
当输入信号施加到运放的非反相输入端时,电容器开始充电,导致运放的输出电压变化。
4. 集成运放微分器(Differentiator):该电路可对输入信号进行微分,输出信号与输入信号的导数成正比。
微分器电路使用一个电容器连接到运放的反相输入端,而电容器的另一端通过一个电阻与运放的输出端相连。
当输入信号通过电容器时,运放的输出电压变化,产生与输入信号的导数成正比的输出信号。
5. 增益调节器(Gain Adjuster):该电路可以通过改变反馈电阻值Rf来调整放大倍数。
增益调节器电路结合了反相放大器和用变阻器替代常规反馈电阻的电路设计。
通过改变变阻器的阻值,可以调节输出信号的放大倍数。
7. 限幅放大器(Clamp Amplifier):该电路可以将输入信号限制在一个特定范围内,并且不受输入信号的变化影响。
限幅放大器电路使用二极管来限制输入信号的范围。
集成运放应用电路设计360例

集成运放应用电路设计360例集成运放(Operational Amplifier,简称Op-amp)是现代电子技术中常用的一种电子器件。
它是一种高增益、直流耦合放大器,能够在很宽的频带内传输信号。
它具有输入阻抗极高、输入电阻极低、输出阻抗极低、增益高、频率响应宽广、抗干扰能力强等特点。
因此,集成运放被广泛应用于各种电子设备和电路中,包括放大器、滤波器、振荡器、比较器和积分器等。
本文将介绍360个集成运放应用电路设计,具体内容如下:1.放大器电路:集成运放最基本的应用之一就是作为放大器使用。
通过调整集成运放的反馈电阻和输入电阻,可以实现不同的放大倍数。
比如,放大器电路可以用于音频放大、信号调理、传感器信号放大等。
2.滤波器电路:集成运放可以组成各种滤波器电路,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器电路可以用于信号处理、音频处理、通信等领域。
3.比较器电路:比较器是一种将输入信号与参考电压进行比较,并产生开关型输出信号的电路。
集成运放可以很方便地组成比较器电路,常用于电压比较、数字信号处理等应用。
4.仪器放大器电路:仪器放大器是一种专门用于放大微弱信号、提供高的共模抑制比和高输入阻抗的放大器。
通过集成运放,可以设计出高性能的仪器放大器电路,用于传感器信号放大、生物电信号处理等。
5.积分器电路:积分器电路可以对输入信号进行积分操作,常用于信号处理、电力电子等领域。
通过集成运放,可以很方便地实现积分器电路的设计。
6.振荡器电路:振荡器是一种能产生固定频率、稳定振幅的信号源。
集成运放可以作为振荡器电路的关键部件,实现正弦波振荡器、方波振荡器、三角波振荡器等。
7.波形发生器电路:通过集成运放,可以设计出各种波形发生器电路,包括正弦波发生器、方波发生器、三角波发生器和脉冲波发生器等。
8.限幅器电路:限幅器是一种将输入信号限制在一定范围内的电路。
通过集成运放,可以设计出各种限幅器电路,用于信号处理、电压调节等。
. 集成运放应用电路设计 360 例

. 集成运放应用电路设计 360 例《集成运放应用电路设计360例》一、引言在当今电子科技飞速发展的时代,集成运放应用电路设计已经成为了电子工程师们日常工作中不可或缺的一部分。
本文将从不同的角度对集成运放应用电路设计进行360例分析,帮助读者更全面、深入地了解这一重要主题。
二、集成运放的基本原理1. 什么是集成运放集成运放是一种集成电路芯片,内部含有多个传输管、电阻、电容、运算放大器等电子元件,具有高放大倍数、高输入阻抗和低输出阻抗等特点。
2. 集成运放的工作原理集成运放的工作原理是利用差分输入、负反馈和放大器的特性来实现对输入信号的放大、滤波、积分、微分等功能。
三、常见的集成运放应用电路1. 非反相放大电路在非反相放大电路中,输入信号经过集成运放放大后,输出信号与输入信号具有相同的极性。
2. 反相放大电路反相放大电路是集成运放应用电路中常见的一种,通过负反馈来实现对输入信号的放大。
3. 滤波电路集成运放在滤波电路中发挥着重要作用,实现对特定频率信号的滤波和衰减。
4. 比较器电路比较器电路利用集成运放的开环增益特性,将输入信号与基准电压进行比较,输出高低电平信号。
4. 信号调理电路信号调理电路利用集成运放对信号进行调理和处理,如放大、滤波、积分、微分等,常见于传感器和仪器仪表系统中。
五、集成运放应用电路设计的关键要点1. 电路设计的精度要求在集成运放应用电路设计中,精度是一个至关重要的要素,包括输入输出精度、电源电压滞后、温度漂移等。
2. 电路的稳定性稳定性是集成运放应用电路设计中需要考虑的另一个关键因素,包括电路的稳定性、抑制电路震荡、频率补偿等。
3. 电路的抗干扰能力在实际应用中,集成运放应用电路设计需要考虑电路的抗干扰能力,尤其是在噪声干扰严重的环境中。
4. 电路的功耗和热设计在电路设计中,功耗和热设计是需要综合考虑的因素,包括电路的功耗、温升、散热方式等。
六、集成运放应用电路设计的案例分析1. 温度传感器信号调理电路设计在温度传感器信号调理电路设计中,需要考虑到传感器的灵敏度、温度范围、线性化补偿等因素。
实验:集成运算放大器应用(加减运算电路设计)

2021/3/10
讲解:XX
8
图6-3 同相比例放大器
2021/3/10
讲解:XX
9
3.加法器
电路如图6-4所示。当运算放大器开环 增益足够时,运算放大器的输人端为虚地, 三个输入电压可以彼此独立地通过自身的输 入回路电阻转换为电流,能精确地实现代数 相加运算。根据虚断和虚短的概念,有
Ui1 Ui2 Ui3 UO
UO 10Ui
2021/3/10
讲解:XX
14
图6-6 反相比例放大器
2021/3/10
讲解:XX
15
在该比例放大器的输人端加人下列电压值
测出放大器的输出电压值。
2021/3/10
讲解:XX
16
2 同相跟随器 实验电路按图6-7连接,使其满足下列
关系式:
在该放大器的输人端加人下列电压值,
2021/3/10
R1 R2 R3
RF
UOR RF 1Ui1R RF 2Ui2R RF 3Ui3
2021/3/10
讲解:XX
10
4 减法器
电路如图6-5所示。当运算放大器开环 增益足够大时,输出电压Uo为:
在电阻值严格匹配的情况下,电路具有 较高的共模抑制能力。
2021/3/10
讲解:XX
11
图6-5 减法器电路
2021/3/10
讲解:XX
22
4 设计加减法电路
(1)设计一个加法电路,使其满足下列关系式:。
①输入信号Ui1、Ui2都是频率为1kHz的正弦信号,幅度分 别为U1p-p=100mV,U2p-p=200mV,观测输出是否满足 设计要求。
②输入信号Ui1是频率为1kHz,幅度为U1p-p=100mV的正 弦信号,Ui2是直流电压(+0.5V),观测输出是否满足设 计要求(注意输入信号中有直流电压使输出信号中含有直流 分量后与输出为纯交流信号的不同)。
集成运放应用电路设计360例

集成运放应用电路设计360例一、引言1.集成运放简介集成运放,即集成运算放大器,是一种具有高增益、宽频带、低噪声、低失真等优良特性的模拟电路。
它广泛应用于各种电子设备中,如放大器、滤波器、振荡器等电路。
2.集成运放应用电路设计的重要性集成运放应用电路设计是电子工程师必备的技能。
通过合理的设计,可以充分发挥集成运放的性能优势,实现各种功能电路。
此外,集成运放应用电路设计还具有很高的实用性和广泛的应用价值。
二、集成运放的分类与应用领域1.电压跟随器电压跟随器是一种基本型的集成运放电路,具有输入电压与输出电压相等的特性。
它广泛应用于信号放大、隔离、基准电压源等领域。
2.电压放大器电压放大器是一种常见的集成运放应用电路,用于放大输入电压信号。
根据不同的应用需求,电压放大器可分为共模放大器、差分放大器等。
3.电流放大器电流放大器是一种针对电流信号进行放大的集成运放电路。
常见于传感器信号处理电路,用于将微小电流信号放大至适合后续处理和显示的范围内。
4.运算放大器运算放大器是一种具有高增益、宽频带、低失真等性能的集成运放电路。
它广泛应用于模拟信号处理、数字信号处理、控制系统等领域。
5.滤波器滤波器是一种基于集成运放的滤波电路,用于去除噪声和干扰信号。
根据滤波器的特性,可分为低通滤波器、高通滤波器、带通滤波器等。
6.振荡器振荡器是一种基于集成运放的振荡电路,用于产生稳定的正弦波信号。
它广泛应用于通信、测量、控制等领域。
7.传感器信号处理电路传感器信号处理电路是一种将传感器输出的信号进行处理的集成运放应用电路。
常见于各种传感器信号的处理和放大,如温度传感器、压力传感器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 设计目的
1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。
2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。
经调试这里选取C=1uf R =100k可调Rf=100k
运放积分电路图
输入输出波形
3.5运放加减法电路
图5
图5为运放加法电路原理图。运放加法电路是反相比例电路的变形,带有两个或更多的输入信号。各个输入电压Vi通过各自的输入电阻Ri连接到各自的输入电阻Ri连接到运放的-输入引脚。运放加法电路满足克希荷夫第二定律,即在任意瞬时,电路中任意节点流入流出的电流和为零。在V-这一点, 。而且理想运放没有输入电流、没有偏置电流。在这种连接情况下,-输入端通常称为求和节点(Vs)。这个点的另一个表述为:在求和节点上,所有的电流和为零。
3运放电路基本原理及其Mulitisim仿真
3.1.同相比例运放电路
同向比例运放电路组成如图1所示,将输入电阻R1接地,并且将输入信号加载道+输入端。
图1
电压在通过由反馈电阻Rf和输入电阻R1组成的分压电路的时候产生压降,中间位置的电压V-为:
(8)
根据理想运放的性质1,运放的输入电压△V为零,因此Vin=V-。重新排列公式
输入输出信号需预留接口;
3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至少为双层PCB板;
四设计内容
1集成运算放大器放大电路概述
集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
二设计工具:计算机,Mulitisim,Protel软件
三设计任务及步骤要求
1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较;
2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上;
(9)
通用运放的闭环增益为G=1+Rf/R1,并且不会改变输入信号的符号。从中可以看出电路的输入阻抗Zi很大。
(10)
式中,Zin为实际运放的输入阻抗(大约为20m ,且由于电路的开环增益A很大,输出阻抗Z0趋紧于零,因此,同向比例运放电路能够以有限的增益有效地对输入电路进行缓冲。
同相比例运放电路仿真电路图
3.4运放积分电路
图4
图4为运放积分电路示意图。在运放积分电路中,用电容器替换反馈电阻。理想电容器能够存储电荷(Q),并且没有漏电流。输入电流通过求和节点对反馈电容器Cf进行充电。电容器上的电压等于Vout,电容器存储电荷Q=CV,即Q=CfVout,并且电流I=dQ/dt,可以得到
(11)
将运放看做理想运放,i1=Vin/R1,且i1=If,则
对于输入回路1
(15)
对于输入回路2
(16)
对于反馈回路
(17)
根据以上式子可得输出
(18)
如果R1=R2=R,那么电路模拟了一个真实的加法电路。
(19)
在Rf/R=1/2的特殊情况下,输出电压为输入电压的平均值。
加法运放电路
减法运放电路
4.SCH原理图
5.PCB印制板图
五.心得体会
在这次实践课程我复习和掌握了六种基本集成运算放大电路的特性,并且熟练了Mulitisim的使用.在电路设计的过程中,通过参考书和网上教学视频我学会了绘制简单的PCB电路板,这也是设计过程中最大的收获.我想实践课的过程就是自学,不断尝试和探索的过程,而以后的学习和生活更需要靠自学能力来提高自己.而这需要的是静心和敢于探索的精神.因此在以后的学习过程中,需要踏实下来努力学习并熟练掌握电路设计软件的使用,通过多实践不段提高自己的电路设计水平.争取获得一技之长.
(7)
式中,Rf/R1的比值称为闭环增益G,负号表示输出反向。闭环增益可以通过选择两个电阻Rf和R1来设定。
反比例运算仿真电路图
输入电压输出电压
所以输出放大倍数-337/28 = -12=
输入输出电压波形
3.3运放微分电路
经调试选取C1=1uf Rf=2k可调 R2=1k
运算微分电路图
输入输出电压波形图
输入电压输出电压
所以输出放大倍数:310/28= 11 =
电压输入输出波形图如下
3.2.反比例运放电路
图2中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。标号为Rf的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。输入电压V1通过输入电阻R1产生了一个输入电路i1。电压差△V加载在+、—输入端之间,放大器的正输入端接地。
(12)
用积分的形势表达:
(13)
输出电压为输入电压的积分乘以一个比例系数(1/R1Cf)。R的电位是欧姆,C的单位是法拉,RC的单位是秒。例如,一个1uF的电容器和一个1M 的电阻组成的积分电路的时间常数为1秒。
假设输入电压恒定,那么输入电压项可以从积分号中提出来,公式变为:
(14)
其中常数由初算传输特性:
输入回路:
(2)
反馈回路:
(3)
求和节点
(4)
增益公式:
(5)
由以上4个式子可以得到输出:
(6)
式中,闭环阻抗Z=1/Rf+1/ARf+1/Rf。
反馈电阻和输入电阻通常都较大 级,并且A很大(大于100000),因此Z=1/Rf。更进一步,△V通常很小(几微伏)且放大器的输入阻抗Zin很大(大约 ),那么输入输入电流(Iin=△V/Zin)非常小,可以认为为零。则传输曲线变为:
2集成运放芯片的选取和介绍
由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。