绝对值不等式,高考历年真题
不等式与绝对值不等式(普通用卷)

不等式与绝对值不等式1.若关于x的不等式|x+2|+|x−a|<5有解,则实数a的取值范围是A.(−7,7)B.(−3,3)C.(−7,3)D.∅2.不等式|x+3|−|x−1|≤a2−3a对任意实数x恒成立,则实数a的取值范围为A.(−∞,−1]∪[4,+∞) B.(−∞,−2]∪[5,+∞)C.[1,2]D.(−∞,1]∪[2,+∞)3.不等式|x+2|+|x−1|≤3的解集是4.关于x的不等式|2x+3|≥3的解集是.5.如果关于x的不等式|x−2|+|x−3|≥a的解集为R,则a的取值范围是 .6.若对任意的x∈R,不等式|x−3|+|x−a|≥3恒成立,则实数a的取值范围为.7.已知关于x的不等式|x+2|+|x−1|>a恒成立,则实数a的取值范围是 .8.设函数f(x)=|x−4|+|x−a|(a>1),且f(x)的最小值为3.(1)求a的值;(2)若f(x)≤5,求满足条件的x的集合.9.已知a>0,b>0,且a2+b2=92,若a+b≤m恒成立,(1)求m的最小值;(2)若2|x−1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.10.已知不等式2|x−3|+|x−4|<2a.(1)若a=1,求不等式的解集;(2)若已知不等式的解集不是空集,求实数a的取值范围.11.已知函数f(x)=|x−2|+|x−1|.(1)求不等式f(x)≤7的解集;(3)若函数g(x)=x2−2x+|a2−3|的最小值不小于f(x)的最小值,求a的取值范围. 12.设函数f(x)=|x−2|−|x+1|.(1)解不等式f(x)>2;(2)若关于x的不等式a2−2a≤f(x)解集是空集,求实数a的取值范围.13.设函数f(x)=|x−1|+|x+2|的最小值为m.(1)求实数m的值;(2)已知a>2,b>2,且满足a+b=2+m,求证:1a−2+4b−2≥9.14.已知函数f(x)=|x+4|+|x−2|的最小值为n.(1)求n的值;(2)若不等式|x−a|+|x+4|≥n恒成立,求a的取值范围.参考答案1.C【解析】本题考查绝对值三角不等式及绝对值不等式的解法.由绝对值三角不等式可得|x +2|+|x −a |≥|(x +2)−(x −a )|=|2+a |,根据题意可得|2+a |<5,解得−7<a <3,故选C.【备注】无2.A【解析】本题主要考查绝对值不等式及一元二次不等式的解法.|x +3|−|x −1|≤(x +3)−(x −1)=4,故a 2−3a ≥4,解得a ≤−1或a ≥4,故选A.【备注】无3.[−2,1]【解析】本题主要考查含绝对值不等式的解法.解答本题时要注意通过分类讨论去掉绝对值的方式去解不等式.由题,当x >1时,x +2+x −1=2x +1≤3,解得x ≤1,无解;当−2≤x ≤1时,x +2+1−x =3≤3恒成立,故−2≤x ≤1;当x <−2时,−x −2+1−x =−2x −1≤3,解得x ≥−2,故无解.综上可知,−2≤x ≤1【备注】统计历年的高考试题可以看出,含绝对值不等式的解法现在主要在选考模块中进行考查,属于容易题.4.(−∞,−3]∪[0,+∞)【解析】本题考查绝对值不等式的解法.由|2x +3|≥3可得2x +3≥3或2x +3≤−3,所以x ≥0或x ≤−3,故答案为(−∞,−3]∪[0,+∞).【备注】无5.(−∞,1]【解析】本题主要考查含绝对值不等式和三角不等式的应用;因为|x −2|+|x −3|≥|(x −2)−(x −3)|=1,且不等式|x −2|+|x −3|≥a 的解集为R ,则a ≤1;故填(−∞,1].【备注】在求|x −2|+|x −3|的最值时,可以考虑绝对值的几何意义:|x −2|+|x −3|表示数轴上的点x 到点2和点3的距离之和,由平面几何知识,得当点x 在点2和点3之间时,其距离和最小,为1.6.a ≤0或a ≥6【解析】无【备注】无7.(−∞,3)【解析】无【备注】无8.(1)函数f (x )=|x ﹣4|+|x ﹣a |表示数轴上的x 对应点到4、a 对应点的距离之和, 它的最小值为|a ﹣4|=3,再结合a >1,可得a =7.(2)f (x )=|x ﹣4|+|x ﹣7|={−2x +11,x <43, 4≤x ≤72x −11,x >7,故由f (x )≤5可得{x <4−2x +11≤5①,或{4≤x ≤73≤5②,或{x >72x −11≤5③. 解①求得3≤x <4,解②求得4≤x ≤7,解③求得7<x ≤8,所以不等式的解集为{x|3≤x ≤8}.【解析】本题考查绝对值不等式.(1)由绝对值的几何意义得|a ﹣4|=3,而a >1,即a =7.(2)分段求解得{x|3≤x ≤8}.【备注】无9.(1)∵(a 2+b 2)(12+12)≥(a +b )2,∴a +b ≤3,(当且仅当a 1=b 1,即{a =32b =32(时取等号). 又a +b ≤m 恒成立,∴m ≥3.(2)要使2|x −1|+|x|≥a +b 恒成立,须且只须2|x −1|+|x|≥3,∴{x ≤0−2x +2−x ≥3或{0<x ≤1−2x +2+x ≥3或{x >12x −2+x ≥3 ∴x ≤−13或x ≥53. 【解析】本题考查基本不等式应用及绝对值不等式.解答本题时要注意(1)根据条件利用柯西不等式求得最值,并表示实数m 的最小值;(2)先构造绝对值不等式,然后解绝对值不等式,得到实数x 的取值范围.【备注】无10.(1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,所以舍去;若3<x <4,则x -2<2,所以3<x <4;若x ≤3,则10-3x <2,所以83<x ≤3.综上,不等式的解集为{x |83<x <4}.(2)设f (x )=2|x -3|+|x -4|,则f (x )={3x −10,x ≥4,x −2,3<x <4,10−3x,x ≤3.作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,所以2a >1,a >12,即a 的取值范围为(12,+∞).【解析】无【备注】无11.(1)由f (x )≤7,得|x −2|+|x −1|≤7,∴{x >22x −3≤7或{1≤x ≤21≤7或{x <13−2x ≤7. 解得−2≤x ≤5,故不等式f (x )≤7的解集为[−2,5].(2)∵f (x )=|x −2|+|x −1|≥|x −2−(x −1)|=1,∴f (x )的最小值为1.∵g (x )min =g(1)=|a 2−3|−1,∴|a 2−3|−1≥1,则a 2−3≥2或a 2−3≤−2,解得a ∈(−∞,−√5]∪[−1,1]∪[√5,+∞).【解析】无【备注】无12.(1)由|x −2|−|x +1|>2,得{x ≤−13>2或{−1<x <21−2x >2或{x ≥2−3>2, 解得x <−12,即解集为x ∈(−∞,−12).(2)∵a 2−2a ≤f (x )的解集为空集,∴a 2−2a >f (x )max ,而f (x )=|x −2|−|x +1|≤|(x −2)−(x +1)|=3,∴a 2−2a >3,即a >3或a <−1.【解析】无【备注】无13.(1)函数f (x )=|x −1|+|x +2|=|1−x|+|x +2|≥|(1−x)+(x +2)|=3, 故f (x )的最小值m =3.(2)由(1)得a +b =2+m =5,故a −2+b −2=1,故1a−2+4b−2=(1a−2+4b−2)[(a −2)+(b −2)]=1+b−2a−2+4(a−2)b−2+4≥5+2√b−2a−2⋅4(a−2)b−2=9. 当且仅当b −2=2(a −2),即a =73,b =83时“=”成立.【解析】无【备注】无14.(1)f (x )=|x +4|+|x −2|={2x +2,x ≥26,−4≤x <2−2x −2,x <−4,所以最小值为6,即n =6.(2)由(1)知n =6,|x −a|+|x +4|≥6恒成立,由于|x −a|+|x +4|≥|(x −a)−(x +4)|=|a +4|,等号当且仅当(x −a)(x +4)≤0时成立,故|a +4|≥6,解得a ≥2或a ≤−10.所以a 的取值范围为(−∞,−10]∪[2,+∞).【解析】无【备注】无。
绝对值不等式高考真题和典型题

绝对值不等式高考真题和典型题1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.3.已知函数f(x)=|x-a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.4.已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.5.设函数f(x)=lg (|2x-1|+2|x+1|-a).(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围.参考答案1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解;当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112.综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76. 3.解 (1)当a =1时,f (x )=|x -1|+3x ,由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.所以不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎨⎧ x ≥a ,4x -a ≤0或⎩⎨⎧ x <a ,2x +a ≤0, 即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x <a ,x ≤-a 2. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2. 由-a 2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不符合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤a 4. 由a 4=-1,得a =-4.综上,a =2或a =-4.4.解 (1)f (x )=|x -4|+|x -a |≥|a -4|=a ,解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立,当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤112. 5.解 (1)当a =4时,f (x )=lg (|2x -1|+2|x +1|-4),此时x 应满足|2x -1|+2|x +1|>4.当x ≤-1时,1-2x -2x -2>4,解得x <-54;当-1<x <12时,1-2x +2x +2>4,无解;当x ≥12时,2x -1+2x +2>4,解得x >34.综上所述,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x <-54或x >34. (2)函数f (x )的定义域为R ,即|2x -1|+2|x +1|-a >0在R 上恒成立,即a <(|2x -1|+2|x +1|)min .因为|2x -1|+2|x +1|=|2x -1|+|2x +2|≥|(2x -1)-(2x +2)|=3, 所以a <3,即实数a 的取值范围为(-∞,3).。
含绝对值的不等式考试试题及答案

含绝对值的不等式考试试题及答案例5-3-13 解下列不等式:(1)|2-3x|-1 V 2⑵ |3x+5|+1 > 6解 (1)原不等式同解于|2 -3x|<3^ -3<2 -3x<3^> -|<x<| 故原不等式的解集为何牛 <金< 学(2)原不等式可化为|3x+5| > 5 .__ 3x+5> 5 或 3x+5v -5O 52〉0或- ¥故解集为-罟卜注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。
解 5-3-14 解不等式 4V |x 2-5x| < 6。
解原不等式同解于不等式组片卞〉4 ①紂一划<6 (ii)不等式(i)同解于x 2-5x v -4 或 x 2-5x > 4其解集可用数轴标根法表示如下:2 5-A1注本例的难点是正确区别解集的交、并关系。
“数轴标根法”是确定 解集并防止出错的有效辅助方法。
例 5-3-15 解不等式 |x+2|-|x-1| > 0解原不等式同解于|x+2| > |x-1| “—,(x+2)2》(x-1) 2O +4E +4^x a+ l <=> &忑A -3 <=> - £不等式(ii)同解于2-6 < x -5x < 6-5^ + £〉02 或M-5x-6<0 °|-lCx<60 -1£蛊忑 2 或 3C xC 6取不等式(i) , (ii)的解的交集,即得原不等式的解集[j 四)U(l, 2]U[3, 4)U(¥&〕或Q4 &E故原不竽式的解集为国掘〉-A注 解形如|ax+b|-|cx+d| > 0的不等式,适合于用移项后两边平方脱去 绝对值符号的方法。
但对其他含多项绝对值的情形,采用此法一般较繁,不可 取。
绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
高中数学 绝对值不等式高考题合集详解

绝对值不等式1.(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)解析 当x ≤1时,不等式可化为(1-x )-(5-x )<2,即-4<2,满足题意;当1<x <5时,不等式可化为(x -1)-(5-x )<2,即2x -6<2,解得1<x <4;当x ≥5时,不等式可化为(x -1)-(x -5)<2,即4<2,不成立。
故原不等式的解集为(-∞,4)。
答案 A2.不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为M ,且2∉M ,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫14,+∞B.⎣⎢⎡⎭⎪⎫14,+∞ C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎦⎥⎤0,12 解析 由已知2∉M ,可得2∈∁R M 。
于是有⎪⎪⎪⎪⎪⎪2a -12≤a , 即-a ≤2a -12≤a ,解得a ≥14,故选B 。
答案 B3.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( )A .1B .2C .3D .4解析 ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时取等号,∴|x -1|+|x |+|y -1|+|y +1|的最小值为3。
答案 C4.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________。
解析 当a ≤-1时,f (x )=|x +1|+2|x -a |=⎩⎪⎨⎪⎧ -3x +2a -1,x <a ,x -2a -1,a ≤x ≤-1,3x -2a +1,x >-1,所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取得最小值f (a )=-a -1,由-a -1=5得a =-6,符合a ≤-1;当a >-1时,f (x )=|x +1|+2|x -a |=⎩⎪⎨⎪⎧ -3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a 。
高三数学绝对值不等式试题

高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是()A.0B.1C.-1D.2【答案】B【解析】由于|x-2|+|x-a|≥|a-2|,∴等价于|a-2|≥a,解之得a≤1.故实数a的最大值为1,选B.4.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.5.解不等式:|x-1|>.【答案】{x|x<0或x>2}【解析】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x-1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8.不等式的解集为__________________.【答案】.【解析】,由,解得.【考点】绝对值不等式的解法.9.设(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值【答案】(1);(2)【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围试题解析:(1),即依题意,,由此得的取值范围是[0,2] 5分(2)当且仅当时取等号解不等式,得故a的最小值为 10分【考点】1 绝对值不等式的解法;2 集合的子集关系;3 不等式的性质;4 恒成立问题10.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.11.在实数范围内,不等式的解集为.【答案】【解析】不等式,由绝对值的几何意义知(如下图),当时,不等式成立.【考点】含绝对值不等式.12.(1)解关于的不等式;(2)若关于的不等式有解,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式的关键是去掉绝对号,如果有多个绝对号,可考虑零点分段的办法,该题只需分和分类讨论;(2)构造函数,只需函数.试题解析:(1)不等式等价于:,或,所以解集为;(2)记,则,∴实数的取值范围是.【考点】1、;绝对值不等式的解法;2、分段函数的最值.13.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.14.关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?【答案】(1)解集为;(2).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,先将代入,利用对数值得,利用零点分段法去绝对值解不等式;第二问,先将已知转化为,利用绝对值的几何意义得到的最大值,所以,即.试题解析:(1)当时,原不等式可变为,可得其解集为(2)设,则由对数定义及绝对值的几何意义知,因在上为增函数,则,当时,,故只需即可,即时,恒成立.【考点】1.解绝对值不等式;2.绝对值的几何意义;3.函数的最大值.15.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.16.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.17.已知函数f(x)=|x-2|+2|x-a|(a∈R).(I)当时,解不等式f(x)>3;(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围.【答案】(I) ;(II)或.【解析】(I) 分三种情况去掉绝对值解不等式;(II)分三种情况讨论,即得的最小值为,再得,解不等式得a的取值范围.试题解析:(Ⅰ)解得;解得;解得, 3分不等式的解集为. 5分(Ⅱ);;;的最小值为; 8分则,解得或. 10分【考点】1、绝对值不等式的解法.18.设函数.(Ⅰ)解不等式;(Ⅱ)若函数的解集为,求实数的取值范围.【答案】①②.【解析】(Ⅰ)把绝对值函数写出分段函数,然后分别解不等式. (Ⅱ)画出函数的图象,由图象知过定点的直线的斜率满足函数的解集为.试题解析:(Ⅰ),即解集为..5分(Ⅱ)如图,,故依题知,即实数的取值范围为 5分【考点】1.绝对值不等式;2.数形结合数学思想.19.设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.【答案】(Ⅰ)或;(Ⅱ)【解析】(Ⅰ)绝对值函数是分段函数,要分段考虑, (Ⅱ)对 ,恒成立等价于对,恒成立,等价于对,函数的最大值小于等于 , 利用函数在区间上是单调递增,求出最大值即可试题解析:解:, 2分(Ⅰ)画出函数的图像如图,的解为或. 4分的解集为或 5分(Ⅱ),即, 7分10分【考点】绝对值不等式,不等式恒成立.20.若关于的不等式的解集非空,则实数的取值范围是;【答案】【解析】根据题意,由于的不等式即可知实数的取值范围是。
高三数学绝对值不等式试题

高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.设函数.(1)求不等式的解集;(2)若存在实数,使得成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数的零点为或.所以将x分为三类即可得到不等式的解集.(2)存在实数,使得成立,即等价于函数的最大值大于.由柯西不等式放缩即可求得到的最大值,从而求得实数的取值范围,即可得结论.(1)当时,由得,所以;当时,由得,所以;当时,由得,所以. 2分综上不等式的解集. 3分(2), 4分由柯西不等式得,, 5分当且仅当时取“=”,的取值范围是. 7分【考点】1.绝对值不等式.2.柯西不等式.3.若存在实数使成立,则实数的取值范围_______【答案】【解析】由又因为存在实数使成立则,则【考点】绝对值不等式;存在性问题.4.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.5.若不等式恒成立,则实数的取值范围为 _______;【答案】【解析】因为函数,不等式恒成立,即,所以实数的取值范围为.【考点】绝对值不等式的最值问题.6.设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力.第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围.试题解析:(1),即.依题意,,由此得的取值范围是[0,2] .5分(2).当且仅当时取等号.解不等式,得.故a的最小值为. 10分【考点】1.绝对值不等式的解法;2.集合的子集关系;3.不等式的性质;4.恒成立问题.7.已知函数.(1)若不等式的解集为,求实数的值;(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由|2x a|+a≤6得|2x a|≤6 a,再利用绝对值不等式的解法去掉绝对值,结合条件得出a值;(2)由(1)知f(x)="|2x" 1|+1,令φ(n)=f(n)+f(n),化简φ(n)的解析式,若存在实数n使f(n)≤m f( n)成立,只须m大于等于φ(n)的最小值即可,从而求出实数m的取值范围.试题解析:(1)由解得则所以 5分(2)由(1)知则原不等式为+2所以 10分【考点】绝对值不等式的解法8.不等式的解集为_______________.【答案】【解析】当时,原不等式为恒成立;当时,原不等式为,解得,所以;当时,原不等式为,无解.综上可知,不等式的解集为.【考点】绝对值不等式的解法9.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.10.不等式对任意实数恒成立,则实数的取值范围是____________.【答案】或.【解析】,故的值域为,不等式对任意实数恒成立,即,解得或.【考点】绝对值不等式的解法,恒成立问题.11.若关于实数的不等式的解集是空集,则实数的取值范围是____________.【答案】【解析】使关于实数的不等式的解集是空集,则,由绝对值的几何意义可知,故,解得.【考点】极坐标系、绝对值不等式.12.不等式组的解集为 .【答案】【解析】,或,所以不等式组的解集为.【考点】1.绝对值不等式的解法;2.分式不等式的解法;3.集合的交集运算.13.若不等式对于一切非零实数均成立,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,要使对于一切非零实数,恒成立,则,即,选C.【考点】1.函数最值;2.绝对值不等式.14.给出下列四个命题:①命题,则.②当时,不等式的解集为非空.③当时,有.④设复数z满足(1-i)z="2" i,则z=1-i其中真命题的个数是A.1B.2C.3D.4【答案】A.【解析】命题,则,故①错;当时,不等式的解集不是非空,②错;当时,,由均值不等式有,当且仅当时等号成立,③正确;复数z满足(1-i)z="2" i,设,则,所以,④错.所以真命题个数为1个,选A.【考点】1.否命题;2.绝对值不等式;3.均值不等式;4.复数的运算.15.已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)将a = 3代入解绝对值不等式即可;(Ⅱ)由题知恒成立令,画出图象求解.试题解析:(Ⅰ)时,即求解①当时,②当时,③当时,综上,解集为(Ⅱ)即恒成立令则函数图象为,【考点】1.绝对值不等式;2.分段函数图象.16.已知实数组成的数组满足条件:①;②.(Ⅰ)当时,求,的值;(Ⅱ)当时,求证:;(Ⅲ)设,且,求证:.【答案】(1)或;(2)详见解析;(3)详见解析.【解析】(1)列出方程组求解;(2)应用绝对值不等式进行证明;(3)应用绝对值不等式可以证明.试题解析:(Ⅰ)解:由(1)得,再由(2)知,且.当时,.得,所以 2分当时,同理得 4分(Ⅱ)证明:当时,由已知,.所以. 9分(Ⅲ)证明:因为,且.所以,即. 11分). 14分.【考点】绝对值不等式.17.若不等式对一切实数恒成立,则实数的取值范围是 .【答案】【解析】有图像可知: 时,的图像的图像恒在的图像的下面.【考点】不等式恒成立问题.18.设(1)当,解不等式;(2)当时,若,使得不等式成立,求实数的取值范围.【答案】(I);(II).【解析】(I)绝对值不等式的解法,易知不等式的等价不等式组解出不等式解集; (II)存在性问题转化为函数最值问题,含绝对值的函数式去绝对值化为分段函数求得最值即可.试题解析:(I)时原不等式等价于即,所以解集为.(II)当时,,令,由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为.【考点】1、绝对值不等式的解法; 2、函数最值问题.19.已知函数,.(Ⅰ)解不等式;(Ⅱ)若,试求的最小值.【答案】(Ⅰ)原不等式的解集为或;(Ⅱ)的最小值为.【解析】(Ⅰ)将原不等式表示出来,借助含绝对值不等式的解法进行求解;(Ⅱ)先将不等式配成柯西不等式的相关形式,然后利用柯西不等式求的最小值.试题解析:(Ⅰ)原不等式化为,或,即或,原不等式的解集为或. 3分(Ⅱ)由已知,得,由柯西不等式,得,, 5分当且仅当即时等号成立, 6分所以,的最小值为. 7分【考点】含绝对值不等式、柯西不等式20.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
高中数学。绝对值不等式高考题合集详解

高中数学。
绝对值不等式高考题合集详解1.不等式|x-1|-|x-5|<2的解集是(-∞,4)。
当x≤1时,不等式可化为(1-x)-(5-x)<2,即-4<2,满足题意;当1<x<5时,不等式可化为(x-1)-(5-x)<2,即2x-6<2,解得1<x<4;当x≥5时,不等式可化为(x-1)-(x-5)<2,即4<2,不成立。
故原不等式的解集为(-∞,4)。
2.对于不等式|ax-1|>a的解集M,且2∉M,则a的取值范围为[1/2,+∞)。
由已知2∉M,可得2∈∁R M。
即2a-1≤a,于是有-1≤a/2≤a,解得a≥2.故选B。
3.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为3.由三角不等式可得|1-x|+|x|≥1,|1-y|+|1+y|≥2,故|1-x|+|x|+|1-y|+|1+y|≥3,当且仅当x=1,y=1时取等号。
4.函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=-6或4.当a≤-1时,f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,则f(x)在x=a处取得最小值f(a)=-a-1;当a>-1时,f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,则f(x)在x=a处取得最小值f(a)=a+1.由f(a)=5得到a=-6或4.当-21,符合题意;当x≥1时,f(x)=3>1,符合题意。
综上得,不等式f(x)>1的解集为{x|x∈(-2,1)}。
(2)不等式f(x)+4≥|1-2m|可化为f(x)+4-|1-2m|≥0.当1-2m≥0时,不等式等价于f(x)+4-(1-2m)≥0,即f(x)≥2m-3.当1-2m<0时,不等式等价于f(x)+4+(1-2m)≥0,即f(x)≥2m-5.由(1)可知,f(x)在区间(-2,1)上单调递增,且f(-2)=-3,f(1)=3.因此,当2m-3≥3时,即m≥3时,XXX成立;当2m-5<-3时,即m<-1时,XXX成立;当-3≤2m-3<3时,即0≤m<3时,不等式等价于f(x)≥2m-3,在区间(-2,1)上的解集为{x|x∈(-2,-1]∪(-1,1)}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。
【考点35】绝对值不等式2009年考题1、(2009全国Ⅰ)不等式11X X +-<1的解集为( )(A ){x }}01{1x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈【解析】选D.0040)1()1(|1||1|11122<⇔<⇔<--+⇔-<+⇔<-+x x x x x x x x , 故选择D 。
2、(2009重庆高考)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞【解析】选A.因为24314313x x x x a a -≤+--≤+--≤-对对任意x 恒成立,所以223434041a a a a a a -≥--≥≥≤-即,解得或.3、(2009广东高考)不等式112x x +≥+的实数解为 . 【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 答案:32x ≤-且2-≠x .4、(2009山东高考)不等式0212<---x x 的解集为 .【解析】原不等式等价于不等式组①221(2)0x x x ≥⎧⎨---<⎩或②12221(2)0x x x ⎧<<⎪⎨⎪-+-<⎩ 或③12(21)(2)0x x x ⎧≤⎪⎨⎪--+-<⎩不等式组①无解,由②得112x <<,由③得112x -<≤,综上得11x -<<,所以原不等式的解集为{|11}x x -<<. 答案:{|11}x x -<<5、(2009北京高考)若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________.【解析】主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算的考查.(1)由01|()|301133x f x x x <⎧⎪≥⇒⇒-≤<⎨≥⎪⎩.(2)由001|()|01111133333x xx x f x x ≥⎧≥⎧⎪⎪≥⇒⇒⇒≤≤⎨⎨⎛⎫⎛⎫≥≥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩. ∴不等式1|()|3f x ≥的解集为{}|31x x -≤≤,∴应填[]3,1-. 答案:[]3,1-6、(2009福建高考)解不等式∣2x -1∣<∣x∣+1 【解析】当x<0时,原不等式可化为211,0x x x -+<-+>解得 又0,x x <∴不存在;当102x ≤<时,原不等式可化为211,0x x x -+<+>解得又110,0;22x x ≤<∴<<当111,211,22222x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又综上,原不等式的解集为|0 2.x x <<7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.(1)将y 表示成x 的函数;(2)要使y 的值不超过70,x 应该在什么范围内取值【解析】(Ⅰ)4|10|6|20|,030.y x x x =-+-≤≤(Ⅱ)依题意,x 满足4|10|6|20|70,030.x x x -+-≤⎧⎨≤≤⎩ 解不等式组,其解集为[9,23],所以[9,23].x ∈8、(2009辽宁高考)设函数()|1|||f x x x a =-+-。
(1)若1,a =-解不等式()3f x ≥;(2)如果x R ∀∈,()2f x ≥,求a 的取值范围。
【解析】(1)当1a =-时,()|1||1|f x x x =-++,由()3f x ≥得:|1||1|3x x -++≥, (法一)由绝对值的几何意义知不等式的解集为33{|}22x x x ≤-≥或。
(法二)不等式可化为123x x ≤-⎧⎨-≥⎩或1123x -<≤⎧⎨≥⎩或123x x >⎧⎨≥⎩,∴不等式的解集为33{|}22x x x ≤-≥或。
-------------5分 (2)若1a =,()2|1|f x x =-,不满足题设条件;若1a <,21,()()1,(1)2(1),(1)x a x a f x a a x x a x -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -;若1a >,21,(1)()1,(1)2(1),()x a x f x a x a x a x a -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -。
所以对于x R ∀∈,()2f x ≥的充要条件是|1|2a -≥,从而a 的取值范围(,1][3,)-∞-+∞。
…………………………………………………………………………………………………………10分2008年考题1、(2008湖南高考)“|1|2x -<”是“3x <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A.由|1|2x -<得13x -<<,所以易知选A .2、(2008湖南高考)“|1|2x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B.由|1|2x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B . 3、(2008四川高考)不等式2||2x x -<的解集为( )(A )(1,2)- (B )(1,1)- (C )(2,1)- (D )(2,2)-【解析】选A.∵2||2x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩, 12x R x ∈⎧⎨-<<⎩, ∴(1,2)x ∈- 故选A .4、(2008天津高考)设集合{||2|3},{|8},S x x T x a x a ST R =->=<<+=,则a 的取值范围是(A) 31a -<<- (B) 31a--(C) 3a-或1a- (D) 3a <-或1a >-【解析】选A.{|15}S x x x =<->或,所以{13185a a a <-⇒-<<-+>,选A .5、(2008山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 .【解析】本题考查绝对值不等式401443,433343b b b x b -⎧≤<⎪-+⎪<<⎨+⎪<≤⎪⎩,解得57b << 答案:(5,7)6、(2008广东高考)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a的取值范围是 .【解析】方程即214a a x x -+=--,左边14a a -+ 在数轴上表示点a 到原点和14的距离的和,易见1144a a -+≥(1[0,]4a ∈等号成立),而右边2x x --的最大值是14,所以方程有解当且仅当两边都等于14,可得实数a 的取值范围为10,4⎡⎤⎢⎥⎣⎦答案:10,4⎡⎤⎢⎥⎣⎦7、(2008上海高考)不等式|1|1x -<的解集是 . 【解析】由11102x x -<-<⇒<<. 答案:(0,2)2007年考题1、(2007安徽高考)若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 【解析】选B .若对任意∈x R,不等式x ≥ax 恒成立,当x≥0时,x≥ax,a≤1,当x<0时,-x≥ax,∴a≥-1,综上得11a -≤≤,即实数a 的取值范围是a ≤1,选B 。
2、(2007安徽高考)若}{2228x A x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0 (B )1 (C )2 (D )3【解析】选C . }{2228x A x -=∈Z ≤<={0,1},{2R |log |1}B x x =∈>=1{|20}2x x x ><<或, ∴ )(C R B A ⋂={0,1},其中的元素个数为2,选C 。
3、(2007福建高考)“|x |<2”是“x 2-x -6<0”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 【解析】选A .由|x|<2得-2<x<2,由 x 2-x -6<0得-2<x<3,选A.4、(湖北高考)设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于()A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤ D.{}|23x x <≤【解析】选B .先解两个不等式得{}02P x x =<<,}{13Q x x =<<。
由P Q -定义,故选B.5、(2007辽宁高考)设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A .p :344||313||0-<<-⇒<<⇒<-<x x x 或43<<x ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.6、(2007辽宁高考)设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A .p :),3()3,(+∞--∞ ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.7、(2007福建高考)已知f(x)为R 上的减函数,则满足f(|x1|)<f(1)的实数x 的取值范围是A (-1,1)B (0,1)C (-1,0)(0,1)D (-,-1)(1,+)【解析】选C .由已知得1||1>x 解得01<<-x 或0<x<1,选C.8、(2007山东高考)当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 .【解析】构造函数:2()4,f x x mx =++12x ∈(,)。