US EPA 314.2 2D IC 检测饮用水中高氯酸盐

合集下载

水中高氯酸盐的检测方法研究进展

水中高氯酸盐的检测方法研究进展

水中高氯酸盐的检测方法研究进展高氯酸盐是是一种具有毒性的化合物,主要用于航天燃料、烟花爆竹、化肥等领域,绝大多数的高氯酸盐都极易溶于水,且不易与其他物质发生反应,一旦进入水体会迅速扩大污染水域,包括地表水、地下水等,其也会随着植物的富集作用从而进入人体,对人体的具有严重危害。

2022年3月15日国家市场监督管理总局和国家标准化管理委员会联合发布了最新的生活饮用水检测的国家强制执行标准GB 5749-2022《生活饮用水卫生标准》,其中毒理指标中无机化合物新增了高氯酸盐指标,限值为0.07mg/L。

由此可见,进一步探究水中高氯酸盐的检测方法,保障人们的饮水安全尤为重要。

1.环境中高氯酸盐的来源与危害1.1环境中高氯酸盐的来源环境中的高氯酸盐主要分为天然和人工合成两种。

自然界中天然高氯酸盐来源较少,占比也较低,主要分布在硝酸盐矿藏中,此外通过大气湿沉降作用也会把大气中的高氯酸跟离子沉积至地表,从而形成高氯酸盐[1]。

天然氯酸盐一般被制成化肥,用于农业中。

环境中的高氯酸盐主要来源于人工合成,高氯酸盐用途较为广泛,可用于润滑油添加剂、橡胶制造、皮革加工、涂料生产等领域。

由于高氯酸根离子具有一定的氧化作用,其也被用于制作火箭燃料和烟火中。

随着烟花表演、军事行动、航天工作的开展,也会释放一定量包含高氯酸根离子的残留物到大气、地面、水体中,从而会导致环境中高氯酸盐含量增加。

1.2高氯酸盐的危害高氯酸根离子结构呈正四面体结构,结构具有较强稳定性,可以长期存在于自然环境中而不被降解。

多数高氯酸盐极易溶于水,具有一定毒性和较强的流动性,会对土壤、水质等造成污染,且环境中的高氯酸盐可能会通过植物的富集作用、饮用水等方式,以食物链的途径进入人体,从而对人体造成危害。

高氯酸盐对于人体的危害主要表现在对于甲状腺功能的影响,高氯酸盐分子结构近似于碘分子结构,且对于钠碘同向转运体的亲和力显著高于碘离子,因高氯酸盐会抑制甲状腺对于碘离子的吸收,进而抑制甲状腺激素的合成,从而致使人体甲状腺功能下降,严重危害人体健康[2]。

饮用水中溴酸盐和氯酸盐能力验证的总结

饮用水中溴酸盐和氯酸盐能力验证的总结

饮用水中溴酸盐和氯酸盐能力验证的总结近年来,人们对饮用水质量的关注日益增加,其中饮用水中的溴酸盐和氯酸盐成为了热门话题。

溴酸盐和氯酸盐是一种常见的无机盐,它们可以存在于自然水环境中,也可能通过工业生产等渠道进入饮用水中。

这两种化合物的存在对人体健康产生潜在风险,因此对饮用水中溴酸盐和氯酸盐的测定成为了一项必要的工作。

本文将围绕饮用水中溴酸盐和氯酸盐的能力验证展开讨论,总结其相关的研究成果和检测方法。

我们需要了解溴酸盐和氯酸盐。

溴酸盐是一种无机化合物,其化学式为BrO_3^−,是一种常见的无机阳离子。

溴酸盐在自然界中可以通过海水中存在的溴化物在自然条件下氧化而来。

氯酸盐化学式为ClO_3^−。

它是氯的高价态氧化物的盐,也是一氧化氯的氧化物。

溴酸盐和氯酸盐都是一种对人体健康有潜在危害的物质。

接下来,我们需要了解饮用水中溴酸盐和氯酸盐的能力验证。

能力验证是对一个实验室针对特定的试验对象和测量范围,使用特定方法的能力进行验证的过程。

在饮用水中,对溴酸盐和氯酸盐的检测需要进行能力验证,以保证检测结果的准确性和可靠性。

能力验证的过程包括标准物质的准备、实验条件的确立、实验数据的收集和分析等环节。

在饮用水中溴酸盐和氯酸盐的检测方法方面,主要有离子色谱法、高效液相色谱法、电化学方法、光谱法等。

这些方法都有其各自的优缺点,可以根据需要进行选择。

离子色谱法具有灵敏度高、分离效果好等优点,适用于多种离子的测定,但是对于复杂样品的前处理要求较高;而高效液相色谱法则可以实现对多种水质指标的一次性分析,但是对分析仪器的要求较高。

饮用水中溴酸盐和氯酸盐的能力验证对于饮用水质量的保障具有重要意义。

通过对检测方法的能力验证,可以保证检测结果的准确性和可靠性,从而及时发现并解决饮用水中溴酸盐和氯酸盐超标的问题,保障人民群众的身体健康。

未来应继续加强对饮用水中其他潜在有害物质的能力验证工作,以进一步提升饮用水质量管理水平,维护人民群众的饮用水安全。

离子色谱分析饮用水中污染物高氯酸盐

离子色谱分析饮用水中污染物高氯酸盐

离子色谱法分析饮用水中污染物高氯酸盐崔建华 林爱武 杜兵(北京自来水集团有限责任公司水质监测中心 北京 100085)牟世芬 刘勇建(中国科学院生态环境研究中心 戴安中国有限公司应用研究中心 北京 100085)摘 要 简单介绍了高氯酸盐的研究状况,建立了测定饮用水中痕量高氯酸盐的离子色谱分析方法,并用所建方法测定了北京市自来水及瓶装水的高氯酸盐。

关键词 离子色谱;高氯酸盐;饮用水中图分类号 TH833Determination of Perchlorate in Drinking Water Using Ion ChromatographyCui Jianhua, Lin Aiwu, Du Bing(Water Quality Monitoring Center of Beijing Waterworks Group Limited Comany,Beijing 100085,China)Mou Shifen, Liu Yongjian(Research Center for Eco-Environmrntal Science , Chinese Academy of Science ,Research & Application Center,DionexChina Ltd., Beijing 100085,China)Abstract This article expounded the determination of trace perchlorate in drinking water using ion chromatography. The method was applied to detection of perchlorate in Beijing's drinking water and bottle water.Key words Ion chromatography; perchlorate ; drinking water1 引 言环境中的高氯酸盐(Perchlorate)主要来自火箭、导弹、焰火等的固体推进剂中的氧化剂-高氯酸铵。

生活饮用水中氯酸盐和亚氯酸盐的离子色谱测定法

生活饮用水中氯酸盐和亚氯酸盐的离子色谱测定法

生活饮用水中氯酸盐和亚氯酸盐的离子色谱测定法发表时间:2014-07-23T09:10:27.500Z 来源:《中外健康文摘》2014年第19期供稿作者:申玉军[导读] 二十一世纪初,针对生活饮用水中氯酸盐和亚氯酸盐的有效测定,离子色谱测定法已经被纳为国家标准检测方法。

申玉军(江苏省盱眙县疾病预防控制中心 211700)【摘要】目的:对生活饮用水中氯酸盐和亚氯酸盐的离子色谱测定法进行分析与研究。

方法:将水样经过0.2μm的微孔滤膜进行过滤,使水样中待测阴离子随碳酸盐-重碳酸盐淋洗液进入离子交换柱系统,根据分离柱对各阴离子的不同的亲和度进行分离,以相对保留时间和峰高或面积定性和定量,定量方法选择外标法。

结果:氯酸盐的整体回收率均能达到89.9%左右,相对标准偏差约为1.22%,亚氯酸盐的整体回收率达到87.0%左右,相对标准偏差则约为0.94%,氯酸盐和亚氯酸盐的线性相关系数都能达到0.9995以上。

结论:离子色谱测定法在操作方面具有简洁的优势,且检测速度非常快,精密度与灵敏度偏高,分离效果十分显著,同时其回收率还能够满足相关要求,将其应用于测定生活饮用水中氯酸盐和亚氯酸盐,具有较高的应用价值,值得推广。

【关键词】生活饮用水氯酸盐亚氯酸盐离子色谱测定法【中图分类号】R123.1 【文献标识码】A 【文章编号】1672-5085(2014)19-0078-02二十一世纪初,针对生活饮用水中氯酸盐和亚氯酸盐的有效测定,离子色谱测定法已经被纳为国家标准检测方法,但在实际测定环节,配制淋洗液时仍然出现了一些问题,因此还必须不断优化测定步骤,最大限度提升其灵敏度[1]。

笔者根据实际需要,对生活饮用水中氯酸盐和亚氯酸盐的离子色谱测定法进行分析与研究,取得了一定的成果,现作如下报道。

1.资料与方法1.1一般资料1.1.1仪器选择本次检测所用仪器为美国戴安ICS-1000离子色谱仪,并配备Chromeleon变色龙色谱数据系统,AS40自动进样器,色谱柱为戴安AS9-HC阴离子交换色谱柱,而保护柱则为AG9-HC保护柱。

离子色谱法测定生活饮用水中亚氯酸盐和氯酸盐的改进

离子色谱法测定生活饮用水中亚氯酸盐和氯酸盐的改进

7 1.00 1.00 1.00
是 由 仪 器 配 置 的 氢 氧 根 淋 洗 液 发 生 器 在 线 提 供 F@G 不用现场配制 碳酸盐淋洗液需现场配制 不方 便配的浓度不准影响测定结果用氢氧根淋洗液 对实验过程干扰小方便快速提高方法的准确性 !=! 回归方程和方法检出限见表 ! !=# 水 样 加 标 回 收 率 和 精 密 度 本 地 生 活 饮 用 水 采集后分别加两个浓度亚氯酸盐和氯酸盐混合标
实验与检验医学 !"!# 年 $ 月第 %& 卷第 % 期 '()*+,-*./01 0.2 3045+0/5+6 7*2,8,.*9 :;<=!"!#9>51=%&9?5=%
,425,
·检验与临床·
离子色谱法测定生活饮用水中亚氯酸盐和氯酸盐的改进
刘军,谢南容
!重庆市永川区疾病预防控制中心理化科"重庆 永川 %"!&@"#
实验与检验医学 !"!# 年 $ 月第 %& 卷第 % 期 '()*+,-*./01 0.2 3045+0/5+6 7*2,8,.*9 :;<=!"!#9>51=%&9?5=%
427
表 3 水样加标回收率和精密度
化合物
ClO-2 ClO-2 ClO-3 ClO-3
水样测定值(mg/L)
0.152 0.152 0.217 0.217
关键词 离子色谱仪%柱温箱%亚氯酸盐%氯酸盐%在线淋洗液发生器 中图分类号:U&!#=& 文献标识码:: 文章编号:&@J%D&&!KE!"!#X"%D"%!ID"% *&"=#K@KL&@J%D&&!K=!"!#="%=""&&

用RFIC测定饮用水中的高氯酸根

用RFIC测定饮用水中的高氯酸根

用RFIC测定饮用水中的高氯酸根1 前言高氯酸根是一种环境残留物,在美国许多州的饮用水,地表水中均有发现。

然而,大部分污染地区集中于美国西部、军事区和制造业发达地区。

因为高氯酸根在人体甲状腺部位相对集中可能影响人体健康,EPA的饮用水和地表水部门将此阴离子列入污染物侯选表(CCL)中。

最近,EPA还没有对饮用水和相关资源中的高氯酸根含量有强行的规定,但许多州已经单独指定了其活性含量上限。

例如:加利福尼亚的健康服务中心(CDHS)规定其含量不得超过4μg/L。

如果浓缩样品测定超过这个上限,CDHS可能将建议停止饮用水供应中心的工作。

Dionex公司应用文献AN134详细描述了环境水样中高氯酸根的测定。

采用大体积进样,IonPac AS16色谱柱,ASRS-ULTRA抑制器(外加水抑制模式)可以测定2μg/L的高氯酸根。

然而,US EPA现在正在调查是否有更灵敏更高选择性的分析方法。

当然,我们可以选用IC-MS联用技术或者使用2mm的AS16色谱柱提高灵敏度。

更深入的改进现行高氯酸根的色谱分离条件或通过降低基线噪音,可以完成US EPA 方法314.0。

在我们的应用资料更新中,我们使用改进型的ASRS ULTRA II抑制器代替标准的ASRS ULTRA抑制器,对EPA方法314.0进行了局部的修饰。

ASRS ULTRA II型抑制器产生的噪音范围为1-2nS,而过去老的ASRS ULTRA抑制器即使在外加水状态下其噪音范围也有9-10nS。

通过抑制器的替换,可以降低一个数量级的噪音,使高氯酸根的检测限降低至1μg/L或更低。

还有一个附加的优点,ASRS ULTRA II也不需要硫酸化学再生,不需要象AU145一样采用AMMS III抑制器,需要硫酸溶液的配置。

这些应用更新还是采用EPA 方法314.0的程序框架测定高氯酸根。

这个应用报告采用整体式离子色谱系统,带4mm IonPac AS16色谱柱,EGC II KOH自动淋洗液发生器,1000μL定量管,ASRS-ULTRA II 抑制器(外加水抑制模式),抑制电导检测。

生活饮用水高氯酸盐标准

生活饮用水高氯酸盐标准高氯酸盐是一种广泛存在于自然环境中的化合物,它可以通过水源、土壤和大气等途径进入饮用水中。

高氯酸盐对人体健康具有潜在的危害,长期摄入高氯酸盐可能会导致甲状腺功能减退、生殖能力下降等问题。

为了保护公众健康,许多国家和地区都制定了生活饮用水中高氯酸盐的标准。

例如,中国国家标准《生活饮用水卫生标准》(GB 5749-2006)规定,生活饮用水中高氯酸盐的限量为0.7 mg/L。

美国环境保护署(EPA)则将高氯酸盐列为饮用水中的优先污染物,并制定了饮用水中高氯酸盐的最高污染物浓度标准为0.06 mg/L。

需要注意的是,不同国家和地区的高氯酸盐标准可能存在差异,具体的标准应该以当地的法律法规为准。

同时,饮用水中的高氯酸盐浓度也可能受到水源、处理工艺和管道材料等因素的影响,因此定期监测饮用水中的高氯酸盐浓度是非常重要的。

高氯酸盐的污染及修复处理刍议

SCIENTIST 9低浓度状态的高氯酸盐在生活环境与自然环境中几乎无处不在。

1997年,浓度高达260μg/L 的高氯酸根在美国加州的饮用水中首次被检测到,高氯酸盐污染问题开始受到高度关注,相继一股相关研究热潮在美国掀起,由此饮用水中最高限量为18μg/L 的高碌酸根建议 性标准得以颁布。

在世界各地的雨水、雪水、海水、地下水、饮用水和食品等,通过检测都相继发现存有高氯酸盐。

我国作为航天大国,各类生产中氧化添加剂频繁使用高氯酸铵的现象屡不见鲜,作为传统焰火制造与消费大国,直接生产高氯酸钾产品的场地广泛分布,高氯酸盐环境污染十分普遍,污染威胁不容小觑。

因此,高氯酸盐的污染状况及及其修复处理等方面的研究工作应受到足够重视,有待深入。

1 高氯酸盐的来源研究表明,环境中导致高氯酸盐浓度偏高危害健康的因素既有人为的、也有源于自然的,但人为污染是其主要源头。

高氯酸盐用作强氧化剂在火箭推进剂、军火工业、烟火制造等领域使用,作为添加剂使用于润滑油、皮革鞣剂、橡胶制品、染料涂料、冶炼铝和镁电池等产品的生产过程[1],这些均属于人为污染源,随着生产和使用过程中高氯酸盐的排放其化学环境中的高氯酸盐逐步累积,其浓度逐渐提高。

环境中也普遍存在某些自然条件下如地壳运动、大气沉积等产生的高氯酸盐,大气来源的高氯酸盐在环境中存在的高氯酸盐总量中占有相当的比例。

2 高氯酸盐的危害高氯酸盐以一种超常的速度广泛进入到人类的饮用水和饮食中,作为具有高稳定性、高扩散性和持久性的内分泌干扰物,抑制人体对碘的吸收,影响人体甲状腺的正常功能,扰乱人体正常的新陈代谢,影响胎儿和婴儿神经中枢的正常生长和发育。

此外,据研究,高氯酸盐如以粉尘形式出现,会对置身于此状态下人的黏液膜、眼睛和皮肤产生刺激,发生呼吸障碍和咳嗽等不良症状,如果长期工作在此环境中,会出现肝、肾脏损伤和血红细胞破坏等症状。

同时其也可能对基因表达层面存在潜在影响及对免疫系统产生影响。

离子色谱法测定生活饮用水中的亚氯酸盐和氯酸盐

离子色谱法测定生活饮用水中的亚氯酸盐和氯酸盐朱玉萍(来宾市检验检测中心,广西来宾 546100)摘 要:目的:建立一种离子色谱法同时测定生活饮用水中亚氯酸盐与氯酸盐的方法。

方法:依据《生活饮用水标准检验方法第10部分:消毒副产物指标》(GB/T 5750.10—2023),根据实验室条件建立了离子色谱仪同时测定亚氯酸盐和氯酸盐的方法,并优化了部分试验参数,分析了方法的线性范围、精密度、准确度等。

结果:亚氯酸盐、氯酸盐在0~500.0 μg·L-1具有良好的线性,相关系数r>0.999 0,相对标准偏差为0.078%~1.640%,平均回收率为97.30%~100.22%。

结论:该方法操作简单、分离度好、具有较高的灵敏度和精密度,适用于同时测定生活饮用水中亚氯酸盐、氯酸盐,符合样品分析的质量要求,能够快速检测亚氯酸盐和氯酸盐的残留。

关键词:离子色谱;消毒副产物;亚氯酸盐;氯酸盐Determination of Chlorite and Chlorate in Drinking Water byIon ChromatographyZHU Yuping(Laibin City Inspection and Testing Center, Laibin 546100, China)Abstract: Objective: To establish a method for simultaneous determination of chlorite and chlorate in drinking water by ion chromatography. Method: According to GB/T 5750.10—2023, a method for simultaneous determination of chlorite and chlorate by ion chromatography was established according to laboratory conditions. Some experimental parameters were optimized, and the linear range, precision and accuracy of the method were analyzed. Result: Chlorite and chlorite had good linearity in the concentration range of 0~500.0 μg·L-1, the correlation coefficient r>0.999 0, the relative standard deviation was 0.078%~1.640%, and the average recovery rate was 97.30%~100.22%. Conclusion: The method has the advantages of simple operation, good separation, high sensitivity and precision. It is suitable for the simultaneous determination of chlorite and chlorate in drinking water. It meets the quality requirements of sample analysis and can quickly detect the residues of chlorite and chlorate.Keywords: ion chromatography; disinfection by-products; chlorite; chlorate生活饮用水是指供人生活的饮水和生活用水,主要来源于自来水管网集中供水的自来水、桶装/瓶装水、地下水。

离子色谱法测定生活饮用水中氯酸盐、亚氯酸盐和溴酸盐的含量

离子色谱法测定生活饮用水中氯酸盐、亚氯酸盐和溴酸盐的含量【摘要】目的:建立离子色谱法同时测定生活饮用水中氯酸盐、亚氯酸盐和溴酸盐的含量的测定方法。

方法:选用Metrosep A supp5-250色谱柱,以Na2CO3 和NaHCO3混合溶液作为淋洗液,浓度分别为3.2mmol/L和1.0mmo/L,控制流速0.6ml/min,进液总量250μl,超微填充嵌体结构抑制器。

结果:当范围处于0~1000.0mg/L时,溴酸盐,氯酸盐,亚氯酸盐的检出限均为5μg/L,通过加标回收试验,得知离子色谱法的平均回收率达到89.0~108.0%,RSD为0.21%~2.69%。

结论:离子色谱法同时测定生活饮用水中亚氯酸盐、氯酸盐和溴酸盐的含量,具有检测速度快,准确率高,操作简单,分离效果好等优点。

【关键词】水;亚氯酸盐;氯酸盐;溴酸盐;离子色谱法二氧化氯,液氯,臭氧为目前主要饮用水消毒剂[1]。

采取二氧化氯进行消毒,可产生亚氯酸盐,同时还可能通过原料携带,使氯酸盐进行检测水中,采用臭氧进行消毒,可产生溴酸盐[2]。

上述三类物质均会不同程度害人体健康,本次研究就选用Metrosep A supp5-250色谱柱,探讨采用861 Advanced Compact IC 型离子色谱仪测定生活饮用水中亚氯酸盐、氯酸盐和溴酸盐的可行性。

报告如下。

1 实验部分:1.1仪器和试剂1.1.1仪器瑞士万通861 Advanced Compact IC 型离子色谱仪;瑞士万通Metrosep A supp5-250色谱柱;瑞士万通813自动自动进样器;1.1.2试剂无水碳酸钠:基准纯,天津市科密欧化学试剂有限公司。

无水碳酸氢钠:基准纯,天津市光复精细化工研究所。

氯酸盐标准溶液和亚氯酸盐标准溶液:1000 mg/L,农业部环境保护科研监测所。

溴酸盐标准溶液:1000 mg/L,中国计量科学研究院。

溶液均用电阻率大于18M?超纯水配制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EPA Document No. 815-B-08-001 METHOD 314.2 DETERMINATION OF PERCHLORATE IN DRINKING WATER USING TWO-DIMENSIONAL ION CHROMATOGRAPHY WITH SUPPRESSEDCONDUCTIVITY DETECTIONVersion 1.0May 2008Herbert P. Wagner (Lakeshore Engineering Services, Inc.)Barry V. Pepich (Shaw Environmental, Inc.)Douglas Later, Chris Pohl, Kannan Srinivasan, Brian De Borba, Rong Lin (Dionex Corp. )David J. Munch (U.S. EPA, Office of Ground Water and Drinking Water)TECHNICAL SUPPORT CENTEROFFICE OF GROUND WATER AND DRINKING WATERU. S. ENVIRONMENTAL PROTECTION AGENCYCINCINNATI, OHIO 45268METHOD 314.2DETERMINATION OF PERCHLORATE IN DRINKING WATER USING TWO- DIMENSIONAL ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITYDETECTION1. SCOPE AND APPLICATION1.1This is a large volume (2 to 4 mL), two-dimensional (2-D) ion chromatographic (IC) methodusing suppressed conductivity detection for the determination of perchlorate in raw andfinished drinking waters. Because this method utilizes two dissimilar IC columns it does not require second column confirmation. Detection and quantitation in the second dimension areaccomplished by suppressed conductivity detection. Precision and accuracy data have beengenerated for perchlorate using this 2-D IC method in reagent water, finished groundwater,finished surface water and a Laboratory Fortified Synthetic Sample Matrix (LFSSM). Thesingle laboratory Lowest Concentration Minimum Reporting Level (LCMRL) has also beendetermined in reagent water. 1Analyte Chemical Abstract Services Registry Number (CASRN)Perchlorate 14797-73-0 1.2The Minimum Reporting Level (MRL) is the lowest analyte concentration that meets DataQuality Objectives (DQOs) that are developed based on the intended use of this method. Thesingle laboratory LCMRL is the lowest true concentration for which the future recovery ispredicted to fall between 50 and 150 percent recovery with 99% confidence. The singlelaboratory LCMRL for perchlorate was 0.060 μg/L and 0.038 μg/L using 2.0-mL and 4.0-mLinjection volumes, respectively. The procedure used to determine the LCMRL is describedelsewhere. 11.3Laboratories using this method will not be required to determine the LCMRL, but will need todemonstrate that their laboratory MRL for this method meets the requirements described inSection 9.2.4.1.4Detection Limit (DL) is defined as the statistically calculated minimum concentration that canbe measured with 99% confidence that the reported value is greater than zero.2 The DL forperchlorate is dependent on sample matrix, fortification concentration, and instrumentperformance. Determining the DL for perchlorate in this method is optional (Sect. 9.2.6).The reagent water DL for perchlorate using 2.0- and 4.0-mL injection volumes was calculatedto be 0.018 and 0.012 µg/L, respectively, using 7 reagent water (RW) replicates fortified at0.075 and 0.025 µg/L. These values are provided in Table 2.1.5This method is intended for use by analysts skilled in the operation of IC instrumentation, andthe interpretation of the associated data.1.6METHOD FLEXIBILITY – In recognition of technological advances in analytical systemsand techniques, the laboratory is permitted to modify the separation technique, IC columns,concentrator column and mobile phase composition. However, any modifications mustmaintain the basic chromatographic elements of this new technique. This includes the initialseparation of analytes on a primary IC column that are heart-cut after suppression and directed to a concentrator column. After concentration, analytes must then be eluted onto a second,dissimilar IC column for separation and quantitation. For high sensitivity applications, thesystem should have a second-dimension column with a lower cross sectional area, whichoperates at a relatively lower flow rate in order to achieve sensitivity enhancementproportional to the ratio of the flow rate reduction. Method modifications should beconsidered only to improve method performance. Modifications that are introduced in theinterest of reducing cost or sample processing time, but result in poorer method performance(see Sect. 9.4 for criteria), may not be used. In all cases where method modifications areproposed, the analyst must first redetermine the cut window and establish an acceptablecalibration. Then the analyst must demonstrate acceptable method performance byconducting the procedures outlined in the initial demonstration of capability (IDC, Sect. 9.2),verifying that all ongoing QC acceptance criteria can be routinely met (Tables 4 and 5), andproperly documenting the method changes (Sect. 9.4). Changes may not be made to sample collection and preservation (Sect. 8) or to the quality control requirements (Sect. 9).2.SUMMARY OF METHOD2.1 Water samples are collected in the field using a sterile filtration technique. A 2.0 to 4.0-mLsample aliquot is injected onto a 4-mm IC column. Separation of perchlorate is achieved inthe first dimension (1-D) using 35 mM KOH at a flow rate of 1.0 mL per minute.Approximately 5-6 mL of the suppressed eluent containing the perchlorate is diverted fromthe first dimension column to a concentrator column used in place of the sample loop of thesecond dimension (2-D) injection valve. The concentrator column has low backpressure butsufficient capacity to trap the perchlorate ions quantitatively in the suppressed eluent. In thismanner, perchlorate is separated from other matrix ions and concentrated on a trappingcolumn. The heart-cut portion of the 1-D chromatogram is eluted off the concentrator columnand onto a smaller diameter (2 mm diameter) guard and analytical column that have differentselectivity from the first dimension columns to facilitate the 2-D separation using 65 mMKOH at a flow rate of 0.25 mL per minute. Perchlorate is quantitated using the externalstandard method.There are several advantages to this version of the method. Like Method 314.1, this version is compatible with a large sample injection volume (up to 4.0-mL). This is due to the highcapacity of the 1-D analytical column and its higher selectivity for perchlorate relative to theother matrix ions. The suppressed eluent from the first dimension column, which isessentially water containing the anions of interest and a subset of the matrix interferences thatco-elute in the heart-cut window, are efficiently retained and refocused on the concentratorcolumn. Because the second dimension is operated at a lower flow rate relative to the firstdimension and uses a smaller cross sectional area column, this version of the method offersenhanced sensitivity. The increase in sensitivity of the present setup is directly proportional tothe flow rate ratio of the first dimension to the second dimension. This yields methodsensitivity comparable to the EPA perchlorate methods that utilize mass spectrometricdetection (331.0 and 332.0). Finally, the 2-D IC method combines two columns with different selectivity thereby eliminating the need for second column confirmation.3. DEFINITIONS3.1ANALYSIS BATCH – A sequence of field samples, which are analyzed within a 24-hourperiod and include no more than 20 field samples. An Analysis Batch must also include allrequired QC samples, which do not contribute to the maximum field sample total of 20. Forthis method, the required QC samples include:Laboratory Reagent Blank (LRB)Continuing Calibration Check (CCC) StandardsLaboratory Fortified Sample Matrix (LFSM)Laboratory Duplicate (LD) or a Laboratory Fortified Sample Matrix Duplicate(LFSMD)Laboratory Fortified Synthetic Sample Matrix CCC Standard (LFSSM CCC)3.2 ANALYTE FORTIFICATION SOLUTIONS (AFS) – The Analyte Fortification Solutionsare prepared by dilution of the Analyte Secondary Dilution Solutions (SDS) and are used tofortify the LFSMs and the LFSMDs with perchlorate. It is recommended that multipleconcentrations be prepared so that the fortification levels can be rotated or adjusted to theconcentration of target analyte in the native samples.3.3CALIBRATION STANDARD (CAL) – A solution of the target analyte prepared from thePerchlorate Primary Dilution Solution or Perchlorate Stock Standard Solution. The CALsolutions are not sterile filtered and used to calibrate the instrument response with respect toanalyte concentration.3.4CONTINUING CALIBRATION CHECK STANDARD (CCC) – A calibration checkstandard containing the method analyte which is analyzed periodically throughout anAnalysis Batch, to verify the accuracy of the existing calibration for that analyte. The CCCsare not sterile filtered.3.5DETECTION LIMIT (DL) – The minimum concentration of an analyte that can beidentified, measured and reported with 99% confidence that the analyte concentration isgreater than zero. This is a statistical determination (Sect. 9.2.6), and accurate quantitation isnot expected at this level. 23.6LABORATORY DUPLICATE (LD) – Two sample aliquots (LD1 and LD2), from a singlefield sample bottle, and analyzed separately with identical procedures. Analyses of LD1 andLD2 indicate precision associated specifically with laboratory procedures by removingvariation contributed from sample collection, preservation, and storage procedures.3.7LABORATORY FORTIFIED BLANK (LFB) – An aliquot of reagent water or other blankmatrix to which a known quantity of the method analyte is added. The LFB is analyzedexactly like a sample, including the preservation procedures in Section 8.1. Its purpose is todetermine whether the methodology is in control, and whether the laboratory is capable ofmaking accurate and precise measurements.3.8LABORATORY FORTIFIED SAMPLE MATRIX (LFSM) – An aliquot of a field sample towhich a known quantity of the method analyte is added. The LFSM is processed andanalyzed exactly like a field sample, and its purpose is to determine whether the field sample matrix contributes bias to the analytical results. The background concentration of the analyte in the field sample matrix must be determined in a separate aliquot and the measured value in the LFSM corrected for native concentrations.3.9LABORATORY FORTIFIED SAMPLE MATRIX DUPLICATE (LFSMD) – A secondaliquot of the field sample used to prepare the LFSM, which is fortified and analyzedidentically to the LFSM. The LFSMD is used instead of the Laboratory Duplicate to assess method precision and accuracy when the occurrence of the target analyte is infrequent.3.10LABORATORY FORTIFIED SYNTHETIC SAMPLE MATRIX (LFSSM) – An aliquot ofthe LSSM (Sect. 7.2.2) which is fortified with perchlorate. The LFSSM is used to set thestart time for the cut window in the 1-D during the initial demonstration of capability (IDC) (Sect. 9.2). The LFSSM is also used to determine the precision and accuracy of the method during the IDC (Sects. 9.2.2 and 9.2.3). The LFSSM samples are treated like the CCCs and are not sterile filtered.3.11LABORATORY FORTIFIED SYNTHETIC SAMPLE MATIX CONTINUINGCALIBRATION CHECK STANDARD (LFSSM CCC) – An aliquot of the LSSM (Sect.7.2.2) which is fortified with perchlorate at a concentration equal to one of the CCCs. In thismethod, a LFSSM CCC at a concentration equal to the highest calibration level is analyzed at the end of each Analysis Batch (Sect. 9.3.3) to confirm that the first-dimension heart cutting procedure has acceptable recovery in high inorganic matrices. The LFSSM CCC is not sterile filtered.3.12LABORATORY REAGENT BLANK (LRB) – An aliquot of reagent water or other blankmatrix that is treated exactly as a sample including exposure to all filtration equipment,storage containers and internal standards. The LRB is used to determine if the methodanalyte or other interferences are present in the laboratory environment, the reagents, or the apparatus.3.13LABORATORY SYNTHETIC SAMPLE MATRIX (LSSM) – An aliquot of reagent waterthat is fortified with 1000 mg/L of the sodium salts of chloride, bicarbonate and sulfate. This solution is prepared from the LSSMSS and is representative of a water sample that contains 3000 mg/L of these common matrix anions.3.14LABORATORY SYNTHETIC SAMPLE MATRIX STOCK SOLUTION (LSSMSS) – TheLSSMSS contains the common anions chloride, sulfate and bicarbonate at 25.0 g/L. Thissolution is used in the preparation of QC samples.3.15LOWEST CONCENTRATION MINIMUM REPORTING LEVEL (LCMRL) – The single-laboratory LCMRL is the lowest true concentration for which the future recovery is predicted to fall between 50 and 150 percent recovery with 99% confidence. 13.16MATERIAL SAFETY DATA SHEET (MSDS) – Written information provided by vendorsconcerning a chemical’s toxicity, health hazards, physical properties, fire, and reactivity dataincluding storage, spill, and handling precautions.3.17MINIMUM REPORTING LEVEL (MRL) – The minimum concentration that can bereported by a laboratory as a quantified value for the target analyte in a sample followinganalysis. This defined concentration must meet the criteria defined in Section 9.2.4 and mustbe no lower than the concentration of the lowest calibration standard for the target analyte.3.18PRIMARY DILUTION STANDARD SOLUTION (PDS) – A solution containing themethod analyte prepared in the laboratory from stock standard solutions and diluted asneeded to prepare calibration solutions and other analyte-containing solutions.3.19QUALITY CONTROL SAMPLE (QCS) – A solution containing the method analyte at aknown concentration that is obtained from a source external to the laboratory and differentfrom the source of calibration standards. The QCS is used to verify the accuracy of thecalibration standards and the integrity of the calibration curve.3.20REAGENT WATER (RW) – Purified water which does not contain any measurable quantityof the target analyte or interfering compounds at or above 1/3 the MRL.3.21SECONDARY DILUTION STANDARD SOLUTION (SDS) – A solution containing themethod analyte prepared in the laboratory from the PDS and diluted as needed to preparecalibration solutions and other analyte solutions.3.22STOCK STANDARD SOLUTION (SSS) – A concentrated solution containing the methodanalyte prepared in the laboratory using assayed reference materials or purchased from areputable commercial source, so that the concentration and purity of analytes are traceable tocertificates of analysis.4.INTERFERENCES4.1Interferences can be divided into three different categories: (i) direct chromatographic co-elution, where an analyte response is observed at very nearly the same retention time (RT) asthe target analyte; (ii) concentration dependant co-elution, which is observed when theresponse of higher than typical concentrations of the neighboring peak overlaps into theretention window of the target analyte; and (iii) ionic character displacement, where retentiontimes may significantly shift due to the influence of high ionic strength matrices (high mineral content or total dissolved solids) overloading the exchange sites on the column andsignificantly shortening the target analyte's retention time.4.1.1 A direct chromatographic co-elution may be solved by changing column selectivity inone or both dimensions of the 2-D IC method, adjusting eluent strength in one or bothdimensions, modifying the eluent with organic solvents (if compatible with IC columns),changing the detection system, or selective removal of the interference with samplepretreatment. Sample dilution will have little to no effect on direct chromatographic co-elution. The analyst must verify that any change made to the chromatographicparameters does not induce any negative affects on method performance by repeating andpassing all the QC criteria as described in Section 9.2.4.1.2Sample dilution may resolve some of the difficulties if the interference is the result ofeither concentration dependant co-elution or ionic character displacement, but it must beclarified that sample dilution will alter the MRL by a proportional factor equivalent tothat of the dilution. Therefore, careful consideration of Data Quality Objectives (DQOs)should be given prior to performing such a dilution.4.2Method interferences may be caused by contaminants in solvents, reagents (including reagentwater), sample bottles and caps, and other sample processing hardware that lead to discreteartifacts and/or elevated baselines in the chromatograms. All items such as these must beroutinely demonstrated to be free from interferences (less than 1/3 the perchlorate MRL) byanalyses of an LRB as described in Section 9.2.1. Subtracting blank values from sampleresults is not permitted.4.3Matrix interferences may be caused by contaminants that are present in the sample. Theextent of matrix interferences will vary considerably from source to source, depending uponthe nature of the water. Water samples high in organic carbon or total dissolved solids mayhave elevated baselines or interfering peaks.4.3.1Equipment and containers used for sample collection and storage have the potential tointroduce interferences. The potential for interferences from these sources must beinvestigated during the IDC (Sect. 9.2) by preparing and analyzing a LRB. Thisprocedure should be repeated each time that a new brand and/or lot of materials are usedto ensure that contamination does not hinder analyte identification and quantitation.4.4When first-dimension heart cut windows are properly set, this method demonstrates adequateperformance in water matrices that contain up to 1000 mg/L of each common anion (sulfate,carbonate, and chloride). While this addresses the majority of source and finished drinkingwaters, there is a possibility that water matrices could exceed this level. The analyst shouldmonitor all first dimension chromatograms (Sect. 11.3.4) to confirm that sample matrix doesnot overload the primary column capacity and require dilution.5. SAFETY5.1 The toxicity or carcinogenicity of each reagent used in this method has not been preciselydefined. Each chemical should be treated as a potential health hazard, and exposure to thesechemicals should be minimized. Each laboratory is responsible for maintaining an awarenessof OSHA regulations regarding safe handling of chemicals used in this method. A referencefile of MSDSs should be made available to all personnel involved in the chemical analysis.Additional references to laboratory safety are available. 3-56. EQUIPMENT AND SUPPLIES (References to specific brands or catalog numbers are included forillustration only and do not imply endorsement of the product. This does not preclude the useof other vendors, supplies or configurations.)6.1NON-STERILE SAMPLE CONTAINERS – 125-mL brown Nalgene bottles (Fisher Cat. No.03-313-3C or equivalent).6.2STERILE SAMPLE FILTERS (Corning 26-mm surfactant free cellulose acetate 0.2-µm filter,Fisher Cat. No. 09-754-13 or equivalent). If alternate filters are used they should be certified as having passed a bacterial challenge test.6 Additionally, if alternate filters or different lots of the recommended filters are used, they must be tested using a LRB and a LFB fortified at the MRL as outlined in Section 9.2 to insure that they do not introduce interferences or retain perchlorate.6.3SYRINGES – Sterile, silicone free disposable syringes (Henke Sass Wolf 20-mL Luer lock,Fisher Cat. No. 14-817-33 or equivalent).6.4VOLUMETRIC FLASKS – Class A, suggested sizes include 10, 50, 100, 250, 500 and 1000mL for preparation of standards and eluents.6.5GRADUATED CYLINDERS – Suggested sizes include 25 and 1000 mL.6.6AUTO PIPETTES – Capable of delivering variable volumes from 1.0 to 2500 µL.6.7ANALYTICAL BALANCE – Capable of weighing to the nearest 0.0001 g.6.8DUAL ION CHROMATOGRAPHY SYSTEM WITH SUPPRESSED CONDUCTIVITYDETECTION (IC) – This section describes the instrument configuration that was used tocollect the data in Section 17. A Dionex Model ICS-3000 Dual system (or equivalent)consisting of a Dual Pump (DP) module, Eluent Generator (EG) module,Detector/Chromatography (DC) module (single or dual temperature zone configuration), and Autosampler (AS) was used to collect the data presented in this method. The IC systemshould also have a temperature controlled column compartment and be capable of operating above room temperature (30 ºC) and include dual IC pumps and all required accessories,including guard, analytical, and concentrator columns, detector/chromatography module, dual eluent generators, continuously-regenerated anion trap columns, compressed gases,autosampler, suppressors, carbonate removal devices (CRD), dual conductivity detectors, anda computer-based data acquisition and control system. Additionally, the system must becapable of performing automated, two-dimensional IC, including performing inline column concentration and matrix elimination steps as described in Section 2.1. A schematic diagram of the instrumentation for this 2-D IC method is shown in Figure 1. Table 1 provides fulldetails of the instrumental conditions.6.8.1DUAL PUMP MODULE – A DP Dual Gradient-Gradient Pumping Module with dualchannel degas devices (Dionex DP, P/N 061712 or equivalent) was used to generate thedata for this method. The dual pump system used for method development was capableof supplying a flow rate of approximately 1.0 mL/min to the first dimension column andapproximately 0.25 mL/min to the second dimension column.6.8.2ELUENT GENERATOR MODULE – A dual channel EG Module (Dionex EG, P/N061714 or equivalent) with dual potassium hydroxide cartridges (EluGen® Cartridge,EGC, P/N 058900 or equivalent) was used to prepare the potassium hydroxide eluent for6.8.6 FIRST DIMENSION ANION SUPPRESSOR DEVICE – An IC eluent suppressiondevice, 4 mm (Dionex Anion Self-Regenerating Suppressor, ASRS Ultra II, P/N 061561both the first and second dimensions of this method. An equivalent eluent generator may be used and/or manually prepared eluents may also be used provided that adequateresolution, peak shape, capacity, accuracy, and precision (Sect. 9.2) are obtained. Care must be exercised with manually prepared hydroxide eluents to prevent formation of carbonate in the eluent from exposure to the atmosphere, which can dramatically alter the chromatography and affect sensitivity.6.8.2.1 CONTINUOUSLY REGENERATED ANION TRAP COLUMNS – IC eluentpurification columns (Dionex CR-ATC, P/N 060477 or equivalent). Any in-line,resin-based manual or electrolytic trapping column that provides adequate eluentpurification for ultra trace analysis and performance (Sect. 9.2) may be used. A CR-ATC device, or equivalent, was used for eluent purification for both the first andsecond dimension eluents.NOTE: For the configuration in Figure 1, the pump and eluent generator modules in combination must be capable of delivering different isocratic eluent concentrations to the columns in the first and second dimension. The same requirement applies formanually prepared eluents with a dual pumping system; the pump system must becapable of delivering two different, independent isocratic concentrations of eluents to the first and second dimension columns. In addition, the system should also becapable of providing a step isocratic eluent concentration change or a controlledgradient change to the first dimension column. This allows the first dimensioncolumn to be cycled to a higher eluent concentration in order to clean residual matrix components from the column prior to introduction of the next sample. This isimportant to ensure maximum column life and to minimize potential carryover and/or interferences from one sample to the next.6.8.3 DETECTOR/CHROMATOGRAPHY MODULE – A DC Module (Dionex DC, P/N061793 or equivalent) equipped with dual injection valves and capable of maintaining the columns and the suppressors at 30 °C, and conductivity cell at 35 °C is recommended.NOTE: For optimal performance of this system, the conductivity cell should be set at a higher temperature than the analytical columns. For example, if the columns are set at 30 o C, the cell should be set at 35 o C.6.8.4 FIRST DIMENSION GUARD COLUMN – An IC column, 4 x 50 mm (DionexIonPac ®AG20, P/N 063154 or equivalent). Any guard column that provides adequate protection for the analytical column and does not have an adverse effect on the peak shape may be used.6.8.5 FIRST DIMENSION ANALYTICAL COLUMN – An IC column, 4 x 250 mm (DionexIonPac ®AS20, P/N 063148 or equivalent). Any analytical column that provides adequate resolution, peak shape, capacity, accuracy, and precision (Sect. 9.2) may be used. The separation mechanism for the first dimension analytical column must differ from the second dimension column in selectivity.or equivalent). An equivalent in-line suppression device that effectively suppresses theconductance of the eluent and converts the analyte to the hydronium form prior toconductivity detection, as well as provides adequate efficiency, resolution, peak shape,capacity, accuracy, precision, and a comparable MRL and DL (Sect. 9.2) may be used.Adequate baseline stability should be attained as measured by a baseline noise of no more than 5 nS per minute over the background conductivity. The first dimension suppressor must be compatible with (e.g., 4 mm in this example) the first dimension guard andanalytical column.NOTE: The conductivity suppressor was set to perform electrolytic suppression at acurrent setting of 150 mA. It was important to operate the suppressor in the externalwater mode to reduce baseline noise and achieve optimal method performance.6.8.7FIRST DIMENSION CARBONATE REMOVAL DEVICE – An IC carbonate removaldevice, 4 mm (Dionex CRD, P/N 062983 or equivalent). Any in-line carbonate removal device that effectively removes the carbonate peak from the suppressed eluent streamprior to conductivity detection and provides adequate efficiency, resolution, peak shape, capacity, accuracy, and precision for perchlorate (Sect. 9.2) may be used. The firstdimension CRD must be compatible with (e.g., 4 mm in this example) the first dimension guard and analytical column.6.8.8FIRST DIMENSION CONDUCTIVITY DETECTOR – A Conductivity detector andintegrated cell (Dionex CD P/N 061716, or equivalent) capable of providing data asrequired in Section 9.2. A Standard Bore Temperature Stabilizer (0.010 inch ID, Dionex P/N 062561 or equivalent) was also used to equilibrate the temperature of the eluent tothat of the first dimension guard and analytical column.NOTE: The conductivity detector cell temperature should be controlled at a temperature above the analytical column. For method development, the conductivity detector was set at 35 ºC to minimize bubble formation and condensation between analytical column,suppressor and CRD and stable temperature control of the detector cell itself.6.8.9CONCENTRATOR COLUMN – An IC trapping column, 5 x 23 mm (Dionex UTAC-ULP1, P/N 063475 or equivalent). Any concentrator column that provides effectiveretention/trapping and release of perchlorate while providing the resolution, peak shape, capacity, accuracy, and precision (Sect. 9.2) may be used. The concentrator columnshould not release sulfonated leachates that would affect the quantitation of perchlorate.6.8.9.1Alternate concentrator columns are allowed, but prior to their use, they must beevaluated to determine the first dimension cut window (Sect. 10.2.2) and they must bedetermined to have sufficient capacity to quantitatively trap perchlorate in theLFSSM CCC (Sect. 10.3.3) and should have relatively low backpressure since theconcentrator column is placed as a post-suppressor device.6.8.10SECOND DIMENSION GUARD COLUMN – An IC column, 2 x 50 mm (DionexIonPac®AG16, P/N 055379 or equivalent). Any guard column that provides adequateprotection for the analytical column and does not have an adverse effect on the peakshape may be used.。

相关文档
最新文档