电力系统电压调整的方式与措施
电压调整的方法有哪些

电压调整的方法有哪些电压调整是指调整电路中的电压值,以满足特定需求的过程。
电压调整常用于电力系统、电子设备和通信系统等领域。
以下是一些常见的电压调整方法:1. 变压器调整:变压器是一种最常见的电压调整设备。
通过改变变压器的绕组比例,可以实现输入电压和输出电压之间的相互转换。
变压器可以升压、降压或保持输入电压不变。
2. 变频器调整:变频器是一种通过调整电压频率来实现电压调整的设备。
它可以将电源频率转化为可调变的频率,从而改变电压的大小。
变频器常用于电机调速、照明系统和电源供应等应用中。
3. 脉宽调制:脉宽调制是一种通过改变脉冲宽度的方式来实现电压调整的方法。
通过控制脉冲宽度,可以改变脉冲信号的平均电压值。
脉宽调制广泛应用于功率电子、直流-直流变换器和交流-直流变换器等系统中。
4. 自动稳压器调整:自动稳压器是一种常用的电压调整装置。
它通过对输入电源的电压进行检测,并相应地调整输出电压来实现稳定的电压输出。
自动稳压器可根据负载变化和输入电压波动自动调节输出电压,以保持输出电压的稳定性。
5. 电容器调整:电容器是一种用于调整电压的被动元件。
通过在电路中并联或串联电容器,可以改变电路中的总电压。
电容器可以用于电源滤波、电路耦合和电压幅值调整等应用中。
6. 整流器调整:整流器是一种用于将交流电转换为直流电的装置。
通过调整整流器的电路结构和参数,可以实现不同的电压调整效果。
整流器通常用于电力系统、电力负载和电子设备等领域。
7. 变换器调整:变换器是一种用于将电源电压转换为不同电压等级的装置。
通过调整变换器的变比和工作方式,可以实现电压的调整和转换。
变换器广泛应用于电力系统、能源转换和电子设备等领域。
8. 开关电源调整:开关电源是一种高效的电源调整装置。
它通过控制开关元件的开关状态,使输入电压在开关元件导通和关断的过程中产生变化,从而实现电压调整。
开关电源常用于电子设备、通信系统和计算机系统等应用中。
9. 反馈调整:反馈调整是一种通过引入反馈电路来实现电压调整的方法。
电力系统中的电压稳定分析与调整

电力系统中的电压稳定分析与调整电力系统的电压稳定性是指系统中的电压在经历各种外界扰动或负载变化后,能够保持在合理的范围内,不发生剧烈波动或失控的能力。
这是电力系统运行中非常重要且必须保证的一项指标。
电压稳定与供电质量密切相关,对用户的用电设备和电网设备的正常运行至关重要。
因此,电力系统中的电压稳定分析与调整是保障电力系统稳定运行的重要环节。
首先要进行电力系统中的电压稳定性分析。
电压稳定性分析是通过建立电压稳定分析模型,对电力系统中的各种动态、静态因素进行综合评估和分析,以确定系统是否存在电压稳定问题,找出电压稳定问题的根源。
电压稳定性分析的核心内容是动态稳定和静态稳定。
动态稳定性分析主要研究系统发生大扰动后的动态响应过程,如故障发生时的系统频率衰减和转子振荡,以及系统在故障后的恢复过程。
动态稳定性分析需要进行瞬态稳定分析和暂态稳定分析,重点关注系统中的发电机、变压器、传动系统等关键设备。
静态稳定性分析主要是研究系统的静态稳定问题,如电压幅值的变化、功率平衡失调、电力负载变化等。
静态稳定性分析需要对系统中各个节点的功率平衡进行评估,并进行电压裕度计算,以确定系统中的潜在电压稳定问题。
在电压稳定性分析的基础上,根据分析结果,需要进行相应的电压调整操作,以保证系统的电压稳定。
电压调整方法主要分为静态电压补偿和动态电压调整两种。
静态电压补偿主要通过调整发电机励磁电流、变压器的调压器和无功补偿装置等来实现。
通过提高或降低励磁电流,可以改变发电机的输出电压,从而调整系统中的电压水平。
调压器和无功补偿装置可以根据系统需求,调整变压器与系统之间的电压比例关系,提供无功电力的支持,以保持系统的电压稳定。
动态电压调整主要通过自动电压控制装置(AVR)和功率调整装置(PTC)等来实现。
AVR主要负责调整发电机的励磁电流,通过检测系统中的电压变化,控制发电机的励磁状态,使输出电压保持在合理范围内。
PTC则通过调节发电机的有功输出功率,来调整系统中的电压水平。
电力系统的电压和频率调节

电力系统的电压和频率调节电力系统中的电压和频率调节是确保供电系统稳定、高效运行的关键措施。
在电力系统中,电压和频率的调节对于保持用电设备的正常运行以及保障用户的电能质量至关重要。
本文将探讨电力系统中电压和频率调节的原理、方法以及相关控制策略。
一、电压调节1. 电压调节的重要性电力系统中的电压调节是对电压进行稳定控制的过程。
电压的稳定控制是为了保持用电设备在正常范围内工作,同时保证电能质量。
过高或过低的电压都会对电力设备的正常运行产生不利影响,甚至导致设备故障。
2. 电压调节的原理电压调节的原理是通过调整发电机励磁电流或变压器的变比来实现。
在电力系统中,通过自动电压调节器(AVR)调节发电机励磁电流,来控制电压。
同时,变压器的变比调整也可以实现电压调节。
3. 电压调节的方法电压调节的方法主要包括电力系统的无功功率补偿、发电机励磁控制和变压器的变压器调节等。
无功功率补偿通过调整无功功率的流动来改变电网的电压;发电机励磁控制通过调节励磁电流来控制发电机输出电压;变压器调节通过调节变压器的变比来实现电网电压的调整。
二、频率调节1. 频率调节的重要性在电力系统中,频率的稳定性对于保证电力设备的运行和电能质量是至关重要的。
电网的负荷波动、运行状态的变化等因素都会导致频率的波动。
频率的稳定性是确保用电设备正常运行的基础。
2. 频率调节的原理频率调节的原理是通过调节电力系统的发电量来实现。
在电力系统中,发电量和负荷之间必须保持平衡,以维持频率的稳定。
当负荷增加时,发电量也需要增加,以保持频率不变。
3. 频率调节的方法频率调节的方法包括机械调节和自动调节两种方式。
机械调节是通过人工干预来调节机组的负荷和发电量,以维持频率的稳定。
而自动调节则通过采用自动调节装置来实现。
现代电力系统中,自动频率调节器(AGC)是常用的调节装置,它可以自动监测频率的变化并控制机组负荷的调整。
三、电压和频率调节的控制策略1. 电压和频率的联合调节为了确保电力系统供电稳定、高效运行,电压和频率调节是需要相互协调的。
电力系统调压措施分析报告

电压是衡量电能质量的重要技术指标,对电力系统的平安经济运行,保证用户平安生产和产品质量以及电气设备的平安和寿命具有重要影响。
19 世纪 70、80 年代法国、美国、瑞典、巴西、日本等国家相继发生电压崩溃性事故,这些以电压崩溃特征的电网瓦解事故每次均带来巨大的经济损失,同时也引起了社会的极大混乱。
电压崩溃是由系统运行中的电压偏移未能良好的进展调整演变而成。
任何电压偏移都会带来经济和平安方面的不利影响。
当系统出现故障时,电压会降低,如果不及时地采用合理有效的措施对电压进展调整,就会引起电压崩溃进而电网瓦解等重大灾难性事故。
因此,电压调整是保证电网平安可靠运行的重要方面之一。
保证用户处的电压接近额定值是电力系统运行调整的根本任务之一。
电力系统的运行电压水平取决于无功功率的平衡,系统中各种无功电源的无功输出应该满足〔大于或至少等于〕系统负荷和网络损耗在额定电压下对无功功率的需求,否那么电压就会偏离额定值,产生电压偏移。
此外为保证运行可靠性和适应无功功率的增长,系统还必须配置一定的无功备用容量。
系统的无功电源充足,即表现系统能运行在较高的电压水平;反之,系统无功缺乏就反映为运行电压水平偏低,需要装设无功补偿设备。
由于电力系统的供电区域幅员广阔,无功功率不适宜长距离传输,所以负荷所需的无功功率应尽量的分层分区就地平衡。
由无功功率平衡原理可知进展电压调整就是从补偿无功电源和减小网络无功损耗两个方面出发。
电力系统构造复杂且用电设备数量极大,电力系统的运行部门对网络中各母线电压及各种用电设备的端电压进展监视和调整是不现实的也是没有必要的。
因此,在电力系统中,运行人员常常选择一些有集中负荷的母线作为中枢点进展监视和控制,只需将中枢点电压控制在允许的电压偏移范围内,那么系统其它各处的电压质量也能根本满足要求。
一般可以选择作为电压中枢点的母线有: 1〕大型发电厂的高压母线。
2〕枢纽变电站的二次母线。
3〕带有大量地方负荷的发电厂母线。
电力系统调压措施分析报告

优化调度策略
根据负荷预测和运行方式,优化调度策略,确保电力系统的稳定 性和可靠性。
06
CATALOGUE
结论与展望
研究结论
电力系统的电压调整对于保障电力系 统的稳定运行具有重要意义。
本研究通过理论分析和实验验证,证 明了调压措施的有效性和可行性。
综合调压方案
总结词
综合调压方案是结合多种调压措施来达到系统电压的全面优 化。
详细描述
综合调压方案通常包括改变发电机端电压、调整变压器分接 头和串联电容补偿等多种措施。通过综合运用这些措施,可 以更全面地优化系统电压,满足不同设备的需求。
04
CATALOGUE
电力系统调压效果评估
评估指标体系
电压合格率
常调压
在任何情况下都保持系统电压在额定值附近 ,以保持电力系统的稳定运行。
03
CATALOGUE
电力系统调压措施
改变发电机端电压调压
总结词
发电机端电压的改变直接影响电力系统的电压水平。
详细描述
通过调节发电机的励磁电流,可以改变发电机端电压,进而调整系统电压。但这 种方法仅适用于发电机的电压调整,对于其他设备的电压调整效果有限。
电力系统中电压的重要性
电压是电力系统中的重要参数,它的大小直接影响到电力 系统的稳定性和电能质量。
调压措施的意义
由于电力系统中的电压波动和变化会对设备和用户产生不 利影响,因此采取合理的调压措施对于保障电力系统的稳 定和电能质量具有重要意义。
研究目的和意义
研究目的
通过对电力系统调压措施的分析和研究,提出有效的调压方案,以保障电力系 统的稳定和电能质量。
电力系统电压调整的常用方式

电力系统电压调整的常用方式
电力系统电压调整的常用方法有三种。
1、增属无功功率进行调压,如发电机、调相机、开联电容器、并联电抗器调压。
2、改变有功功幸和无功功率的分市进行闹压。
如调压实压器、改变变压器分接头调压。
3、改变网络参数进行调压,如串联电容器、投停叶列运行变压器、投停空转或餐然高压纬路调。
按规定的运行电压允许偏差,在电力系统高峰负荷时期将电压中枢点的电压调整到电压曲线上限,在低谷负荷时期将电压调整到电压曲线下限的电压调整方法。
电力系统在高峰负荷时,输电线和变压器的传输功率大,它们的电压损耗也大,用户处的电压偏低;在低谷负荷时,输电线和变压器的传输功率小,它们的电压损耗也减小,用户处的电压偏高。
扩展资料
为了保持较好的供电电压质量、减小用户处的电压变化幅度,要求电力系统实行逆调压。
电力系统实现逆调压应具备的一些条件:
①要有合理的电网结构,尤其是供电网和配电网要根据负荷密度确定合理的供电半径;
②要有充足的、布局合理的无功电源;
③要有足够容量的能进行双向调节(既能发出无功功率,又能吸收无功功率)的无功补偿装置.如调相机、装有并联电抗器的电容器
组、静止无功补偿器等;
④运行中灵活调节电压幅值和相角的设备,如带负荷调压变压器、移相变压器等;
⑤配电网中装设可投切的电抗器。
电力系统的主要调压措施

电力系统的主要调压措施1、借改变发电机端电压调压特点:不用追加投资,调整方便。
应优先考虑。
由孤立发电厂直接供电的小系统或者机压负荷,调UG较易满足用户电压要求。
2、借改变变压器变比调压双绕组变压器的高压绕组和三绕组变压器的高、中压绕组都设有多个分接头。
分接头的调压方式为:停电调分接头一一无励磁调压(即普通)变压器。
带负荷调分接头一一有载调压变压器。
对应于变压器绕组额定电压UN的分接头常称为主接头或主抽头。
普通变压器的分接头数目:SN≤6300kVA,双绕组变压器的高压绕组有三个分接头:UN±5%,即1.05UN、UN、0.95UNSN>6300kVA,双绕组变压器的高压绕组有五个分接头:UN±2x2.5%三绕组变压器的高压绕组有多个分接头,中压绕组有三个分接头(UN±5%)有载调压变压器比普通变压器有更多的分接头,并且调节范围也大。
如:“软件园”变电所的变压器,SSZ-50000∕110±8x1.25%∕36.6±2x2.5%∕10.5kV双绕组降压变压器分接头的选择设高压侧实际电压为U1,变压器阻抗RT、XT已归算到高压侧,变压器低压绕组的额定电压为UT1,变压器高压绕组的分接头电压为UTH。
负荷变化时,^UT及U2都要变化,而分接头只能用一个,可以同时考虑最大、最小负荷情况:UTHmax-(U1maχ-∆UTmax)UT1∕U2maxUThmin=(U1min-AUTmin)UT1∕U2min然后取平均值:UTHav=(UTHmax+UTHmin)∕2根据计算的UTHav选择一个与它最接近的分接头,最后校验最大、最小负荷时低压母线的实际电压是否符合要求。
[例6-1]如下图,变压器阻抗RT+jXT=2.44+j40欧已归算到高压侧,最大、最小负荷时,通过变压器的功率分别为Smax=28+j14MVA和Smin=IO+j6MVA,高压侧的电压分别为UInIaX=IIOkV和U1nIin=I13kV,要求低压母线的电压变化不超过6.0〜6.6kV的范围,试选择分接头。
电力系统电压调整的方式与措施

键词 】电压调整 电力系统 电能质量
力系统电压调整 的必要 性
电 压 是 电能 质 量 的重 要 指 标 。 电压 偏 移 过 就会直接影 响工 业、农业生产 的产量和质 会对 电力设备造成 损坏 ,严重会引起系统 电压崩 溃”,引发大范围停 电的严重后果 。 系统 电压 偏 高
种调压方法 ,取长补短,以使得调压效果最好。 选择 调压方 法 的原则 :首先 考虑 发 电机 调压。当无功充足时,优先考虑改变变压器变 比进行调压。当无功不足时,考虑采用无功补 低谷负荷时通过将 中枢点 电压 降低 的方式 去补 偿 设备。为能合理的选择 调压方法,要经过技 偿 电压损耗 的减少 。在系统采用逆 调压 时,高 术经济比较。所选方法不单在技术层面上有优 峰负荷时可将 中枢点 电压提高 5 % 倍的额 定电 势,能满足调整电压的要求,更要满足最佳经 压,低谷负荷时将其降至额定电压值。 济指标 。 经济上的最优方案就是折旧维修费用、 2 . 1 . 3恒 调 压 方 式 投资回收费用和电能损耗费用三个指标相加最 就 是 指 在 任 何 负 荷 下 都 保 持 不 变 的 电压 小 的 方 案 。
高,则按从高 电压到低 电压等级的顺序去切除 无 功 补 偿 设 备 3 . 2节假 日时的 系统 电压调 整
・
在节假 日时候系统 的电压普遍 是偏高 的, 电压普遍升高 的原因是系统的用 电负荷减少 , 个别地区的系统 电压严重下降很有可能是发 电 机事故或 电网 的联络线跳 闸造成的 。调度人员 应做好有功功率和无功功率的分区平衡工作,
2 . 2 . 4适当增大导线半径 大部 分老城 网 的都是 因为 导线 半径 小 电 阻大而导致 电网 电压损耗太大。因此,增加供 电线路线的半径是 重要 的改造 内容 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统电压调整的方
式与措施
标准化管理部编码-[99968T-6889628-J68568-1689N]
电力系统电压调整的方式与措施
系统电压是电能质量的首要指标,其过高或过低对电网及用户均有危害。
随着发展,电力用户对电能质量的要求越来越高。
本文从系统电压调整的必要性、措施及分时段的调整的方法几个方面进行论述,以便能更好地服务社会。
【关键词】电压调整电力系统电能质量
1 电力系统电压调整的必要性
电压是电能质量的重要指标。
电压偏移过大,就会直接影响工业、农业生产的产量和质量,会对电力设备造成损坏,严重会引起系统的"电压崩溃”,引发大范围停电的严重后果。
1.1 系统电压偏高
1.1.1 系统电压偏高的原因
伴随着电网的发展,超高压电网中大容量机组的直接并入,和超高压线路的投入,其充电功率大,致使超高旱缤内无功增大,导致主网系统电压升高。
1.1.2 电压过高构成的危害
将促使接入电网的电气设备绝缘老化速度加快,减少使用寿命。
当电压过高时会造成变压器、电动机等铁芯过饱和,铁损增大,温度上升,降低寿命;也会影响产品质量,致使生产出不合格产品等。
1.2 系统电压偏低
1.2.1 系统电压偏低的原因
由于早期设计的供电及配电网络结构不尽合理,尤其是一部分线路送电距离较长,供电的半径较大,导线截面积较小,增大了线路电压损耗。
系统无功补偿设备投入不足是系统电压水平降低的根本原因。
变压器超负荷运行也会引起电压下降。
不合理地摆放变压器分接头位置、不合理的电网结线,负荷的功率因数低,运行方式改变及异常方式等,均能引起电网电压下降。
1.2.2 系统电压偏低的危害
对发电机可能引起定子电流增大。
对异步电动机引起温升增加,降低效率,缩短寿命。
会导致照明亮度不足等。
会导致冶金等行业产品不合格。
系统的电压过低还可能造成系统振荡、解列以至于大范围停电,直接影响人们的生活和社会安全。
2 系统调整电压的方式与措施
2.1 系统调整电压的方式
2.1.1 顺调压方式
所谓顺调压方式是指在高峰负荷时允许系统中枢点电压稍有降低,在低谷负荷时允许系统中枢点的电压稍有升高。
与逆调压相对,在供电线路较短、负荷较稳定的中枢点可以采用顺调压方式。
通常顺调压允许系统负荷高峰时中枢点电压最低降低2.5%倍的额定电压,在低谷负荷时电压最高升高不超过7.5%的额定电压。
2.1.2 逆调压方式
指系统在高峰负荷时通过将增大中枢点电压的方式去弥补甚至抵消电压损耗;系统在低谷负荷时通过将中枢点电压降低的方式去补偿电压损耗的减少。
在系统采用逆调压时,高峰负荷时可将中枢点电压提高5%倍的额定电压,低谷负荷时将其降至额定电压值。
2.1.3 恒调压方式
就是指在任何负荷下都保持不变的电压中枢点的电压。
2.2 系统调整电压的措施
2.2.1 通过改变发电机端电压来调整系统电压
在各类调整电压的方法中,通过发电机来调整电压压是最为直接、最为经济的方法,因为这种方法不需要额外的投资,所以它应该优先考虑。
在发电机须经过多级变压器升压向远方供电的时,仅仅依赖发电机调整电压根本不能保证这部分用户的电压,必须采用与其他调整电压方式一同调节电压。
2.2.2 通过改变变压器变比来调整系统电压
是通过选择变压器高压侧的不同的分接头,就是改变变压器变比去实现调压。
在系统无功充足时,采用有载变压器调整电压方便、有效。
在系统无功功率不足时,必须补偿无功功率,若此时改变变压器分接头进行升压,会导致系统的“电压崩溃”。
2.2.3 通过无功补偿调压
当系统的无功功率缺乏时,需要考虑补偿无功进行调压。
补偿方式有两种:串联补偿和并联补偿。
串联补偿方式就是指通过
串联电容器进行补偿,但是电容器的串联补偿由于设计和运行等多方面的原因,应用的很少。
并联补偿包括并联电容器、调相机和静止补偿器。
并联电容器的优点:电容器可以根据需要分组连接,分散安装,就地补偿,降低线路功率损耗和电压损耗;投切方便、投资较少,因此,并联电容器在电网中得到了广泛的应用。
并联电容器的缺点:电容器不能吸收无功去实现降低电压。
调相机的优点:调相机的调整电压是通过改变其励磁电流的大小来改变感性无功功率输出或吸收的。
在较大负载时,可以输出无功功率,在负载小的时可以吸收无功功率。
调相机的缺点:调相机有较大的有功功率损耗、维护量较大。
静止补偿器是将可控的电抗器和电容器并联使用的一种能控的动态无功补偿装置,根据无功负荷的变化对无功功率的输出进行调整,来维持母线电压的稳定。
2.2.4 适当增大导线半径
大部分老城网的都是因为导线半径小电阻大而导致电网电压损耗太大。
因此,增加供电线路线的半径是重要的改造内容。
2.2.5 组合调压
就是将几种调压方法组合起来使用。
不同的调压方法都有各自的优缺点,应综合使用各种调压方法,取长补短,以使得调压效果最好。
选择调压方法的原则:首先考虑发电机调压。
当无功充足时,优先考虑改变变压器变比进行调压。
当无功不足时,考虑采
用无功补偿设备。
为能合理的选择调压方法,要经过技术经济比较。
所选方法不单在技术层面上有优势,能满足调整电压的要求,更要满足最佳经济指标。
经济上的最优方案就是折旧维修费用、投资回收费用和电能损耗费用三个指标相加最小的方案。
3 不同时段系统电压调整
3.1 系统日常的电压调整
当系统电压较低时,应该优先考虑提高电压最低地区的发电厂的输出电压,然后按照电压从低到高的顺序投入无功补偿装置,再按照从配电网到主网的顺序逐渐调整。
当系统电压较高,与之前的相反,应该优先考虑的是降低主电网电厂及中枢点的电压,然后减少该地区发电厂的无功功率,如果系统的电压仍就偏高,则按从高电压到低电压等级的顺序去切除无功补偿设备。
3.2 节假日时的系统电压调整
在节假日时候系统的电压普遍是偏高的,电压普遍升高的原因是系统的用电负荷减少,个别地区的系统电压严重下降很有可能是发电机事故或电网的联络线跳闸造成的。
调度人员应做好有功功率和无功功率的分区平衡工作,未雨绸缪,事先做好事故处理预案,改变运行方式,将部分负荷倒出,以维持电网的有功和无功的平衡。
4 结束语
电压是电能质量的重要指标,电压合格对社会生产和人民生活有着十分重要意义。
所以通过选择更为合理的电压调整方法来保证系统电压合格是电力部门的一项重要任务。
作者简介
魏大庆(1981-),男,辽宁省铁岭市人。
大学本科学历。
现为国网铁岭供电公司工程师、高级技师。
国网铁岭供电公司,电网调度。
作者单位
国网铁岭供电公司辽宁省铁岭市 112000。