地图投影分类与变换.
地图投影第二章地图投影方法变形分类

1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
如何进行地图投影的选择与变换

如何进行地图投影的选择与变换地图投影是将地球的曲面表面投影到平面上的过程。
由于地球是个球体,将其表面投影到平面上时会产生形状、距离和方向的变形。
因此,在绘制地图时,选择合适的投影方法以及进行变换至关重要。
本文将探讨如何选择和进行地图投影的变换。
1. 球面投影与平面投影地图投影可以分为球面投影和平面投影两种类型。
球面投影是将地球的曲面投影到一个球体上,再将该球体展平获得平面地图;而平面投影则直接将地球的曲面投影到平面上。
选择合适的投影类型取决于地图使用的目的以及具体需求。
2. 常见的地图投影类型2.1 等面积投影等面积投影是保持地图上各个区域的面积比例不变的投影方法。
这种投影适用于需要关注地理要素分布和比例的分析工作,如自然资源、人口分布等。
2.2 正轴等角投影正轴等角投影是保持地图上某个中心点周围各点至中心点的角度不变的投影方法。
这种投影适用于需要保持地理要素方向性的分析工作,如气候分布、风向等。
2.3 圆柱投影圆柱投影是将地球的曲面投影到一个圆柱体上,再展开形成平面地图的投影方法。
常见的圆柱投影有等经纬度投影、等距投影等。
圆柱投影适用于大范围的地图,如世界地图,缺点是极区变形较大。
2.4 锥形投影锥形投影是将地球的曲面投影到一个锥体上,再展开形成平面地图的投影方法。
常见的锥形投影有等经纬度投影、等面积投影等。
锥形投影适用于小范围的地图,如州、省级地图,变形较小。
3. 投影变换投影变换是将地球的经纬度坐标转换为平面地图上的坐标。
常见的投影变换算法有墨卡托投影、高斯-克吕格投影等。
在选择投影变换算法时,需要考虑地图范围、方向和形状等因素,以保证准确性和可视化效果。
4. 地图投影选择原则4.1 根据地图使用目的选择根据地图的使用目的选择合适的投影类型。
如果需要了解地图上各个区域的面积比例,选择等面积投影;如果需要保持地理要素的方向性,选择正轴等角投影;如果需要绘制世界地图,选择圆柱投影。
4.2 考虑地图范围和变形根据地图的范围选择合适的投影方式,较大范围的地图适合采用圆柱投影,较小范围的地图适合采用锥形投影。
地图投影分类与变换.

1.地图投影的分类
高斯一克吕格投影投影(横轴等角切椭圆柱投影)
高斯一克吕格投影投影(横轴等角切椭圆柱投影) 高斯投影采用分带投影。将椭球面按一定经差分带,分别进行投影。 N
c
赤道
S
高斯一克吕格投影投影(横轴等角切椭圆柱投影) 高斯投影平面
中ቤተ መጻሕፍቲ ባይዱ
央
子
午
赤道
线
2.投影变换
目的:将某一研究区域不同投影方式的图件统一起来,需要将 一种投影方式转换为另一种投影方式。 方法:
x, y ——旧坐标 X,Y ——新坐标
x, y
严密的解析解
X, Y
2.投影变换
数值变换法:原投影点的坐标解析式不知道,或不易求 出两投影之间坐标的直接关系,利用若干同名数字化点(对 同一点在两种投影中均已知其坐标的点),采用插值法、有 限差分法或多项式逼近的方法,即用数值变换法来建立两投 影间的变换关系式。
解析变换法:找出两投影间坐标变换的解析计算公式, 有两种方法
A. 反解变换法:先解出原地图投影点的地理φ,λ,对于x,
y的解析关系式,将其代入新图的投影 公式中求得其坐标。即:
x, y
φ, λ
X, Y
B.正解变换法:直接求出两种投影点的直角坐标关系式。即:
X = f1 (x, y) Y = f2 (x, y)
出原投影点的地理坐标φ,λ,然后代入新投影公式中,求出新投影点的坐
标。即:
x, y 数值变换 φ, λ 解析变换 X, Y
THANKS 谢谢聆听
主讲人:李建辉 黄河水利职业技术学院
地理信息系统应用
地图投影分类与变换
主讲人:李建辉 黄河水利职业技术学院
1.地图投影的分类
地图投影的应用和变换

地图投影的应用和变换1. 引言地图投影是将地球的三维表面展示在平面上的一种转换方法。
由于地球是一个球体,而大部分的地图都是平面图,为了准确地表示地球表面上的地理信息,地图投影成为了不可或缺的工具。
本文将介绍地图投影的应用和变换。
2. 地图投影的意义和应用地图投影对于地理信息的准确传达非常重要,它可以帮助我们更好地理解和解读地球上的各种地理现象和空间关系。
以下是地图投影的主要应用领域:2.1 地理信息系统(GIS)地理信息系统(GIS)是一种用于收集、存储、分析、管理和展示地理信息的系统。
地图投影在GIS中广泛应用,用于将地球表面的地理信息转换为平面图,并进行空间分析和数据处理。
2.2 地图制作和导航地图投影在地图制作和导航中起着至关重要的作用。
通过地图投影,我们可以将地球上的各种地理特征准确地展示在地图上,使人们能够更好地理解和识别地理位置,并利用地图进行导航。
2.3 气象预报地图投影在气象预报中也扮演了重要角色。
通过将地球表面的气象数据投影到平面图上,气象学家们可以更好地分析和预测天气现象,为人们提供准确的天气预报。
2.4 城市规划和地理分析地图投影在城市规划和地理分析中也得到了广泛的应用。
通过将地球表面的地理数据转换为平面图,城市规划师和地理分析师可以更好地分析城市的发展趋势、交通规划等,并为城市规划和发展提供决策支持。
3. 常见的地图投影方法地图投影有多种方法,每种方法都有其特点和适用范围。
下面介绍几种常见的地图投影方法:3.1 圆柱投影圆柱投影是最常见的地图投影方法之一。
它将地球表面的经纬线投影到一个圆柱体上,然后再将圆柱体展开成平面图。
该投影方法在赤道周围的地区表现较好,但在离赤道较远的地区会出现形变。
3.2 锥形投影锥形投影是将地球表面的经纬线投影到一个圆锥体上,然后再将圆锥体展开成平面图。
该投影方法在中纬度地区表现较好,但在靠近两极地区会出现形变。
3.3 圆锥柱面投影圆锥柱面投影是将地球表面的经纬线投影到一个圆锥体和一个圆柱体上,然后将两个表面展开成平面图。
地图投影的选择与变换方法

地图投影的选择与变换方法地图是人们认识和了解世界的一种重要工具,它能够直观地展示地理信息、人文景观等各种元素。
在制作地图时,地图投影起着关键的作用,它将三维的地球表面映射到二维平面上,使之符合可视化需求。
然而,由于地球的表面是一个复杂的椭球体,选择适合的地图投影方法和进行有效的变换成为制图工作中必须面对的挑战。
一、地图投影的选择地图投影的选择涉及到多方面的因素,其中包括地图规模、地图用途以及所在地理区域等。
首先,地图规模是选择地图投影的一个重要考虑因素。
不同的地图规模对应着不同的地球区域范围,以及所需的精度和精确度。
大规模地图适合使用圆锥投影或者兰勃托投影,以保证地图细节的准确性。
而小规模地图则常用平面投影或者柱面投影,以满足更大范围的地图需求。
其次,地图的用途也决定了选择地图投影的方法。
比如,航空导航图通常采用贝塞尔投影或者兰勃托投影,以保证尽可能的真实比例和角度。
而旅游地图则更注重地貌的表现,常使用等距圆柱投影或者等角圆柱投影。
最后,地理区域的特点也会影响地图投影的选择。
因为地球表面不是一个完美的球体,所以在不同的纬度和经度下,地图形状会产生变化。
比如,在赤道附近的地区,采用柱面投影会更准确;而在高纬度区域,圆锥投影更适合。
二、地图投影的变换方法地图投影变换是指将地球球面上的点坐标转换为平面坐标。
目前常见的投影变换方法主要有三种:点投影法、线投影法和面投影法。
首先,点投影法是最基本的一种方法。
它是将球面上的点与平面上的点一一对应,通过球心和点的连线来确定对应关系。
这种方法适用于简单的地图投射变换,但在复杂地形和大尺度地图上,点投影法很难满足精度要求。
其次,线投影法是通过将球面上的弧线或者曲线用直线来逼近。
具体实现时,可以通过定义一系列切线,然后将切点绘制到可视化平面上。
这种方法在实际应用中较为常见,能够较好地解决复杂地形下的投影变换问题。
最后,面投影法是通过将地球表面分割成小区域,再进行投影变换。
地图投影复习资料

地图投影复习资料地图投影:是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。
投影变换:是将一种地图投影点的坐标变换为另一种地图投影点的坐标的过程。
极值长度比:通常指沿变形椭圆的长半径a与短半径b的长度比之总称。
曲率半径:曲率的倒数,即某点的弯曲程度。
垂直圈:垂直圈又称地平经圈,指天球上经过天顶的任何大圆。
主法截面:通过A点的法线AL可作出无穷多个法截面,为说明椭球体在某点上的曲率起见,通常研究两个相互垂直的法截面的曲率,这种相互垂直的法截面为主法截面。
长度变形:长度变形又称“长度误差”、“长度变异”、“长度相对变形”,是衡量地图投影变形大小的一种数量指标。
等角航线:是地球表面上与经线相交成相同角度的曲线。
变形椭圆:地球面上一微分圆投影到平面上一般成为微分椭圆,微分椭圆的任意两相互垂直的直径,投影后为微分椭圆的两共轭直径,且该微分椭圆可以表现投影变形的性质和大小。
面积变形:地球面上无限小面积投影到平面上的大小与它原有面积大小的相对变形。
1、地图投影的目的与意义地图投影是将立体地球上的种种标线及位置,转换到平面方格坐标的一种方式,在投影出来的地图上,无论是长度和面机,都必须与实际长度面积等比例,位子也必须正确,这是地图投影最基本的原则。
2、地图投影与其他学科的关系地图投影同许多学科和应用技术有着密切的联系1. 与数学:从地图投影的发展来看,它是伴随着数学的发展而前进的;2. 与测量学:天文-大地测量为测制地图提供地球参考椭球体的大小形状及有关参数,并建立大地原点;大地测量学在大地原点的基础上所建立的各级三角点,则需要应用地图投影计算出它们的平面直角坐标;3. 与地图编制:地图编制与地图投影同属于地图学的重要组成部分;4. 与航海、航天、宇宙飞行:等角投影无角度变形适用于航海和航天图;宇宙飞行可以服务于地图投影,并可促使地图投影向新的方向发展。
3、每种投影的性质,要满足的条件及原因1. 等角投影:要满足的条件是ω=0,m=n,a=b和β=β’;在投影上任意两方向线的夹角与地球面相应的家教相同;2. 等面积投影:要满足的条件是vp=P-1=0或P=1;投影面上的有限面积与地球上相应的面积相等;3. 等距离投影:要满足的条件是正轴经线长度比m=1,斜轴或横轴垂直圈长度比μ1=1。
地图投影基本知识

导航系统
导航系统,如全球定位系统(GPS),使用地图投影将地球表 面上的位置信息转换为可在电子地图上显示的坐标。
导航系统中的地图投影通常需要满足特定的要求,如覆盖范 围、精度和稳定性。此外,为了方便用户使用,地图投影还 需要考虑可视化和界面设计等方面。
04
地图投影的未来发展
高科技在地图投影中的应用
3D打印技术
利用3D打印技术,可以制作出具有复杂形状和结构的地图模型, 提高地图的视觉效果和实用性。
虚拟现实与增强现实技术
通过虚拟现实(VR)和增强现实(AR)技术,用户可以在计算机 或移动设备上查看三维地图,并获得更加沉浸式的体验。
人工智能与机器学习
持视觉效果真实。
圆锥投影
将地球表面投影到圆锥 面上,适用于表示中纬
度地区。
圆柱投影
将地球表面投影到圆柱 面上,适用于表示全球
范围。
03
地图投影的应用
地理信息系统(GIS)
地理信息系统(GIS)是使用地图投影将地球表面上的地理坐标转换为平面坐标的系 统。通过GIS,用户可以在地图上查询、分析和可视化地理数据,为决策提供支持。
地图投影基本知识
目录
• 引言 • 地图投影的分类 • 地图投影的应用 • 地图投影的未来发展
01
引言
什么是地图投影
地图投影是将地球表面的地理坐标转 换为平面坐标的过程,即将三维的地 球表面信息映射到二维的平面地图上 。
地图投影是地理信息系统(GIS)和地 图制作中不可或缺的环节,它能够将复 杂的地球表面信息简化为易于理解和使 用的平面地图。
测绘技术中如何进行地图投影的选择与变换

测绘技术中如何进行地图投影的选择与变换地图投影是测绘技术中的一个重要环节,它将地球上的三维地理信息转换为二维地图,方便人们阅读和使用。
然而,由于地球是一个椭球体而非一个平面,所以对地球表面进行投影变换是不可避免的。
在实际应用中,选择合适的投影方式以及进行投影变换是至关重要的。
一、地图投影选择的基本原则地图投影选择的基本原则是根据使用需求和地理特征来确定。
首先,我们需要考虑使用地图的目的和应用范围。
例如,如果用于海洋航行,就需要选择能够保持航线真实性质的等角投影;如果用于地理信息系统分析,就需要选择能够保持面积和形状相对真实的等积投影。
其次,需要考虑地理特征,如纬度范围、地形复杂度等。
因为不同的投影方式会对这些特征产生不同的失真效果。
二、常用的地图投影方式1.等角投影:等角投影是保持角度真实性的投影方式,它保持了地球上任意两点之间的角度关系。
其中最常用的是墨卡托投影,它将地球投影为一个矩形图形。
墨卡托投影适用于大范围的地图制作,如全球地图或大洲地图。
2.等积投影:等积投影是保持面积相对真实的投影方式,即在二维平面上保持地球上任意区域的面积比例。
其中最常用的是兰勃托投影,它将地球投影为一个圆形图形。
兰勃托投影适用于地理分析和区域规划等应用。
3.等距投影:等距投影是保持距离真实性的投影方式,即在二维平面上保持地球上任意两点之间的距离比例。
其中最常用的是矩形方位投影,它将地球投影为一个矩形图形。
矩形方位投影适用于航空航天和军事测绘等应用。
三、地图投影变换的方法在选择了适合的地图投影方式之后,还需要进行地图投影变换,将地球表面上的三维坐标转换为平面上的二维坐标。
常见的变换方法有以下几种:1.正算法:正算法是由地球表面的球面坐标计算得到平面坐标的过程。
它是通过将地球表面上的经度和纬度转换为平面上的投影坐标来实现的。
2.反算法:反算法是由平面坐标反推地球表面坐标的过程。
它是通过将平面上的投影坐标反向转换为地球表面上的经度和纬度来实现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地图投影分类与变换
1.地图投影的分类
投影的种类很多,分类方法不尽相同,通常采用的分类方法有两种:一是按变形的性质进行分类:二是按承影面不同(或正轴投影的经纬网形状)进行分类。
(1)按变形性质分类
按地图投影的变形性质地图投影一般分为:等角投影、等(面)积投影和任意投影三种。
等角投影:没有角度变形的投影叫等角投影。
等角投影地图上两微分线段的夹角与地面上的相应两线段的夹角相等,能保持无限小图形的相似,但面积变化很大。
要求角度正确的投影常采用此类投影。
这类投影又叫正形投影。
等积投影:是一种保持面积大小不变的投影,这种投影使梯形的经纬线网变成正方形、矩形、四边形等形状,虽然角度和形状变形较大,但都保持投影面积与实地相等,在该类型投影上便于进行面积的比较和量算。
因此自然地图和经济地图常用此类投影。
任意投影:是指长度、面积和角度都存在变形的投影,但角度变形小于等积投影,面积变形小于等角投影。
要求面积、角度变形都较小的地图,常采用任意投影。
(2)按承影面不同分类
按承影面不同,地图投影分为圆柱投影、圆锥投影和方位投影等(图1)。
图1 方位投影、圆锥投影和圆柱投影示意图
①圆柱投影
它是以圆柱作为投影面,将经纬线投影到圆柱面上,然后将圆柱面切开展成平面。
根据圆柱轴与地轴的位置关系,可分为正轴、横轴和斜轴三种不同的圆柱投影,圆柱面与地球椭球体面可以相切,也可以相割(图2a)。
其中,广泛使用的是正轴、横轴切或割圆柱投影。
正轴圆柱投影中,经线表现为等间隔的平行直线(与经差相应),纬线为垂直于经线的另一组平行直线(图2b)。
图2 圆柱投影的类型及其投影图形
②圆锥投影
它以圆锥面作为投影面,将圆锥面与地球相切或相割,将其经纬线投影到圆锥面上,然后把圆锥面展开成平面而成。
这时圆锥面又有正位、横位及斜位几种不同位置的区别,制图中广泛采用正轴圆锥投影(图3)。
在正轴圆锥投影中,纬线为同心圆圆弧,经线为相交于一点的直线束,经线间的夹角与经差成正比。
在正轴切圆锥投影中,切线无变形,相切的那一条纬线,叫标准纬线,或叫单标准纬线(图3a);在割圆锥投影中,割线无变形,两条相割的纬线叫双标准纬线(图3b)。
a.正轴切圆锥投影示意图
b.正轴割圆锥投影示意图
图3 正轴圆锥投影原理及投影后的经纬网图形
③方位投影
它是以平面作为承影面进行地图投影。
承影面(平面)可以与地球相切或相割,将经纬线网投影到平面上而成(多使用切平面的方法)。
同时,根据承影面与椭球体间位置关系的不同,又有正轴方位投影(切点在北极或南极)、横轴方位投影(切点在赤道)和斜轴方位投影(切点在赤道和两极之间的任意一点上)之分。
上述三种方位投影,都又有等角与等积等几种投影性质之分。
图4是正轴、横轴和斜轴三种投影的例子,其中正轴方位投影(左图)的经线表现为自圆心辐射的直线,其交角即经差,纬线表现为一组同心圆。
图4 方位投影及投影后的经纬网图形
此外,尚有多方位、多圆锥、多圆柱投影和伪方位、伪圆锥、伪圆柱等许多类型的投影。
2.投影变换
地理信息系统的数据大多来自于各种类型的地图资料,这些不同的地图资料根据成图的目的与需要的不同采用不同的地图投影。
为保证同一地理信息系统内(甚至不同地理信息系统之间)的信息数据能够实现交换、配准和共享,在不同地图投影地图的数据输入计算机时,首先就必须将他们进行投影变换,用共同的地理坐标系统和直角坐标系统作为参照来记录存储各种信息要素的地理位置和属性。
因此,地图投影变换对于数据输入和数据可视化都具有重要意义,否则由于投影参数不准确定义所带来的地图记录误差,使以后所有基于地理位置的分析、处理与应用都没有意义。
地图投影的方式有多种类型,它们都有不同的应用目的。
当系统使用的数据取自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要的投影的坐标数据。
在地图数字化完毕后,经常需要进行坐标变换,得到经纬度参照系下的地图。
对各种投影进行坐标变换的原因主要是输入时地图是一种投影,而输出的地图产物是另外一种投影。
进行投影坐标变换有两种方式:一种是利用多项式拟合,类似于图像几何纠正;另一种是直接应用投影变换公式及进行变换。
(1)投影转换的方法
投影转换的方法可以采用:正解变换、反解变换和数值变换。
①正解变换
通过建立一种投影变换为另一种投影的严密或近似的解析关系式,直接由一种投影的数字化坐标x,y变换到另一种投影的直角坐标X、Y。
②反解变换
即由一种投影的坐标反解出地理坐标(x、y→B、L),然后将地理坐标代人另一种投影的坐标公式中(B、L→X、Y),从而实现由一种投影的坐标到另一种投影坐标的变换(x、y→X、Y)。
③数值变换
根据两种投影在变换区内的若干同名数字化点,采用插值法,或有限差分法,或有限无法,或待定系数法等,从而实现由一种投影的坐标到另一种投影坐标的变换。
(2)地理信息系统中投影配置
地理信息系统中地图投影配置的一般原则为:
①所配置的地图投影应与相应比例尺的国家基本图(基本比例尺地形图基本省区图或国家大地图集)投影系统一致。
②系统一般只采用两种投影系统,一种服务于大比例尺的数据输入输出,另一种服务于中小比例尺。
③所用投影以等角投影为宜。
④所用投影应能与格网坐标系统相适应,即所用的格网系统在投影带中应保持完整。
目前,大多数的GIS软件系统都具有地图投影选择与变换功能,对于地图投影与变换的原理的深刻理解是灵活运用GIS地图投影功能与开发的关键。