常见的信号通路
细胞生物学信号通路

细胞生物学信号通路,是指细胞对外界信号作出的反应,并将其传递至其他细胞或组织的过程。
以下是一些常见的细胞生物学信号通路:
1.MAPK信号通路:该通路是介导细胞增殖和分化的主要途径。
当细胞受到生长因子或其它外部刺激时,MAPK信号通路会被激活,引发一系列的信号传递事件,最终导致细胞增殖或分化。
2.PI3K信号通路:该通路是介导细胞生长、增殖和存活的重要途径。
当细胞受到生长因子或其它外部刺激时,PI3K信号通路会被激活,产生磷酸化的磷脂酰肌醇,从而触发一系列的信号传递事件,最终导致细胞生长、增殖或存活。
3.Notch信号通路:该通路是介导细胞分化、发育和凋亡的重要途径。
当Notch受体与配体结合时,Notch信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、发育或凋亡。
4.Wnt信号通路:该通路是介导细胞增殖和凋亡的重要途径。
当Wnt受体与配体结合时,Wnt信号通路会被激活,产生一系列的信号传递事件,最终导致细胞增殖或凋亡。
5.TGF-β信号通路:该通路是介导细胞分化、凋亡和细胞外基质重塑的重要途径。
当TGF-β受体与配体结合时,TGF-β信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、凋亡或细胞外基质重塑。
这些信号通路在细胞生命活动中发挥着至关重要的作用,参与了细胞的多种生理和病理过程。
细胞分化与发育过程中的信号通路分析

细胞分化与发育过程中的信号通路分析细胞分化与发育是生物体内非常重要的生命过程。
这些过程是由一系列复杂的信号通路调控的,其中包括许多蛋白质、基因和代谢物。
本文将深入探讨一些常见的信号通路,并讨论它们是如何参与细胞分化和发育的。
1. Wnt信号通路Wnt是一种重要的干细胞调节因子,它能够在动物和植物中调节细胞的增殖和分化。
当Wnt信号通路激活时,Axin、GSK3β和APC等蛋白质将不被降解,从而导致β-catenin的聚积。
β-catenin是一个既能与胞质内蛋白质相互作用,又能与细胞核内T紧密结合的蛋白质。
在激活蛋白质Kinase的帮助下,β-catenin能够进入细胞核并与TCF/LEF转录因子结合,从而促进基因转录并调节为s天细胞的命运。
2. Notch信号通路Notch信号通路在动物和植物的细胞分化和发育中都扮演重要的角色。
Notch信号通路是由Notch受体和Delta或Serrate家族蛋白质相互作用而形成的。
在这个过程中,Notch受体的胞质域通过γ-分泌酶进行剪切,同时释放出活性的Notch胞外域。
Notch胞外域进入相邻细胞中,并与转录因子Cbf1/RBP-Jκ及核糖体蛋白共同结合,促进基因转录并控制细胞命运。
3. Hedgehog信号通路Hedgehog信号通路在哺乳动物中扮演着非常重要的角色,它能够控制肿瘤细胞的增殖和分化,因此成为肿瘤治疗的重点研究对象。
在正常生理状态下,Hedgehog信号通路能够通过Gli转录因子的激活控制细胞的分化和增殖。
当信号通路过度激活时,人体会出现各种病理状况,如先天性偏头痛和异常肺部发育。
因此,Hedgehog信号通路的调控是非常重要的。
4. TGF-β信号通路TGF-β信号通路是由TGF-β受体和Smad蛋白质家族共同组成的。
当细胞接受到TGF-β信号时,TGF-β受体会被活化,并且通过Smad蛋白质的激活过程来控制基因的转录和细胞分化。
TGF-β信号通路在动物和植物的细胞分化和发育中都扮演着重要的作用,因此被广泛应用于细胞分化和发育的研究中。
各种传导通路汇总

各种传导通路汇总在生物学和医学领域中,传导通路是指生物体内用于传递信号和信息的分子或细胞机制。
这些通路可以包括细胞内信号传导通路、神经传导通路、电传导通路和生化传导通路等。
以下是一些常见的传导通路的汇总:1.细胞内信号传导通路:-G蛋白偶联受体通路:G蛋白偶联受体通过与G蛋白结合,激活下游效应器分子,如磷脂酶C(PLC)、腺苷酸酰化酶(AC)等。
-酪氨酸激酶受体通路:酪氨酸激酶受体通过自身磷酸化,激活下游蛋白激酶,如丝裂原活化蛋白激酶(MAPK)等。
- 精氨酸磷酸化酶(PPA)通路:PPA通过磷酸化下游效应器蛋白,如磷酸酪氨酸酉激酶(Src)等。
2.神经传导通路:-突触传导通路:神经元通过突触间的化学信号传递,将信息从一个神经元传递到另一个神经元。
-神经递质受体通路:神经递质通过结合相应的受体,触发信号传导,如乙酰胆碱受体、谷氨酸受体等。
-非突触传导通路:神经元通过细胞间的直接电流传导或电化学信号传导,实现信息的传递。
3.电传导通路:-肌动电传导通路:心肌细胞通过特定通道中的离子流动,产生心脏的电活动,如心房肌、心室肌等。
-脑电传导通路:神经元在脑内产生的电活动通过特定通道传导,如脑电图中的α波、β波等。
4.生化传导通路:-糖代谢通路:包括糖酵解、糖异生、糖原合成等通路,用于维持细胞能量供应和新陈代谢的平衡。
-脂代谢通路:包括脂肪酸β氧化、胆固醇合成等通路,用于脂质的合成和分解。
-蛋白质合成通路:包括转录、转译和翻译等通路,用于合成特定的蛋白质。
除了以上提到的通路之外,还有很多其他种类的传导通路,如细胞凋亡通路、细胞周期调控通路、免疫传导通路等。
这些通路通过特定的分子相互作用和信号转导,实现了生物体内的各种生理和生物化学过程。
总结起来,传导通路是生物体内用于传递信号和信息的分子或细胞机制。
它们可以涉及细胞内信号传导、神经传导、电传导和生化传导等多个层面,通过特定的分子相互作用和信号转导,实现了生物体内的各种生理和生物化学过程。
信号通路的符号

信号通路的符号
信号通路是指细胞内或细胞间的一系列分子相互作用,从而将外部信号转化为细胞内的生物学反应。
在信号通路中,各种分子通过特定的相互作用形成一个复杂的网络,这些分子通常用符号来表示。
一些常见的信号通路符号包括:
1. 受体(Receptor):细胞表面或细胞内的分子,能够识别并结合外部信号分子。
2. 配体(Ligand):能够与受体结合的外部信号分子。
3. 激酶(Kinase):能够将磷酸基团转移到其他分子上的酶。
4. 磷酸化(Phosphorylation):激酶将磷酸基团加到其他分子上的过程。
5. 蛋白质(Protein):执行细胞功能的大分子。
6. 第二信使(Second Messenger):细胞内的小分子,如cAMP、cGMP、Ca2+等,能够传递信号并引发细胞反应。
7. 转录因子(Transcription Factor):能够调节基因转录的蛋白质。
这些符号在信号通路的示意图中经常使用,帮助我们理解信号分子之间的相互作用和信号传递的过程。
常见信号通路

JNK生理功能
参与细胞凋亡的调控 细胞存活 肿瘤的形成 机体的发育与分化
(三)p38信号转导通路
p38α:白细胞、肝、脾、骨髓中等高表达
p38β:脑和心脏中高泌器官中高表达
注: p38 α和 p38 β 具有不同的剪接体
重要的几种信号通路介绍
• • • • • • MAPK信号通路 JAK-STAT信号通路 Wnt信号通路 TGF- 信号通路 NF- B信号通路 PI3K-AKT信号通路
MAPK信号通路 丝裂原活化蛋白激酶
MAPK信号级联反应
Stimulus
Growth factors, Mitogen, GPCR Raf, Mos, Tpl2
•
•
3个基因转录产物的选择性剪接产生10个JNK 亚型 (46kDa, 55kDa);
同一基因编码的46kDa和55kDa亚型无明显的 功能差异 。
JNK信号通路MKK和MKKK
MKK (MAP2Ks) • MKK4 ( SEK1/MEK4/JNKK1/SKK1 )
• 主要激活JNK,但对p38也有活化作用
(二)JNK信号转导通路
• 是已知的应答最多样刺激的细胞信号转 导途径之一 • JNK通过Thr-Pro-Tyr模体的磷酸化被激 活
JNK:
• • • 人的JNK由3个基因 ( jnk1, jnk 2和 jnk3)编码; JNK1和JNK2广泛地在多种组织表达,而 JNK3 主要在脑、心脏与睾丸组织中表达 JNK家族成员间的同源性超过80%;
激活p38途径的物理、化学应激:
• 氧化应激 (巨噬细胞 )
• 低渗压 (HEK293细胞 ) • 紫外线辐射 (PC12细胞 ) • 低氧 (牛肺动脉成纤维细胞 ) • 循环扩张 (肾小球膜细胞 )
细胞信号通路大全

信号通路与免疫系统疾病
自身免疫疾病
自身免疫疾病患者体内免疫细胞信号通路异 常激活,如T细胞、B细胞等信号通路,导致 自身免疫反应过度。
炎症性疾病
炎症性疾病患者体内炎症细胞信号通路异常激活, 如NF-κB、MAPK等信号通路,导致炎症反应过度 或持续。
感染性疾病
感染性疾病患者体内病原微生物通过干扰免 疫细胞信号通路,如细菌、病毒等,逃避免 疫细胞的攻击。
PI3K-Akt信号通路
PI3K-Akt信号通路是细胞生存和增殖的关键信号转导途径。
PI3K-Akt信号通路在细胞生长、代谢、存活和凋亡等过程中发挥重要作用。当细胞受到生长因子、激素等刺激时,PI3K被激 活,进而催化生成PIP3,后者与Akt结合并使其磷酸化,从而激活Akt。Akt可以进一步调控下游的靶蛋白,参与细胞增殖、 迁移、代谢等过程。
JAK-STAT信号通路
JAK-STAT信号通路是细胞因子信号转导的重要途径之一。
JAK-STAT信号通路在细胞因子信号转导中发挥关键作用。当细胞因子与受体结合后,JAK被激活并催 化受体酪氨酸磷酸化,进而招募并磷酸化STAT蛋白。STAT蛋白形成二聚体并进入细胞核,调控靶基 因的表达,参与细胞生长、分化、免疫调节等过程。
信号通路的自调节
信号通路的正反馈调节
自调节的一种形式是正反馈调节,它通过增 加某个关键信号分子的数量或活性,进一步 增强自身的信号传递。例如,某些生长因子 可以诱导自身受体的表达,形成一个正反馈 环路,不断放大信号传递。
信号通路的负反馈调节
另一种自调节形式是负反馈调节,它通过降 低某个关键信号分子的数量或活性,来抑制 自身的信号传递。例如,某些激素可以通过 诱导产生拮抗性激素或受体,从而抑制自身 的信号传递。
完整的信号通路阐释

完整的信号通路阐释信号通路是指在生物学或工程学领域中,传递信号的一系列分子或电气元件之间的路径或通路。
在不同的领域,信号通路的概念可能有所不同,下面将对生物学和电子工程领域中的信号通路进行阐释。
### 生物学领域的信号通路:在细胞生物学中,信号通路是一系列的生物分子相互作用,以调控细胞的生理功能和生物学行为。
以下是一个典型的细胞信号通路的阐释:1. 信号发起:通常由外部刺激引发,例如细胞外的激素、生长因子或环境因子。
2. 受体激活:外部信号被细胞表面的受体捕获和识别,这可能是膜受体或细胞内受体。
3. 传递:受体激活后,内部的信号分子会传递信号,通常通过一系列蛋白质激酶、磷酸化等过程。
4. 放大:信号通过引发级联反应,逐渐放大,确保在细胞内产生足够的响应。
5. 传导:放大后的信号被传导至细胞内的执行器,可能是转录因子、酶或其他调节分子。
6. 细胞响应:最终,信号通路的活动导致细胞产生一定的生物学响应,如基因表达的改变、细胞运动、增殖或凋亡等。
7. 负反馈:为了维持细胞内稳态,通常信号通路还包含负反馈机制,以避免过度激活。
### 电子工程领域的信号通路:在电子工程中,信号通路是指信号从输入端经过一系列电子元件传递到输出端的路径。
以下是一个简单的电子信号通路的阐释:1. 信号源:通常是传感器或其他设备,产生需要处理的电信号。
2. 输入端:信号进入信号通路的起始点。
3. 处理元件:信号通过一系列的电阻、电容、电感、运算放大器等元件进行处理,可能会经过滤波、放大或调制等过程。
4. 传输:处理后的信号通过导线或电路板传输到下一个阶段。
5. 输出端:处理后的信号最终到达输出端,可以是用于显示、记录、控制其他设备等。
6. 反馈:反馈机制可以根据输出来调整输入,以便维持系统的稳定性和性能。
这只是两个领域中信号通路的简单阐释,实际上,不同的领域和应用场景中的信号通路可能会更加复杂和多样化。
生长因子受体介导的常见信号通路

生长因子受体介导的常见信号通路
特约细胞生长因子受体(TGF-R)介导的常见信号通路属于受体型信号通路类型,是下
游响应信号促进细胞内信号转导过程的关键步骤。
特约细胞生长因子(TGF)是一类普遍存
在于真核细胞中的多功能蛋白质,能够发挥多种功能,其主要功能有促进细胞增殖、分化
和凋亡、促进细胞流变和凝血、以及引发炎症反应等。
TGF-R的穿膜区具有乙烯腺苷酶家族的巨型催化区(GI),这使其能够与头部或脊柱蛋
白结合并激活活性细胞膜上的受体。
受体激活后,如果遇到有效促素,例如TGF-β,则会产生一系列的酶反应。
这些反应可以使细胞信号传递受介导,最终促进细胞多种生物学和
细胞过程。
TGF-R对多种蛋白质和核糖体调控拥有重要作用。
其中,SMADs蛋白质是TGF-R最重
要的信号转导者,可以激活细胞过程,包括凋亡和细胞周期的调控。
另外,在特约细胞生长因子受体信号通路中,X选择性蛋白结合家族也具有重要作用,这些蛋白对细胞凋亡的调控具有重要作用。
此外,TGF-R信号通路还向肿瘤抑制激素/转录因子家族发出信号,以及其他传感器家族等,这些调控因子可以将TGF-R信号转变为细胞特异性信号,进而影响细胞表型和细胞
行为。
最后,特约细胞生长因子受体激活过程还能够促进细胞因子信号表达,调节细胞膜透性,以及发挥其他重要作用。
因此,TGF-R信号通路可以在多个信号穿膜、细胞因子和调控因子的反应之间形成一
个完整的信号转导网络,可以调节和控制细胞过程,以及进行细胞内生物学过程的调控,
因此TGF-R信号通路对于细胞过程调控具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 JAK-STAT信号通路1) JAK与STAT蛋白JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。
与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。
(1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor)许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。
这些细胞因子和生长因子在细胞膜上有相应的受体。
这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。
受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。
(2) 酪氨酸激酶JAK(Janus kinase)很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。
JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。
之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。
JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。
(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。
顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。
目前已发现STAT家族的六个成员,即STAT1-STAT6。
STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。
其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。
2) JAK-STAT信号通路与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。
信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。
JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(docking site),同时含有SH2结构域的STAT 蛋白被招募到这个“停泊位点”。
最后,激酶JAK催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二聚体的形式进入细胞核内与靶基因结合,调控基因的转录。
值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。
例如IL-4激活STAT6,而IL-12却特异性激活STAT4。
2 p53信号1) p53基因的发现p53基因是迄今发现与肿瘤相关性最高的基因。
1979年,Lane和Crawford 在感染了SV40的小鼠细胞内分离获得一个与SV40大T抗原相互作用的蛋白,因其分子量为53 kDa,故而取名为p53(人的基因称为TP53)[3]。
起初,p53被误认为是癌基因,直到上个世纪90年代,人们才认识到引起肿瘤形成或细胞癌变的p53蛋白是p53基因的突变产物。
野生型p53基因是一种重要的抑癌基因,它是细胞生长周期中的负调节因子,在细胞周期调控、DNA损伤修复、细胞分化、凋亡和衰老等许多过程中发挥了重要的生物学功能,因而被誉为“细胞卫士”。
随着研究的深入,人、猴、鸡、大鼠、非洲爪蟾和斑马鱼等多种模式动物的p53基因也相继被克隆。
其中,人类TP53基因定位于染色体17P13.1,小鼠p53基因被定位在11号染色体上,并在14号染色体上发现无功能的假基因。
在这些进化程度迥异的动物中,它们的p53基因结构却异常保守,基因全长16-20kb,都由11个外显子和10个内含子组成。
其中第1个外显子不编码结构域,外显子2、4、5、7、8则分别编码5个进化上高度保守的结构域,转录形成约2.5 kb的mRNA。
之后,在基因同源性的基础上又陆续发现了p53家族的其它成员,分别是p73和p63,它们也因各自的分子量而得名,具有和p53相似的结构和功能。
2) p53信号通路p53基因受多种信号因子的调控。
例如:当细胞中的DNA损伤或细胞增殖异常时,p53基因被激活,导致细胞周期停滞并启动DNA修复机制,使损伤的DNA 得以修复。
然而,当DNA损伤过度而无法被修复时,作为转录因子的p53还可进一步激活下游促凋亡基因的转录,诱导细胞凋亡并杀死有DNA损伤的细胞。
不然,这些DNA损伤的细胞就可能逐渐脱离正常的调控,有可能最终形成肿瘤。
虽然正常状态下p53的mRNA水平很高,而且有大量蛋白质合成,但p53蛋白容易降解,所以正常细胞内p53蛋白水平很低。
蛋白的泛素化(ubiquitination)修饰是细胞内蛋白代谢过程中的最普通的降解方式,p53蛋白的降解也是通过泛素化来实现的。
MDM2是一种特异性针对p53的泛素化E3连接酶,它可直接与p53蛋白结合来促进p53蛋白的泛素化降解,并在细胞内p53蛋白动态平衡中发挥关键的作用。
MDM2本身也可被p53蛋白激活,因此MDM2是p53通路中重要的负反馈调节因子(negative feedback regulator)。
3) p53与肿瘤p53基因敲除小鼠虽然可以产生后代,但其生长发育过程中会出现高频率的自发性肿瘤,这提示p53蛋白与肿瘤之间存在密切的关系。
事实上,目前TP53基因是与人类肿瘤的相关性最高的基因,与50%以上的人类恶性肿瘤有关,而且现正已在超过51种人类肿瘤病例中发现TP53基因的异常表达和功能失活。
TP53基因突变是其功能失活的主要原因,至今已发现400多种TP53基因突变类型,其中147种与胃肠道肿瘤有关,而最常见的突变方式是点突变。
通过分析大量肿瘤病例中的TP53突变位点,证实肿瘤中95.1%的p53点突变位点发生在高度保守的DNA结合区,尤以第175、245、248、249、273和282位点的突变率最高。
此外,某些点突变改变了p53的空间构象,影响了p53蛋白与MDM2和p300等蛋白的相互作用。
另一些点突变发生在p53的核定位信号区,使p53无法进入细胞核发挥转录激活的功能。
不同肿瘤的TP53基因突变位点并不一致,例如:结肠癌中G:C→A:T转换占到79%;在乳腺癌中,G→T颠换占到1/4,而这种突变在结肠癌十分少见;淋巴瘤和白血病的TP53基因突变方式与结肠癌相似;在肺癌中G:C→T:A突变最普遍,而食道癌中发生G→T颠换的频率很高。
目前看来,在肿瘤形成的复杂网络和调控体系中,p53是最主要的因素。
有人认为p53是很好的肿瘤诊断标志物,可以作为癌症早期诊断的重要指标。
认识到p53基因的重要作用后,全世界数以千计的分子生物学家正在抛开原来的课题转而研究p53,希望以此作为攻克癌症的突破口。
科学家相信,利用p53基因发现并治疗癌症的前景非常广阔。
除了基因治疗,研究人员正在筛选可以影响p53基因上下游调控的小分子化合物。
罗氏制药公司开发的一种名为nutlins的小分子化合物,能够干扰p53和MDM2之间的调控关系,有望成为一种有效的抗癌药物。
3 NF-κB信号1975年,E. A. Carswell和L. J. Old等人发现已接种卡介苗的小鼠注射脂多糖后,小鼠血清中产生了一种可引起动物肿瘤组织出血坏死的物质,该物质对体外培养的多种肿瘤细胞株都具有细胞杀伤作用,于是他们将这种物质命名为肿瘤坏死因子(tumour necrosis factor, TNF)。
TNF是迄今发现的抗肿瘤效果最强的细胞因子。
1984年起,欧美国家就开始把TNF的基因工程产品应用到癌症临床治疗中,并一度取得轰动的成果,然而最终由于毒副作用严重而被迫终止。
九十年代末以来,随着基础研究的深入和基因工程技术的发展,科学家研制出一些高效、低毒的TNF变构体,从而重新确立了TNF在抗肿瘤中的重要地位,掀开了TNF在肿瘤研究和治疗中的新篇章。
1) TNF简介TNF是一种糖蛋白,它以两种形式存在:TNF-a和TNF-b。
TNF-a由单核细胞和巨噬细胞产生,它可引起肿瘤组织出血坏死,而脂多糖(Lipopolysaccharides, LPS)是较强的刺激剂。
TNF-b是一种淋巴因子,又称淋巴毒素(lymphotoxin, LT)。
抗原或丝裂原均可刺激T淋巴细胞分泌TNF-b,具有肿瘤杀伤及免疫调节功能。
人的TNF-a基因长2.76 kb,由4个外显子和3个内含子组成,定位在第六号染色体上。
人TNF-a前体由233个氨基酸组成,含有76个氨基酸残基的信号肽,切除信号肽后形成157个氨基酸的成熟型非糖基化的TNF-a。
通过基因工程方法改造后的TNF-a具有更好的生物学活性和抗肿瘤效果。
2) TNF与NF-kB信号通路TNF-a与TNF-b分子结构相似,所发挥的生物学效应相近。
胞外因子TNF-α以三聚体形式发挥信号转导功能,与TNF受体(TNF receptor, TNFR)结合引起受体多聚化,这种多聚化使得TNF受体与细胞质中TRADD分子发生相互作用。
TRADD招募相应蛋白后介导两条转导通路:一条是通过TRAF2和RIP分子诱导NF-κB的活化,参与抗凋亡;另一条是通过FADD分子导致细胞凋亡。
TNFR只有在蛋白合成受阻的情况下才会诱导凋亡,下面我们将着重介绍由TNF激活的NF-kB 信号通路。
NF-kB(nuclear factor-kappa B)是1986年从B淋巴细胞的细胞核抽提物中找到的转录因子,它能与免疫球蛋白kappa轻链基因的增强子B序列GGGACTTTCC特异性结合,促进κ轻链基因表达,故而得名。
它是真核细胞转录因子Rel家族成员之一,广泛存在于各种哺乳动物细胞中。
迄今为止,在哺乳动物细胞内共发现5种NF-kB/Rel家族成员,它们分别是RelA(即p65)、RelB、C-Rel、p50/NF-kB1(即p50/RelA)和p52/NF-kB2。