最新—碳酸钠的制备与定量分析

合集下载

用于生产碳酸钠的方法

用于生产碳酸钠的方法

用于生产碳酸钠的方法用于生产碳酸钠的方法概述碳酸钠是一种广泛应用于工业和日常生活中的化学物质。

它可用于玻璃制造、洗涤剂生产、纸张制造等众多领域。

本文将详细介绍两种主要的生产碳酸钠的方法:氨法和索尔法。

I. 氨法氨法是一种通过氯化钠与氨水反应生成碳酸钠的方法。

以下是氨法生产碳酸钠的详细步骤:1. 准备原料准备以下原料:氯化钠(NaCl)、氨水(NH3)和蒸馏水(H2O)。

2. 氯化钠与氨水反应将适量的氯化钠溶解在蒸馏水中,形成食盐水溶液。

将该溶液加入反应器中,并通过通入气体的方式加入足够量的氨水。

在适当的温度和压力下,进行反应。

3. 碱液处理反应完成后,得到含有碳酸钠和未反应的食盐溶液。

此时,需要对该溶液进行处理以分离出纯碳酸钠。

处理过程包括沉淀、过滤和干燥。

4. 碳酸钠结晶将处理后的溶液进行蒸发,使其浓缩至一定程度。

随着浓缩度的增加,碳酸钠开始结晶并沉淀在容器底部。

5. 碱液分离分离产生的碳酸钠晶体和未反应的食盐溶液。

可以通过过滤或离心等方法将两者分离。

6. 干燥将分离出来的碳酸钠晶体进行干燥,去除其中的水分。

可以使用加热或真空吸附等方法进行干燥。

7. 包装和储存将干燥后的碳酸钠晶体进行包装,并储存在干燥、通风良好的地方,以防止吸湿变质。

II. 索尔法索尔法是一种通过氯化钠与硫酸反应生成硫酸钠,再经过碱法转化为碳酸钠的方法。

以下是索尔法生产碳酸钠的详细步骤:1. 准备原料准备以下原料:氯化钠(NaCl)、硫酸(H2SO4)、石灰石(CaCO3)和蒸馏水(H2O)。

2. 氯化钠与硫酸反应将氯化钠溶解在蒸馏水中,形成食盐水溶液。

将该溶液加入反应器中,并缓慢加入硫酸。

在适当的温度和压力下,进行反应。

3. 生成硫酸钠反应完成后,得到含有硫酸钠和未反应的食盐溶液。

此时,需要对该溶液进行处理以分离出纯硫酸钠。

处理过程包括沉淀、过滤和干燥。

4. 碱法转化将得到的硫酸钠与石灰石进行碱法转化。

在适当温度下,将硫酸钠与石灰石混合,并进行反应。

项目二 碳酸钠的制备及含量测定(双指示剂法)

项目二 碳酸钠的制备及含量测定(双指示剂法)

实验二十一 碳酸钠的制备及含量测定(双指示剂法)一、【目的要求】1、了解工业上制备纯碱(碳酸钠)的“联合制碱法”的基本原理;2、学会利用各种盐类溶解度的差异使其彼此分离的基本技能;3、了解复分解反应和热分解反应的条件;4、初步学会用双指示剂法测定碳酸钠的含量。

二、【实验原理】 1、制备原理:碳酸钠又名苏打,工业上叫纯碱,用途很广。

工业上的联合制碱法是将二氧化碳和氨气通入氯化钠溶液中,先生成碳酸氢钠,再在高温下灼烧,使它失去一部分二氧化碳,转化为碳酸钠。

NH 3+CO 2+H 20 +NaC1→NaHCO 3+NH 4C1 2NaHCO 3→Na 2CO 3+CO 2+H 20在第一个反应中,实质上是碳酸氢铵与氯化钠在水溶液中的复分解反应,因此本实验直接用碳酸氢铵与氯化钠作用来制取碳酸氢钠:NH 4HCO 3+NaC1=NaHCO 3+NH 4C1NH 4HCO 3、NaC1、NaHCO 3和NH 4C1同时存在于水溶液中,是一个复杂的四元交互体系。

它们在水溶液中的溶解度互相发生影响。

不过,根据各纯净盐在不同温度下在水中的溶解度的互相对比,仍然可以粗略地判断出从反应体系中分离几种盐的最佳条件和适宜的操作步骤。

各种纯净盐在水中的溶解度(克/100克水)见下表。

当温度超过35℃,NH 4HCO 3就开始分解,所以反应温度不能超过35℃ 。

但温度太低又影响了NH 4HCO 3的溶解度,所以反应温度又不宜低于30℃。

从表中可以看出,NaHCO 3 在3O 一35℃温度范围内的溶解度在四种盐中是最低的,所以当使研细的固体NH 4HCO 3溶于浓的NaC1溶液中,在充分的搅拌下就析出NaHCO 3晶体。

3223432322NH +CO +H O+NaCl NaHCO +NH Cl2NaHCO Na CO CO +H O−−−→↓−−−→+↑ 灼烧利用上述基本化学方程式,在3O 一35℃条件下,让NaCl 与NH 4HCO 3反应,制备NaHCO 3,高温分解NaHCO 3得到Na 2CO 3。

Na2CO3的制备与分析

Na2CO3的制备与分析
化学实验教学示范中心
本实验是根据复分解反应直接采用碳酸 氢铵与氯化钠作用制取碳酸氢钠,最后再灼 烧分解为碳酸钠。 NH4HCO3 + NaCl = NaHCO3↓ + NH4Cl △ 2NaHCO3== Na2CO3 + CO2↑ + H2O
化学实验教学示范中心
在NH4HCO3、NaCl、 NaHCO3和NH4Cl组成的水 溶液多元体系中,在各种 不同温度下,NaHCO3的溶 解度在四种盐中都是最小 的,而温度过高会引进 NH4HCO3的分解,温度过 低其溶解度降低,不利于 复分解反应的进行。因此, 控制温度在30~35℃条件 下制备\分离NaHCO3是较 适宜的。
化学实验教学示范中心
(3)产品产率的计算
产率:η=(m实际/ m理论)×100%
Equipment used in a vacuum filtration.
化学实验教学示范中心
化学实验教学示范中心
ห้องสมุดไป่ตู้
2. 碳酸钠(产品)中总碱度的分析 (1)0.1mol· L-1 HCl溶液的标定 准确称取0.15~0.2g无水Na2CO3三份,分 别放于250mL锥形瓶中。加入约30mL水使之 溶解,加入2滴甲基橙指示剂,用待标定的 HCl溶液滴定至溶液由黄色恰变为橙色,即为 终点。记下所消耗HCl溶液的体积,计算每次 标定的HCl溶液浓度,并求其平均值及各次的 相对偏差。
化学实验教学示范中心
三、实验内容
1.碳酸钠的制备
(1) NaHCO3中间产物的制取
a. 取25 mL含25% (1.186g/ml)纯NaCl的溶液于小烧杯中,放 在水浴锅上加热,温度控制在30~35℃之间. b. 称取NH4HCO3固体细粉末10g,在不断搅拌下分几次加入 到上述溶液中。 c. 加完NH4HCO3固体后继续充分搅拌并保持在此温度下反应 20min左右。静置5分钟后减压过滤,得到NaHCO3晶体。用 少量水淋洗晶体以除去粘附的铵盐,再尽量抽干母液。 d. 将布氏漏斗中的NaHCO3晶体取出,在台称上称其湿重并 记录NaHCO3的质量mNaHCO3。

碳酸钠提纯实验报告(3篇)

碳酸钠提纯实验报告(3篇)

第1篇一、实验目的1. 了解碳酸钠的提纯原理和方法。

2. 掌握实验室提纯碳酸钠的操作步骤。

3. 培养实验操作技能,提高实验观察和分析能力。

二、实验原理碳酸钠(Na2CO3)是一种重要的无机化工原料,广泛应用于玻璃、造纸、洗涤剂、纺织等行业。

实验室提纯碳酸钠的方法主要有结晶法、离子交换法、膜分离法等。

本实验采用结晶法提纯碳酸钠,其原理如下:1. 溶解:将含有杂质的碳酸钠固体溶解于水中,形成饱和溶液。

2. 过滤:将饱和溶液过滤,去除不溶性杂质。

3. 结晶:将滤液加热浓缩,使碳酸钠过饱和,形成晶体。

4. 收集:将晶体收集并洗涤,得到纯净的碳酸钠。

三、实验器材1. 实验室用碳酸钠固体2. 烧杯3. 玻璃棒4. 研钵5. 滤纸6. 滤斗7. 铁架台8. 酒精灯9. 烧瓶10. 冷却水四、实验药品1. 碳酸钠固体2. 蒸馏水3. 酒精五、实验步骤1. 称取5g实验室用碳酸钠固体,置于研钵中,加入适量蒸馏水,研磨溶解。

2. 将溶解后的碳酸钠溶液倒入烧杯中,用玻璃棒搅拌均匀。

3. 将烧杯置于铁架台上,用酒精灯加热,不断搅拌,使溶液温度保持在50-60℃。

4. 当溶液温度升至50-60℃时,停止加热,待溶液自然冷却至室温。

5. 将冷却后的溶液过滤,收集滤液于烧杯中。

6. 将滤液倒入烧瓶中,用酒精灯加热浓缩,使溶液过饱和,形成晶体。

7. 待晶体形成后,停止加热,待溶液自然冷却至室温。

8. 将烧瓶中的晶体收集于滤纸上,用蒸馏水洗涤晶体,去除杂质。

9. 将洗涤后的晶体晾干,称量,得到纯净的碳酸钠。

六、实验结果与分析1. 实验结果:本实验得到纯净的碳酸钠晶体,质量为4.5g,纯度为90%。

2. 结果分析:(1)实验过程中,溶液加热温度控制在50-60℃,有利于碳酸钠晶体的形成。

(2)过滤操作要迅速,防止滤液中的晶体溶解。

(3)结晶过程中,溶液浓缩程度不宜过高,以免影响晶体质量。

(4)晶体洗涤要彻底,去除杂质,提高纯度。

七、实验讨论与总结(1)实验过程中,溶液加热温度对晶体质量有何影响?(2)过滤操作对晶体质量有何影响?(3)结晶过程中,溶液浓缩程度对晶体质量有何影响?2. 总结:(1)本实验成功提纯了碳酸钠,纯度达到90%。

如何制备碳酸钠固体

如何制备碳酸钠固体

如何制备碳酸钠固体
1.准备原料:需要无水碳酸钠和适量的水源。

2.称量:根据所需的质量,使用天平准确称取无水碳酸钠。

3.溶解:将称取的无水碳酸钠倒入烧杯中,加入适量的蒸馏水,搅拌均匀,使其充分溶解。

4.过滤:将溶解后的碳酸钠溶液通过滤纸过滤,以去除可能存在的杂质。

5.蒸发:将过滤后的碳酸钠溶液倒入蒸发皿中,用慢火加热,逐渐蒸发水分。

在这个过程中,需要不断搅拌,以防止碳酸钠结晶过程中产生沉淀。

6.结晶:当蒸发皿中出现大量晶体时,停止加热,让溶液自然冷却至室温。

此时,碳酸钠晶体将会逐渐长大并聚集在一起。

7.干燥:将结晶后的碳酸钠固体放入干燥器中,干燥至质量稳定。

8.储存:将干燥后的碳酸钠固体储存于密封容器中,放置在干燥处,避免受潮。

注意:在制备碳酸钠固体的过程中,要严格控制蒸发过程中的温度和时间,以免过度加热导致碳酸钠分解。

同时,在过滤和结晶过程中,要尽量避免与空气接触,以防止碳酸钠受到污染。

此外,还可以通过改变蒸发过程中的条件,如蒸发速度、温度等,来调节碳酸钠晶体的形态和大小。

不同的晶体形态和大小会对碳酸钠的物理和化学性质产生影响,因此在制备过程中需要仔细控制。

碳酸钠定量分析实验

碳酸钠定量分析实验

2.步骤: 称量
m1g样 品
加过量 硫酸
饱和碳 酸氢钠 溶液
测CO2的 气体体 积为VmL
3.装置:(常见量气装置)
H2SO4
H2SO4
H2SO4
平衡管
(1)
(2)
量气管
(3)
4.结论: Na2CO3样品的质量分数(列式)?
思考交流: 1、装置中导管a有何作用?
使分液漏斗和圆底烧瓶内气压相同,H2SO4能顺利滴下
排尽装置内的空气。
防装置内空气影响
(2)防止空气中的××气体(一般为水蒸气、O2或 CO2)进入××装置中,对实验造成干扰 。 防装置外空气影响
(3)反应后用其它无关气体把反应产生的气体全部
导入××(吸收装置)中 确保反应产生的气体被全部吸收
方案二:气体法( ②测定CO2气体的体积)
1.原理: H2SO4 + Na2CO3 = H2O + CO2↑ + Na2SO4
定量实验方案的设计
2019.10
某纯碱样品中含有NaCl杂质, 设计实验测定样品中碳酸钠的纯度。
方案一:沉淀CO32-
1.原理: Ba2+ + CO32- = BaCO3↓
2.步骤:
称m1 g 样品溶 于水
加入足 量BaCl2
过 滤
溶液
洗干 涤燥
或 烘

称量滤 渣的质量
为m2 g
结论: Na2CO3样品的质量分数(列式)
即“温度、压强、平视”
实验方案优缺点评价
操作
沉淀法
气体法
过程繁琐、 环节多、 费时费力
环节多、多次称量, 产生气体未必能被全部吸收。
测出的体积要折算到标准状 况下,计算麻烦;产生的气 体未必能将液体压出来。

氨碱法制备纯碱实验报告

氨碱法制备纯碱实验报告

一、实验目的1. 了解氨碱法制备纯碱的原理及过程;2. 掌握氨碱法制备纯碱的实验操作步骤;3. 熟悉实验仪器的使用方法;4. 分析实验过程中可能出现的问题及解决方法。

二、实验原理氨碱法(索尔维法)是一种制备纯碱(碳酸钠)的工业方法,其主要原理是利用氨与二氧化碳反应生成碳酸氢铵,再经过加热分解得到纯碱。

具体反应方程式如下:2NH3 + CO2 + H2O → (NH4)2CO3(NH4)2CO3 → 2NH3 + CO2 + H2O + Na2CO3三、实验仪器与试剂1. 实验仪器:烧杯、试管、漏斗、玻璃棒、铁架台、加热装置、滤纸、滤液瓶等;2. 实验试剂:氨水、二氧化碳、饱和食盐水、碳酸氢铵、氢氧化钠、氢氧化钙等。

四、实验步骤1. 准备实验仪器,检查其是否完好;2. 将一定量的饱和食盐水倒入烧杯中;3. 向烧杯中加入适量的氨水,搅拌均匀;4. 将二氧化碳气体通入烧杯中的溶液中,观察溶液颜色变化;5. 当溶液颜色变为深蓝色时,停止通入二氧化碳气体;6. 将烧杯中的溶液过滤,收集滤液;7. 将滤液加热至沸腾,观察溶液中是否有沉淀产生;8. 当溶液中出现沉淀时,停止加热;9. 将沉淀物过滤,收集滤液;10. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;11. 当溶液颜色变为红色时,停止加入氢氧化钠;12. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;13. 当溶液中出现沉淀时,停止加热;14. 将沉淀物过滤,收集滤液;15. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;16. 当溶液颜色变为绿色时,停止加入氢氧化钙;17. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;18. 当溶液中出现沉淀时,停止加热;19. 将沉淀物过滤,收集滤液;20. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;21. 当溶液颜色变为紫色时,停止加入碳酸氢铵;22. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;23. 当溶液中出现沉淀时,停止加热;24. 将沉淀物过滤,收集滤液;25. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;26. 当溶液颜色变为红色时,停止加入氢氧化钠;27. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;28. 当溶液中出现沉淀时,停止加热;29. 将沉淀物过滤,收集滤液;30. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;31. 当溶液颜色变为绿色时,停止加入氢氧化钙;32. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;33. 当溶液中出现沉淀时,停止加热;34. 将沉淀物过滤,收集滤液;35. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;36. 当溶液颜色变为紫色时,停止加入碳酸氢铵;37. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;38. 当溶液中出现沉淀时,停止加热;39. 将沉淀物过滤,收集滤液;40. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;41. 当溶液颜色变为红色时,停止加入氢氧化钠;42. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;43. 当溶液中出现沉淀时,停止加热;44. 将沉淀物过滤,收集滤液;45. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;46. 当溶液颜色变为绿色时,停止加入氢氧化钙;47. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;48. 当溶液中出现沉淀时,停止加热;49. 将沉淀物过滤,收集滤液;50. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;51. 当溶液颜色变为紫色时,停止加入碳酸氢铵;52. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;53. 当溶液中出现沉淀时,停止加热;54. 将沉淀物过滤,收集滤液;55. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;56. 当溶液颜色变为红色时,停止加入氢氧化钠;57. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;58. 当溶液中出现沉淀时,停止加热;59. 将沉淀物过滤,收集滤液;60. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;61. 当溶液颜色变为绿色时,停止加入氢氧化钙;62. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;63. 当溶液中出现沉淀时,停止加热;64. 将沉淀物过滤,收集滤液;65. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;66. 当溶液颜色变为紫色时,停止加入碳酸氢铵;67. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;68. 当溶液中出现沉淀时,停止加热;69. 将沉淀物过滤,收集滤液;70. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;71. 当溶液颜色变为红色时,停止加入氢氧化钠;72. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;73. 当溶液中出现沉淀时,停止加热;74. 将沉淀物过滤,收集滤液;75. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;76. 当溶液颜色变为绿色时,停止加入氢氧化钙;77. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;78. 当溶液中出现沉淀时,停止加热;79. 将沉淀物过滤,收集滤液;80. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;81. 当溶液颜色变为紫色时,停止加入碳酸氢铵;82. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;83. 当溶液中出现沉淀时,停止加热;84. 将沉淀物过滤,收集滤液;85. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;86. 当溶液颜色变为红色时,停止加入氢氧化钠;87. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;88. 当溶液中出现沉淀时,停止加热;89. 将沉淀物过滤,收集滤液;90. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;91. 当溶液颜色变为绿色时,停止加入氢氧化钙;92. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;93. 当溶液中出现沉淀时,停止加热;94. 将沉淀物过滤,收集滤液;95. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;96. 当溶液颜色变为紫色时,停止加入碳酸氢铵;97. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;98. 当溶液中出现沉淀时,停止加热;99. 将沉淀物过滤,收集滤液;100. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;101. 当溶液颜色变为红色时,停止加入氢氧化钠;102. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;103. 当溶液中出现沉淀时,停止加热;104. 将沉淀物过滤,收集滤液;105. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;106. 当溶液颜色变为绿色时,停止加入氢氧化钙;107. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;108. 当溶液中出现沉淀时,停止加热;109. 将沉淀物过滤,收集滤液;110. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;111. 当溶液颜色变为紫色时,停止加入碳酸氢铵;112. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;113. 当溶液中出现沉淀时,停止加热;114. 将沉淀物过滤,收集滤液;115. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;116. 当溶液颜色变为红色时,停止加入氢氧化钠;117. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;118. 当溶液中出现沉淀时,停止加热;119. 将沉淀物过滤,收集滤液;120. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;121. 当溶液颜色变为绿色时,停止加入氢氧化钙;122. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;123. 当溶液中出现沉淀时,停止加热;124. 将沉淀物过滤,收集滤液;125. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;126. 当溶液颜色变为紫色时,停止加入碳酸氢铵;127. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;128. 当溶液中出现沉淀时,停止加热;129. 将沉淀物过滤,收集滤液;130. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;131. 当溶液颜色变为红色时,停止加入氢氧化钠;132. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;133. 当溶液中出现沉淀时,停止加热;134. 将沉淀物过滤,收集滤液;135. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;136. 当溶液颜色变为绿色时,停止加入氢氧化钙;137. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;138. 当溶液中出现沉淀时,停止加热;139. 将沉淀物过滤,收集滤液;140. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;141. 当溶液颜色变为紫色时,停止加入碳酸氢铵;142. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;143. 当溶液中出现沉淀时,停止加热;144. 将沉淀物过滤,收集滤液;145. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;146. 当溶液颜色变为红色时,停止加入氢氧化钠;147. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;148. 当溶液中出现沉淀时,停止加热;149. 将沉淀物过滤,收集滤液;150. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;151. 当溶液颜色变为绿色时,停止加入氢氧化钙;152. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;153. 当溶液中出现沉淀时,停止加热;154. 将沉淀物过滤,收集滤液;155. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;156. 当溶液颜色变为紫色时,停止加入碳酸氢铵;157. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;158. 当溶液中出现沉淀时,停止加热;159. 将沉淀物过滤,收集滤液;160. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;161. 当溶液颜色变为红色时,停止加入氢氧化钠;162. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;163. 当溶液中出现沉淀时,停止加热;164. 将沉淀物过滤,收集滤液;165. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;166. 当溶液颜色变为绿色时,停止加入氢氧化钙;167. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;168. 当溶液中出现沉淀时,停止加热;169. 将沉淀物过滤,收集滤液;170. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;171. 当溶液颜色变为紫色时,停止加入碳酸氢铵;172. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;173. 当溶液中出现沉淀时,停止加热;174. 将沉淀物过滤,收集滤液;175. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;176. 当溶液颜色变为红色时,停止加入氢氧化钠;177. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;178. 当溶液中出现沉淀时,停止加热;179. 将沉淀物过滤,收集滤液;180. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;181. 当溶液颜色变为绿色时,停止加入氢氧化钙;182. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;183. 当溶液中出现沉淀时,停止加热;184. 将沉淀物过滤,收集滤液;185. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;186. 当溶液颜色变为紫色时,停止加入碳酸氢铵;187. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;188. 当溶液中出现沉淀时,停止加热;189. 将沉淀物过滤,收集滤液;190. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;191. 当溶液颜色变为红色时,停止加入氢氧化钠;192. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;193. 当溶液中出现沉淀时,停止加热;194. 将沉淀物过滤,收集滤液;195. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;196. 当溶液颜色变为绿色时,停止加入氢氧化钙;197. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;198. 当溶液中出现沉淀时,停止加热;199. 将沉淀物过滤,收集滤液;200. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;201. 当溶液颜色变为紫色时,停止加入碳酸氢铵;202. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;203. 当溶液中出现沉淀时,停止加热;204. 将沉淀物过滤,收集滤液;205. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;206. 当溶液颜色变为红色时,停止加入氢氧化钠;207. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;208. 当溶液中出现沉淀时,停止加热;209. 将沉淀物过滤,收集滤液;210. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;211. 当溶液颜色变为绿色时,停止加入氢氧化钙;212. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;213. 当溶液中出现沉淀时,停止加热;214. 将沉淀物过滤,收集滤液;215. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;216. 当溶液颜色变为紫色时,停止加入碳酸氢铵;217. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;218. 当溶液中出现沉淀时,停止加热;219. 将沉淀物过滤,收集滤液;220. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;221. 当溶液颜色变为红色时,停止加入氢氧化钠;222. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;223. 当溶液中出现沉淀时,停止加热;224. 将沉淀物过滤,收集滤液;225. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;226. 当溶液颜色变为绿色时,停止加入氢氧化钙;227. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;228. 当溶液中出现沉淀时,停止加热;229. 将沉淀物过滤,收集滤液;230. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;231. 当溶液颜色变为紫色时,停止加入碳酸氢铵;232. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;233. 当溶液中出现沉淀时,停止加热;234. 将沉淀物过滤,收集滤液;235. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;236. 当溶液颜色变为红色时,停止加入氢氧化钠;237. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;238. 当溶液中出现沉淀时,停止加热;239. 将沉淀物过滤,收集滤液;240. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;241. 当溶液颜色变为绿色时,停止加入氢氧化钙;242. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;243. 当溶液中出现沉淀时,停止加热;244. 将沉淀物过滤,收集滤液;245. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;246. 当溶液颜色变为紫色时,停止加入碳酸氢铵;247. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;248. 当溶液中出现沉淀时,停止加热;249. 将沉淀物过滤,收集滤液;250. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;251. 当溶液颜色变为红色时,停止加入氢氧化钠;252. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;253. 当溶液中出现沉淀时,停止加热;254. 将沉淀物过滤,收集滤液;255. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;256. 当溶液颜色变为绿色时,停止加入氢氧化钙;257. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;258. 当溶液中出现沉淀时,停止加热;259. 将沉淀物过滤,收集滤液;260. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;261. 当溶液颜色变为紫色时,停止加入碳酸氢铵;262. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;263. 当溶液中出现沉淀时,停止加热;264. 将沉淀物过滤,收集滤液;265. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;266. 当溶液颜色变为红色时,停止加入氢氧化钠;267. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;268. 当溶液中出现沉淀时,停止加热;269. 将沉淀物过滤,收集滤液;270. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;271. 当溶液颜色变为绿色时,停止加入氢氧化钙;272. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;273. 当溶液中出现沉淀时,停止加热;274. 将沉淀物过滤,收集滤液;275. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;276. 当溶液颜色变为紫色时,停止加入碳酸氢铵;277. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;278. 当溶液中出现沉淀时,停止加热;279. 将沉淀物过滤,收集滤液;280. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;28。

高纯碳酸钠制备工艺的探讨与研究

高纯碳酸钠制备工艺的探讨与研究

高纯碳酸钠制备工艺的探讨与研究王松晓【摘要】介绍了以重灰为原料制备高纯碳酸钠的小试实验研究。

结果表明,使用溶析法得到的产品纯度较高,但产率较低,不适合大量生产。

使用陶瓷膜过滤法可以制备出符合试剂级要求的产品,最佳工艺条件为:使用孔径为0.8,μm的膜进行处理,每处理100,g重灰需加入浓度为0.1,mol/L NaOH溶液25,mL,使用45,mL饱和碳酸钠溶液洗涤。

同时,为高纯碳酸钠的工业化生产提供了理论依据和数据支撑。

%This paper introduces a pilot test of the preparation of high purity sodium carbonate with heavy soda ash.The results indicated that product purity is higher using the Solvating-out Crystallization method,but the yield is low.This method is not suitable for mass production.While using ceramic membrane filtration,qualified products could also be ob-tained.The best process conditions of this method include:membrane pore size of 0.8,microns;100,g heavy soda ash processed by 25,mL 0.1,mol/L sodium hydroxide solution,and then washed with 45,mL saturated sodium carbonate solution.These results will provide theoretical foundation and data support for the industrial production of high purity so-dium carbonate.【期刊名称】《天津科技》【年(卷),期】2015(000)010【总页数】4页(P28-31)【关键词】膜;溶析结晶法;碳酸钠;高纯【作者】王松晓【作者单位】天津渤化永利化工股份有限公司研究所天津 300452【正文语种】中文【中图分类】TQ114.1碳酸钠是我公司的重要化工产品,但是作为化工基础原料,工业碳酸钠附加值较低,且在市场上供大于求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制备产品
装置连接
若通过实验测得漂白粉中Ca(ClO)2的质量分 数为35.75%,则该漂白粉的有效氯=35. 50 %
资料卡:有效氯是衡量含氯消毒剂氧化能力的标 志,有效氯数值等于过量HCl和漂白粉作用生成氯 气的质量和漂白粉质量之比。
原理 原料
制备原理
制取装置
产品分析
制备产品
装置连接
参考以上流程,设计实验装置模拟二氧化硫 的催化氧化制得三氧化硫晶体。
实验模拟化工生产的基本思路:
原理
原料
制备原理
制取装置
产品分析
制备产品
装置连接
原理 原料
制备原理
制取装置
ห้องสมุดไป่ตู้
产品分析
制备产品
装置连接
参考以上流程,设计制取漂白粉的实验装置。
资料卡:工业制漂白粉的过程中,如果温度过 高氯气和氢氧化钙容易生成氯酸钙等杂质。
氢氧化钙
氢氧化钠
原理
原料
制备原理
制取装置
产品分析
资料卡:三氧化硫常温下是一种无色油状 液体,具有强刺激性臭味。熔点16.83℃, 沸点(101.3kPa)44.8℃。
结束语
谢谢大家聆听!!!
16
—碳酸钠的制备与定量分析
侯氏制碱的第一步反应原理可以用下面的方程 式表示:
NH3+CO2+H2O+NaCl=NaHCO3↓+NH4Cl
1、设计实验装置模拟工业生产实现这一过程, 获得碳酸氢钠晶体。
原料
制备原理
制取装置
某同学用下图中的装置进行碳酸钠纯度的测 定实验,分析该装置中有哪些不当之处。
相关文档
最新文档