2019年人教版初中九年级数学上册第二十四章 圆周周测5(24.3—24.4)
人教版九年级数学上册 第二十四章 圆 单元测试题

人教版九年级数学上册 第二十四章 圆 单元测试题一、选择题(30分)1.如图,在Rt OAB 中,o 90AOB ∠=,4OA =,3OB =.O 的半径为2,点P 是线段AB 上的一动点,过点P 作O 的一条切线PQ ,Q 为切点.设AP x =,2PQ y =,则y 与x 的函数图象大致是( )A .AB .BC .CD .D2.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .3B .C .D .3.已知:如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD 交AB 于E ,连接OD 、PC 、BC ,∠AOD=2∠ABC,∠P=∠D,过E 作弦GF⊥BC 交圆与G 、F 两点,连接CF 、BG .则下列结论:①CD⊥AB;②PC 是⊙O 的切线;③OD∥GF;④弦CF 的弦心距等于12BG .则其中正确的是( )A .①②④B .③④C .①②③D .①②③④4.如图,已知:点A 、B 、C 、D 在⊙O 上,AB=CD ,下列结论:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正确的个数为( )A .2B .3C .4D .55.如图,在Rt ABC 中,BC 3cm =,AC 4cm =,动点P 从点C 出发,沿C B A C →→→运动,点P 在运动过程中速度始终为1cm /s ,以点C 为圆心,线段CP 长为半径作圆,设点P 的运动时间为()t s ,当C 与ABC 有3个交点时,此时t 的值不可能是( ,A .2.4B .3.6C .6.6D .9.66.如图,Rt ABC 中,C 90∠=,O 为AB 上的点.以点O 为圆心作O 与BC 相切于点D .若AD =,CAD 30∠=,则弧AD 的长为( ,A .2π3B .4π3C .5π3D .5π67.如图所示,以正方形ABCD 的顶点A 为圆心的弧恰好与对角线BD 相切,以顶点B 为圆心,正方形的边长为半径的弧,已知正方形的边长为2,则图中阴影部分的面积为( )A . 2π-B . 12π- C .5 14π- D .3 14π- 8.如图,☉O 内切△ABC 于D,E,F,∠B=50°,∠C=60°,则∠FDE 的度数为( )A .50°B .55°C .60°D .70°9.如图,已知A(−2, 0),以B(0, 1)为圆心,OB 长为半径作⊙B ,N 是⊙B 上一个动点,直线AN 交y 轴于M 点,则△AOM 面积的最大值是( )A .2B .83C .4D .163 10.如图,点C 在以AB 为半径的半圆上,AB ,8,∠CBA ,30°,点D 在线段AB 上运动,点E 与点D关AC 对称,DF ⊥DE 于点D ,并交EC 的延长线与点F .下列结论:①CE ,CF ,②线段EF 的最小值为③当AD ,2时,EF 与半圆相切;④当点D 从点A 运动到点B 时,线段EF 扫过的面积是.其中正确的结论,,A.1个B.2个C.3个D.4个二、填空题(15分)11.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1,1时,r2018,________.AB ,以AB为边作正方形ABCD(点D,P在直线AB 12.如图,P的半径为5,A、B是圆上任意两点,且6两侧).若正方形ABCD绕点P旋转一周,则CD边扫过的面积为__________13.在△ABC中,AB,AC BC,4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC 于点E,交PC于点G,已知PD,PG,则BD,_____.14.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将该正六边形绕原点O顺时针旋转n次,每次旋转60°,当n=63时,顶点F的坐标为_____.15.如图,在,O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN的长是_____cm.三、解答题(75分)16.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,,求PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.17.如图,AB 是O 的直径,点C 为BD 的中点,CF 为O 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG ∆≅∆;(2)若2AD BE ==,求BF 的长.18.如图,在O 中,弦,AC BD 相交于点,,30,4M AC BD A B OA ⊥∠=∠=︒=,求图中阴影部分的面积.19.如图,已知抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),并且经过点(4,2),直线112y x =+与抛物线交于,B D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点(,1)M t ,直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C 与x 轴相切;(3)过点B 作BE m ⊥,垂足为E ,再过点D 作DF m ⊥,垂足为F 求:BE MF 的值.20. 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD ,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.21.如图,△ABC中,AB,AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C,E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E,30°,AD,1,BD,5,求⊙O的半径.22.已知,O的半径为2,,AOB=120°,,1)点O到弦AB的距离为,,,2)若点P为优弧AB上一动点(点P不与A,B重合),设,ABP=α,将△ABP沿BP折叠,得到A点的对称点为A′,,若,α=30°,试判断点A′与,O的位置关系;,若BA′与,O相切于B点,求BP的长;,若线段BA′与优弧APB只有一个公共点,直接写出α的取值范围.23.问题探究()1请在图()1中作出两条直线,使它们将圆面积四等分,并写出作图过程;拓展应用()2如图()2,M是正方形ABCD内一定点,G是对角线AC、BD的交点.连接GM并延长,分别交AD、BC于P、⊥,分别交AB、CD于E、F.求证:PN、EF将正方形ABCD的面积四等分.N.过G做直线EF GM【参考答案】1.A 2.D 3.A 4.C 5.B 6.B 7.D 8.B 9.B 10.C 11.3201712.9π13.12 1114.(﹣2,-)15.16.,,,1,直线PD为⊙O的切线,理由如下,如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线,,2,∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt △PDO 中,∠, ∴0tan 30OD PD =,解得OD=1,∴PO =∴PA=PO,AO=2,1=1,,3,如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD ∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB 是圆O 的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD 内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE,ED 是⊙O 的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE 是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB,∠ADF=90°,30°=60°∠DBF=2x°=60°,∴△BDF 是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE 为菱形.17.证明:(1)∵C 是BD 的中点,∴CD BC =,∵AB 是O 的直径,且CF AB ⊥,∴BC BF =,∴CD BF =,∴CD BF =,在BFG ∆和CDG ∆中,∵F CDG FGB DGCBF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFG CDG AAS ∆≅∆;(2)解法一:如图,连接OF ,设O 的半径为r ,Rt ADB ∆中,222BD AB AD =-,即()22222BD r =-,Rt OEF ∆中,222OF OE EF =+,即()2222EF r r =--,∵CD BC BF ==,∴BD CF =,∴BD CF =,∴()222224BD CF EF EF ===,即()()22222242r r r ⎡⎤-=--⎣⎦, 解得:1r =(舍)或3,∴()222222332212BF EF BE =+=--+=,∴BF =;解法二:如图,过C 作CH AD ⊥交AD 延长线于点H ,连接AC 、BC , ∵CD BC =,∴HAC BAC ∠=∠,∵CE AB ⊥,∴CH CE =,∵AC AC =,∴Rt AHC Rt AEC ∆≅∆,∴AE AH =,∵CH CE =,CD CB =,∴()Rt CDH Rt CBE HL ∆≅∆,∴2DH BE ==,∴224AE AH ==+=,∴426AB =+=, ∵AB 是O 的直径,∴90ACB ∠=,∴90ACB BEC ∠=∠=, ∵EBC ABC ∠=∠,∴BECBCA ∆∆, ∴BC BE AB BC=,∴26212BC AB BE =⋅=⨯=,∴BF BC ==解法三:如图,连接OC ,交BD 于H ,∵C 是BD 的中点,∴OC BD ⊥,∴DH BH =,∵OA OB =,∴112OH AD ==, ∵OC OB =,COE BOH ∠=∠,90OHB OEC ∠=∠=,∴()COE BOH AAS ∆≅∆,∴1OH OE ==,3OC OB ==,∴CE EF ===,∴BF ===.18.如图,过点O 作OG AC ⊥于点G ,OH BD ⊥于点H ,连接OM .在Rt AOG △和Rt BOH 中,4,30OA OB A B ︒==∠=∠=,122OG OH OA ∴=== AG BH ∴== ,,OG AC OH BD AC BD ⊥⊥⊥,且OH OG =,∴四边形OGMH 是正方形.2GM HM OG ∴=== 2AM BM ∴==+∴1(2222AOM BOM S S ⨯+⨯===+30,A B AC BD ︒∠=∠=⊥于点M ,360180180AOB AOM BOM AOM BOM ∴∠=︒-∠-∠=︒-∠+︒-∠303090150A AMO B BMO A B AMB =∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒ 21504202(243603AOM BOM OAB S S S S ππ⨯∴=++=+⨯+=+扇形阴影. 19.解:(1)设抛物线方程为()2y a x h k =-+∵抛物线的顶点坐标是()2,1∴()221y a x =-+ ∵抛物线经过点()4,2∴()22421a =-+∴14a = ∴抛物线的解析式是:()221121244y x x x =-+=-+ (2)∵直线112y x =+与抛物线交于B 、D 两点∴2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩∴11352x y ⎧=-⎪⎨=⎪⎩22352x y ⎧=+⎪⎨=⎪⎩∴532B ⎛ ⎝,532D ⎛++⎝∵点C 是BD 的中点∴点C 的纵坐标是12522y y += ∵5BD == ∴C 的半径52R =∴圆心C 到x 轴的距离等于半径R∴C 与x 轴相切(3)过点C作CH m⊥,垂足为H,连接CM,如图:∵由(2)可知,52CM R==,312CH R=-=∴2MH===∵122x xHF-==∴2MF HF HM=-=-∵1312BE y=-=∴BEMF==故答案是:(1)()221121244y x x x=-+=-+(2)见详解(3)BEMF= 20.解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt△OBH中,∵∠OBH=30°,∴132126OH OB==⨯=,∴BH==∴2BD BH==∵四边形ABCD 是奇妙四边形,∴AC BD ==,AC BD ⊥∴112542ABCD BD A S C =⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3,∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE ,在△BOM 和△OAE 中90BMOOEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌,∴OM=AE ,∴12OM AD =. 21.(1)证明:连接CO ,,AB ,AC ,,,B ,,ACB ,,OC,OE ,,,OCE ,,E ,,ED ,AB ,,,BDE,90°,,,B,,E,90°,,,ACB,,OCE,90°,,,ACO,90°,即AC,OC,,AC是,O的切线.(2),,E,30°,,,OCE,30°,,,FCE,120°,,,CFO,30°,,,AFD,,CFO,30°,,AD,1,,DF,,BD,5,,DE,,,EF,,,OF,2OC,,EF,3OE,,OE即,O22.解:(1)如图,过点O作OC⊥AB于点C,∵OA=OB,则∠AOC=∠BOC=12×120°=60°,∵OA=2,∴OC=1,故答案为1,,2,①∵∠AOB=120°∴∠APB=12∠AOB=60°,∵∠PBA=30°,∴∠PAB=90°,∴PB是⊙O的直径,由翻折可知:∠PA′B=90°,∴点A′在⊙O上.②由翻折可知∠A′BP=∠ABP,∵BA′与⊙O相切,∴∠OBA′=90°,∴∠ABA′=120°,∴∠A′BP=∠ABP=60°,∵∠APB=60°,∴△PAB 为正三角形,∴BP=AB,∵OC ⊥AB,∴AC=BC ;而OA=2,OC=1,∴AC=3,∴,③α的取值范围为0°,α,30°或60°≤α,120°,23.()1过点O 首先作一条直线b ,进而过点O 作直线b 的垂线a ,即可将圆面积四等分;()2证明:在AGP 和CGN 中PAG NCG AG GCAGP CGN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()AGP CGN ASA ≅,同理可得出:GPD GNB ≅,AEG BNG CFG DPG ≅≅≅,AGP CGN BGE DGB ≅≅≅,∴AEGP EBNG CNGF DFGP S S S S ===四边形四边形四边形四边形,∴PN 、EF 将正方形ABCD 的面积四等分.。
九年级数学上册第24章圆单元试卷含答案(人教版)

九年级数学上册第24章圆单元试卷含答案(人教版)当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
查字典数学网小编为大家预备了这篇第24章圆单元试卷,接上去我们一同来练习。
九年级数学上册第24章圆单元试卷含答案(人教版)一、选择题(每题3分,共30分)1.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC 的度数是( )A.35°B.140°C.70°D.70°或140°2.如图,⊙O的直径AB=8,点C在⊙O上,∠ABC=30°,那么AC的长是( )A.2B.2C.2D.43.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,那么AC等于( )A. B. C.2 D.24.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,假定∠P=40°,那么∠ACB的度数是( )A.80°B.110°C.120°D.140°5.如图,A、B是⊙O上两点,假定四边形ACBO是菱形,⊙O 的半径为r,那么点A与点B之间的距离为( )A. rB. rC.rD.2r6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周失掉圆锥,那么该圆锥的正面积是( )A.25πB.65πC.90πD.130π7.以下四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只要一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A.1个B.2个C.3个D.4个8.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,衔接OD、CB、AC,∠DOB=60°,EB=2,那么CD的长为( )A. B.2 C.3 D.49.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而失掉的,其中AB=1,BC=2,那么旋转进程中弧CC′的长为( )A. πB. πC.5πD. π10.如下图,直线CD与以线段AB为直径的圆相切于点D,并交BA的延伸线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,∠ABP的度数为( )A.15°B.30°C.60°D.90°二、填空题(每题4分,共24分)11.在⊙O中,半径长为3,弦AB长为4,那么圆心O到AB 的距离为_____12.如图,点A、B、C、D区分是⊙O上四点,∠ABD=20°,BD是直径,那么∠ACB=_____13.如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,那么排水管内水的深度为_____ 14.小明用图中所示的扇形纸片作一个圆锥的正面,扇形的半径为5 cm,弧长是6π cm,那么这个圆锥的高是_____ 15.如图,在Rt△ABC中,∠C=90°,∠A=60°,BC=4 cm,以点C为圆心,以3 cm长为半径作圆,那么⊙C与AB的位置关系是_____16.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,假定扇形OEF的面积为3π,那么菱形OABC的边长为_____三、解答题(共46分)17.(8分)在⊙O中,直径AB⊥CD于点E,衔接CO并延伸交AD于点F,且CF⊥AD.求∠D的度数.18.(8分)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.19.(10分)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为弧BC的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.20.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,衔接DE.(1)求证:DE是半圆⊙O的切线;(2)假定∠BAC=30°,DE=2,求AD的长.21.(10分)在?ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)求圆心O到CD的距离;(2)求由弧AE,线段AD,DE所围成的阴影局部的面积.(结果保管π和根号)第24章圆单元试卷到这里就完毕了,希望能协助大家提高学习效果。
人教版九年级上圆24.3-24.4综合练习2

正多边形与圆、弧长、扇形面积(2)一、选择题1.圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).A .36πB .48πC .72πD .144π2.如图,已知O ⊙的半径6OA =,90AOB ∠=°,则AOB ∠所对的弧AB 的长为( )A .2πB .3πC .6πD .12π 3.边长为a 的正六边形的内切圆的半径为( )A .2aB .a CD .12a 4.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5 B .2 C .3D .65.如图,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( )A .2B .4C .8D .166.如图,有一长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向), 木板上的顶点A 的位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A 2C 与桌面成30°角,则点A 翻滚到A 2位置时,共走过的路径长为( )第2题A .10cmB .3.5πcmC .4.5πcmD .2.5πcm二、填空题1.450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D .E 在OB 上,点F 在 AB 上,则阴影部分的面积为(结果保留π) .2.如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为 .3.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和 为 (结果保留π).4.小华为参加毕业晚会演出,准备制一顶圆锥形纸帽,如图所示,纸帽的底面半径为9cm ,母线长为30cm ,制作这个纸帽至少需要纸板的面积至少为 cm 2.(结果保留π)5.矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),则顶点A 所经过的路线长是_________.6.如图(1)是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图(2)所示,ABCD 是正方形,⊙O 是该正方形的内切圆,E 为切点,以B 为圆心,分别以BA.BE 为半径画扇形,得到如图所示的扇环形,图(1)中的圆与扇环的面积比为 .7.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .8.兰州市某中学的铅球场如图所示,已知扇形AOB 的面积是36米2,弧AB 的长度为9米,那么半径OA = 米.9.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC .BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)三,解答题(2009青海)如图,一个圆锥的高为,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求BAC ∠的度数;(3)圆锥的侧面积(结果保留π).。
2022年人教版数学九年级上册第二十四章《圆》同步练习(附答案)6(全章)

第二十四章圆周周测5一、选择题〔每题5分,共50分〕题号 1 2 3 4 5 6 7 8 9 10 答案1. O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与O的位置关系是〔〕A. 相交B. 相切C. 相离D. 不确定2. 如图,线段AB与O相切于点B,线段AO与O相交于点C,AB=12,AC=8,那么O 的半径长〔〕A. 10B. 5C. 6D. 103. 如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是〔〕A. 65°B. 75°C. 85°D. 105°第2题第3题第4题第7题4. 如图AB是O的直径,直线PA与O相切于点A,PO交O于点C,连接BC. 假设∠P=50°,那么∠ABC的度数为〔〕A. 25°B. 40°C. 20°D. 15°5. △ABC的三边长分别为6、8、10,那么其外接圆的半径是〔〕A. 3B. 4C. 5D. 106. O的半径是13,弦AB∥CD,AB=24,CD=10,那么AB与CD的距离是〔〕A. 7B. 17C. 7或17D. 7或137. 如图,O是△ABC的外接圆,弦AB=4,∠C=30°,那么O的直径为〔〕A. 23B. 4C. 6D. 88. 如图,圆的半径是6,空白局部的圆心角分别是60°与30°,那么阴影局部的面积是〔〕A. 9πB. 27πC. 6πD. 3π第8题第9题第10题9. 如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,那么AD为〔〕A. 1B. 85C.32D.5210. 如图,在平面直角坐标系xOy中,直线AB过点A〔-4,0〕、B〔0,4〕,O的半径为1〔O为坐标原点〕,点P在直线AB上,过点P作O的一条切线PQ,Q为切点,那么切线长PQ的最小值为〔〕A. 7B. 210C. 3D. 2二、填空题〔每题5分,共20分〕11. 某扇形的圆心角为60°,半径为1,那么该扇形的弧长为__________.12. 如图,四边形ABCD是O的外切四边形,且AB=10,CD=12,那么四边ABCD的周长为__________.第12题第13题第14题13. 如图,半圆O中,直径AB=10,弦AC=6,点D是弧BC的中点,连接AD,那么AD的长为__________.14. 如图,直线364y x=-+交x轴于点B,交y轴于点A,以AB为直径作圆,点C是弧AB的中点,连接OC交直径AB于点E,那么OC的长为__________.三、解答题〔共30分〕15. 〔12分〕如图,点C是以AB为直径的O上一点,直线AC与过点B的切线相交于点D,点E是BD的中点,直线CE交直线AB于点F.〔1〕求证:CF是O的切线;〔2)假设33tan24ED F==,,求O的直径.16. 〔18分〕如图,CB为O的直径,CB的延长线与过点A的切线相交于点P,PA=10,PB=5,∠BAC的平分线与BC和O分别相交于点D和E.求〔1〕圆O的半径;〔2〕sin BAP∠的值;〔3〕ED·EA的值.第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
人教版数学九年级上册 24.2---24.4练习题含答案

24.2点和圆、直线和圆的位置关系一.选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.等边△ABC的三个顶点都在⊙O上,点P是圆上不与A、B、C重合的点,∠BPC的度数是()A.60°B.120°C.60°或120°D.无法确定3.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°4.如图,AB,AC,BD是⊙O的切线,切点分别是P,C,D.若AC=5,BD=3,则AB 的长是()A.2B.4C.6D.85.如图,P A,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交P A,PB 于点E,F,若P A=4,则△PEF的周长是()A.4B.8C.10D.126.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣47.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F,若AE=5,AC=4,则BE的长为()A.B.C.D.8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A、B,DE切⊙O 于E,交AM于D,交BN于C.设AD=x,BC=y,则y与x的函数图象是()A.xy=16B.y=2x C.y=2x2D.xy=810.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交⊙O于点D,连接CD,若∠P=30°,AP=12,则CD的长为()A.2B.3C.2D.4二.填空题11.如图,在平面直角坐标系xoy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是.12.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是.13.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.14.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.15.如图,在直角坐标系中,一直线l经过点M(,1)与x轴、y轴分别交于A、B两点,且MA=MB,可求得△ABO的内切圆⊙O1的半径r1=﹣1;若⊙O2与⊙O1、l、y 轴分别相切,⊙O3与⊙O2、l、y轴分别相切,…,按此规律,则⊙O2014的半径r2014=.三.解答题16.如图,BC是半⊙O的直径,A是⊙O上一点,过点A的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求P A的长度.17.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.18.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.19.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.参考答案与试题解析一.选择题1.【解答】解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.2.【解答】解:如图,∵△ABC为等边三角形,∴∠A=60°,∴∠BPC=∠A=60°,∵∠A+∠P′=180°,∴∠P′=180°﹣60°=120°,∴当P点在上时,∠BPC=120°.故选:C.3.【解答】解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.4.【解答】解:∵AB,AC,BD是⊙O的切线,切点分别是P,C,D.∴AP=AC,BD=BP,∴AB=AP+BP=AC+BD,∵AC=5,BD=3,∴AB=5+3=8.故选:D.5.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,P A=PB=4,∴△PEF的周长=PE+EF+PF=P A+PB=8.故选:B.6.【解答】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.7.【解答】解:连接OD,如图,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠ACB=90°,∴OD∥AC,∴△BOD∽△BAC,∴=,即=,∴BE =.故选:B .8.【解答】解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PF A =PGA =90°,∴S △PBC =BCPE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4,∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =, ∴=×AGPG ,∴AG =, 由切线长定理可知:CE =CF ,BE =BG ,∴△ABC 的周长为AC +AB +CE +BE=AC +AB +CF +BG=AF +AG=2AG=13,故选:C .9.【解答】解:作DF ⊥BN 交BC 于F ,∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=8,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x,CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,DC2=DF2+CF2,∴(x+y)2=64+(x﹣y)2,∴xy=16故选:A.10.【解答】解:∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∵∠P=30°,∴OP=2OC,∠POC=90°﹣∠P=60°,∵AP=12,即OA+OP=12,∴3OC=12,解得OC=4,∴∠AOC=120°,∵OD⊥AC,∴=,∴∠AOD=∠COD=60°,而OD=OC,∴△OCD为等边三角形,∴CD=OC=4.故选:D.二.填空题(共5小题)11.【解答】解:根据题意,当P在⊙O内,且OP+P A=OA时,OP有最小值,如图,∵A(8,0),⊙O半径为3,∴OA=8,OB=3,∴AB=8+3=11,∵P是AB的中点,∴AP=5,5,∴OP=OA﹣AP=8﹣5.5=2.5,∴OP的最小值是2.5,故答案为2.5.12.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.13.【解答】解:如图1所示,S=r(AB+BC+AC)=r×42=21r,△ABC过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,=BC×AD=×7×12=42,∴S△ABC∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π22=4π(cm2),故答案为:4πcm2.14.【解答】解:由题意知OB=10连接OC ,作直角△ABO 斜边中线OE ,连接ED ,则DE =OC =2,AE =OB =5. 因为AD <DE +AE ,所以当DE 、AE 共线时AD =AE +DE 最大为7cm .故答案为:7.15.【解答】解:连接OO 1、AO 1、BO 1,作O 1 D ⊥OB 于D ,O 1 E ⊥AB 于E ,O 1 F ⊥OA 于F ,如图所示:则O 1 D =O 1 E =O 1 F =r 1,∵M 是AB 的中点,∴B (0,2),A (2,0),则S △OO 1B =×OB ×r 1=r 1,S △AO 1O =×AO ×r 1=r 1S △AO 1B =×AB ×r 1=××r 1=2r 1S △AOB =×2×2=2;∵S △AOB =S △OO 1B +S △AO 1O +S △AO 1B =(3+)r 1=2, ∴r 1==﹣1;同理得:r 2=,r 3=…∴r n =,依此类推可得:⊙O 2014的半径r 2014=;故答案为:.三.解答题(共4小题)16.【解答】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠F AO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠P AE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠P AE=∠AEB,∠P=∠P,∴△APB∽△CP A,∴,即P A2=PBPC,∴,解得P A=.17.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.18.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.19.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=4024.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5B.6C.7D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC 全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.24.4弧长和扇形面积一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。
人教版九年级数学上册第二十四章圆单元测试题及答案

人教版九年级数学上册第二十四章圆单元测试题及答案时间:45分钟 分数:100分一、选择题(每小题3分;共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为10;最小距离为4则此圆的半径为( ) A .14 B .6 C .14 或6 D .7 或32.如图24—A —1;⊙O 的直径为10;圆心O 到弦AB 的距离OM 的长为3;则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心;若∠A=80°;则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°4.如图24—A —2;△ABC 内接于⊙O ;若∠A=40°;则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3;小明同学设计了一个测量圆直径的工具;标有刻度的尺子OA 、OB 在O 点钉在一起;并使它们保持垂直;在测直径时;把O 点靠在圆周上;读得刻度OE=8个单位;OF=6个单位;则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24—A —4;AB 为⊙O 的直径;点C 在⊙O 上;若∠B=60°;则∠A 等于( ) A .80° B .50° C .40° D .30°7.如图24—A —5;P 为⊙O 外一点;PA 、PB 分别切⊙O 于A 、B ;CD 切⊙O 于点E ;分别交PA 、PB 于点C 、D ;若PA=5;则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形;且这个圆锥的底面直径为4m ;母线长为3m ;为防雨需在粮仓顶部铺上油毡;则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π 9.如图24—A —6;两个同心圆;大圆的弦AB 与小圆相切于点P ;大圆的弦CD 经过点P ;且CD=13;PC=4;则两圆组成的圆环的面积是( ) A .16π B .36π C .52π D .81π10.已知在△ABC 中;AB=AC=13;BC=10;那么△ABC 的内切圆的半径为( )图24—A — 5 图24—A — 6图24—A — 1 图24—A — 2 图24—A — 3图24—A —4A .310 B .512C .2D .311.如图24—A —7;两个半径都是4cm 的圆外切于点C ;一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行;蚂蚁在这8段路径上不断爬行;直到行走2006πcm 后才停下来;则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点 二、填空题(每小题3分;共30分) 12.如图24—A —8;在⊙O 中;弦AB 等于⊙O 的半径;OC ⊥AB 交⊙O 于点C ;则∠AOC= 。
2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)
第二十四章圆单元检测题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( )A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形2.已知☉O的半径为6,圆心O到直线l的距离为7,则直线l与☉O的位置关系是( )A.相离B.相交C.相切D.无法确定3.(2023自贡)如图所示,△ABC内接于☉O,CD是☉O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )第3题图A.41°B.45°C.49°D.59°4.圆锥的底面圆的半径r=3,高h=4,则圆锥的侧面积是( )A.10πB.15πC.30πD.45π5.如图所示,☉O的直径为10,弦AB的长为6,P为弦AB上的动点,则线段OP的取值范围是( )第5题图A.3<OP<5B.3≤OP≤5C.4<OP<5D.4≤OP≤56.如图所示,四边形ABCD内接于☉O,F是CD上一点,且DF=BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图所示,☉O是△ABC的外接圆,∠BAC=60°,若☉O的半径OC为2,则弦BC的长为( )第7题图A.4B.23C.338.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )2 B.22-22 D.2-29.(2022娄底改编)如图所示,等边三角形内切圆中的黑色部分和白色部分关于等边三角形ABC 的内心成中心对称,则圆中的黑色部分的面积与△ABC 的面积之比是( )第9题图3π18 B.3183π9 D.3910.(2022广大附中一模)如图所示,点A,B 的坐标分别为A(2,0), B(0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )2+1 B.2+12C.22+1D.22-12二、填空题:本大题共5小题,每小题3分,共15分.11.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设 .12.如图所示,C为AB的中点,CN⊥OB于点N,CD⊥OA于点M,CD=4 cm,则CN= cm.13.已知圆心角为120°的扇形的面积为12π cm2,则扇形的弧长是 cm.14.如图所示,☉O的半径为1,PA,PB是☉O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为 .第14题图15.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示),让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得AB的中点C到AB的距离CD=1.6 cm,AB=6.4 cm,则求得圆形瓦片所在圆的半径为 cm.第15题图三、解答题(一):本大题3小题,第16题10分,第17,18题各7分,共24分.16.(1)(2022湘潭节选)如图所示,在☉O中,直径AB与弦CD相交于点E,连接AC,BD,AD.若AD=3,∠C=30°,求☉O的半径.(2)如图所示,扇形OAB的圆心角为120°,半径OA为6 cm.若把扇形纸片OAB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.17.如图所示,四边形ABCD内接于☉O,AB=AD,∠C=110°,若点E在AD 上,求∠E的度数.18.(2022珠海一模改编)如图所示,已知AB是☉O的直径,直线CD是☉O的切线,过点A作AD⊥CD,垂足为D,直线CD与AB的延长线交于点E.当AB=2BE,且CE=3时,求AD的长.四、解答题(二):本大题3小题,每小题9分,共27分.19.(原创)综合与实践素材:一张三角形纸板.操作:如图(1)所示,将一块三角形纸板ABC,准备裁剪成一个面积最大的圆形,已知∠C=90°,BC=3,AC=4.如图(2)所示,作△ABC的内切圆☉O,切点分别为D,E,G,连接OG,OD,OE.解决问题:请求出裁剪出的最大圆形面积.20.(2022眉山改编)如图所示,AB为☉O的直径,点C是☉O上一点,CD 与☉O相切于点C,过点B作BD⊥DC,连接AC,BC.(1)求证:BC平分∠ABD;(2)若BC=23,AB=4,求阴影部分的面积.21.(2022新疆节选)如图所示,☉O是△ABC的外接圆,AB是☉O的直径,点D在☉O上,AC=CD,连接AD,延长DB交过点C的切线于点E.求证:(1)∠ABC=∠CAD;(2)BE⊥CE.五、解答题(三):本大题2小题,每小题12分,共24分.22.(2022金华)综合探究如图(1)所示,正五边形ABCDE内接于☉O,阅读以下作图过程,并回答下列问题:作法如图(2)所示.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与☉O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN是正三角形吗?请说明理由;(3)从点A开始,以DN长为半径,在☉O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.23.(2022宁波)综合运用如图(1)所示,☉O为锐角三角形ABC的外接圆,点D在BC上,AD交BC 于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连接BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD;(2)求证:△BDE≌△FDG;(3)如图(2)所示,若AD为☉O的直径,当AB的长为2时,求AC的长.答案:一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.A 10.B二、填空题11.∠B≥90° 12.2 13.4π 14.33 15.4三、解答题(一)16.(1)解:∵∠C=∠B,∠C=30°,∴∠B=30°.∵AB是☉O的直径,AD=3,∴∠ADB=90°.∴AB=6.∴☉O的半径为3.(2)如图所示,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH=OC2-H C2=42(cm).17.解:如图所示,连接BD,∵∠C+∠BAD=180°,∠C=110°,∴∠BAD=180°-110°=70°.∵AB=AD,∴∠ABD=∠ADB.×(180°-70°)=55°.∴∠ABD=12∵四边形ABDE是☉O的内接四边形,∴∠E+∠ABD=180°.∴∠E=180°-55°=125°.18.解:如图所示,连接OC,∵直线CD为☉O的切线,∴∠OCE=90°.∵AB=2BO,AB=2BE,∴BO=BE=CO.设BO=BE=CO=x,∴OE=2x.在Rt△OCE中,根据勾股定理,得OC2+CE2=OE2,即x2+(3)2=(2x)2.∴x=1.∴AE=3,∠E=30°.∴AD=32.四、解答题(二)19.解:∵∠C=90°,BC=3,AC=4,OG=OE=OD,∴AB=32+42=5.∴S △ABC =12AC×BC=12AC×OG+12BC×OE+12AB×OD=12OG×C △ABC ,即12AC×BC=12OG×C △ABC .∴12×3×4=12×OG×(3+4+5),解得OG=1,∴裁剪出的最大圆形面积为π×12=π.20.(1)证明:连接OC,如图所示,∵CD 与☉O 相切于点C,OC 为半径,∴OC ⊥CD.∵BD ⊥CD,∴OC ∥BD.∴∠OCB=∠DBC.∵OC=OB,∴∠OCB=∠OBC.∴∠DBC=∠OBC.∴BC 平分∠ABD.(2)解:如图所示,作CE ⊥AO 于点E,∵AB是直径,AB=4,∴∠ACB=90°,OA=OC=2.在Rt△ABC中,AC=AB2-B C2=42-(23)2=2,∴AO=CO=AC=2.∴△AOC是等边三角形.∴∠AOC=60°.∵CE⊥OA,∴OE=12OA=1.∴CE=3.∴阴影部分的面积S=60×π×22360-12×2×3=2π3-3.21.证明:(1)∵AC=CD,∴∠CAD=∠ADC.∵∠ABC=∠ADC,∴∠ABC=∠CAD.(2)如图所示,连接OC,∵CE与☉O相切于点C,∴∠OCE=90°.∵四边形ADBC是圆内接四边形,∴∠CAD+∠DBC=180°.∵∠DBC+∠CBE=180°,∴∠CAD=∠CBE.∵∠ABC=∠CAD,∴∠CBE=∠ABC.∵OB=OC,∴∠OCB=∠ABC.∴∠OCB=∠CBE.∴OC∥BE.∴∠E=180°-∠OCE=90°.∴BE⊥CE.五、解答题(三)22.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5-2)×180°=108°,5即∠ABC=108°.(2)△AMN是正三角形.理由如下:如图所示,连接ON,NF,由题意,得FN=ON=OF,∴△FON是等边三角形.∴∠NFA=60°.∴NMA=60°.同理,得∠ANM=60°,∴∠MAN=60°.∴△MAN是正三角形.(3)∵∠AMN=60°,∴∠AON=120°.×2=144°,∵∠AOD=360°5∴∠NOD=∠AOD-∠AON=144°-120°=24°.∵360°÷24°=15,∴n的值是15.23.(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,.∴∠BFD=90°-α2,(2)证明:由(1),得∠BFD=90°-α2∵∠ADB=∠ACB=α,.∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴∠BFD=∠FBD.∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.在△BDE 和△FDG 中,{DB =DF ,∠DBE =∠DFG ,BE =FG ,∴△BDE ≌△FDG(SAS).(3)解:∵△BDE ≌△FDG,∴∠FDG=∠BDE=α,DE=DG.∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2.∴∠DBG=180°-∠BDG-∠DGE=90°-3α2.∵AD 是☉O 的直径,∴∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2.∴AC 与AB 所对的圆心角度数之比为3∶2.∴AC 与AB 的长度之比为3∶2.∵AB =2,∴AC =3.。
人教版 九年级上册数学 24.2 ---24.4随堂练含答案)
人教版九年级数学24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A内,则实数a的取值范围是()A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是()A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE=.12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A 上,点________在⊙A外.13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C[解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO =BO=CO=DO.设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO=22<1,AC=2>1,∴点O在⊙A内,点B,D在⊙A上,点C在⊙A外.13. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,, ∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135°[解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD =12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.19. 【答案】解:(1)∵∠C=90°,AC=8,AB=10,∴在Rt△ABC中,由勾股定理,得BC=6,∴△BAP的面积S=12AP·BC=12×2×6=6.(2)连接OD,OE,OA.设⊙O的半径为r,则S△BAP=12AB·r+12AP·r=6r,∴6r=6,解得r=1.故⊙O的半径是1.24.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5 B.6 C.7 D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.人教版九年级数学24.4 弧长和扇形面积一、选择题(本大题共10道小题)1. 2019·湖州已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是()A.60π cm2 B.65π cm2C.120π cm2 D.130π cm22. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2π B.4πC.12π D.24π3. 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计).如果圆锥形帽子的底面圆半径为10 cm,那么这张扇形纸板的面积是()A.240π cm2B.480π cm2C.1200π cm2D.2400π cm24. 在半径为6 cm的圆中,长为2π cm的弧所对的圆周角的度数为()A.30°B.45°C.60°D.90°5. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是()A .30 cm 2B .60π cm 2C .30π cm 2D .48π cm 26. 如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为( )A .288°B .144°C .216°D .120°7. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4cm ,则该圆锥的底面周长是( ) A . 3π cm B . 4π cm C . 5π cm D . 6π cm8. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶99. 如图,一根5 m 长的绳子,一端拴在围墙墙脚的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域的面积是( )图A.1712π m2 B.176π m2 C.254π m2D.7712π m210. 已知一个圆心角为270°的扇形工件,未搬动前如图所示,A ,B 两点触地放置,搬动时,先将扇形以B 为圆心,作如图所示的无滑动旋转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,扇形工件所在圆的直径为6 m ,则圆心O 所经过的路线长是(结果用含π的式子表示)( )A .6π mB .8π mC .10π mD .12π m二、填空题(本大题共8道小题)11. 将母线长为6 cm ,底面半径为2 cm 的圆锥的侧面展开,得到如图所示的扇形OAB ,则图中阴影部分的面积为________ cm2.12. 如图所示,有一直径是2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则: (1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.13. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.14. 如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置.若AB=16 cm,则图中阴影部分的面积为________.15. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.16. 如图,在圆柱体内挖去一个与它不等高的圆锥,锥顶O到AD的距离为1,∠OCD=30°,OC=4,则挖去圆锥后剩余部分的表面积是________.17.如图在边长为3的正方形ABCD中,以点A为圆心,2为半径作圆弧EF,以点D为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S1,S2,则S1-S2=_____ ___.18. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形的边长为 6 cm,则该莱洛三角形的周长为________ cm.三、解答题(本大题共4道小题)19. 如图,C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).链接听P50例2归纳总结20. 如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°,(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21. 如图,点A,B,C,D均在圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积.22. 如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,曲线的各部分为圆弧.(1)图已经有4段圆弧,请接着画出第5段圆弧GH.(2)设△ABC的边长为a,则第1段弧的长是________,第5段弧的长是________,前5段弧长的和(即曲线CDEFGH的长)是________.(3)类似地,有“正方形的渐开线”“正五边形的渐开线”……边长为a的正方形的渐开线的前5段弧长的和是________.(4)猜想:①边长为a的正n边形的前5段弧长的和是________;②边长为a的正n边形的前m段弧长的和是________.人教版九年级数学24.4 弧长和扇形面积课时训练-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] ∵r=5 cm,l=13 cm,∴S圆锥侧=πrl=π×5×13=65π(cm2).故选B.2. 【答案】C[解析] 根据扇形的面积公式,S=120×π×62360=12π.故选C.3. 【答案】A[解析] ∵扇形的弧长l =2·π·10=20π(cm),∴扇形的面积S =12lR =12×20π×24=240π(cm 2).4. 【答案】A [解析] 设长为2π cm 的弧所对的圆心角的度数为n°,则nπR180=2π,解得n =60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.5. 【答案】B6. 【答案】A[解析] 设所需扇形铁皮的圆心角为n °,圆锥底面圆的半径为4x ,则母线长为5x ,所以底面圆周长为2π×4x =8πx ,所以n180×π×5x =8πx ,解得n =288.7.【答案】D 【解析】如解图,由题意可知,OA =4 cm ,AB =5cm ,在Rt △AOB 中,利用勾股定理可求得OB =3 cm ,∴该圆锥的底面周长是6π cm.8. 【答案】D9. 【答案】D[解析] 如图,大扇形的圆心角是90°,半径是5 m ,∴其面积为90π×25360=25π4(m2);小扇形的圆心角是180°-120°=60°,半径是1 m ,则其面积为60π360=π6(m2),∴小羊A 在草地上的最大活动区域的面积为25π4+π6=7712π(m2).10. 【答案】A[解析] 如图,∠AOB =360°-270°=90°,则∠ABO =45°,则∠OBC =45°,点O 旋转的长度是2×45π×3180=32π(m),点O 移动的距离是270π×3180=92π(m),则圆心O 所经过的路线长是32π+92π=6π(m).二、填空题(本大题共8道小题)11. 【答案】(12π-93) [解析] 由题意知,扇形OAB 的弧长=圆锥的底面周长=2×2π=4π(cm),∴扇形的圆心角n =4π×180÷6π=120,即∠AOB =120°. 如图,过点C 作OC ⊥AB 于点C.∵OA =OB ,∠AOB =120°,∴∠OAB =∠OBA =30, ∴OC =12OA =3 cm , ∴AC =3 3 cm ,∴AB =2AC =2×3 3=6 3(cm), ∴S 阴影=S 扇形OAB -S △OAB =120π×62360-12×3×6 3=(12π-9 3)cm2.12. 【答案】(1)1(2)14 [解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r米.根据题意,得2πr=90·π·1 180,解得r=1 4.13. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S扇形OAB-S△OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.14. 【答案】32π cm2[解析] 由旋转的性质得∠BAB′=45°,四边形AB′C′D′≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB′的面积-四边形AB′C′D′的面积=扇形ABB′的面积=45π×162360=32π(cm2).15. 【答案】12π16. 【答案】(16+8 3)π[解析] ∵∠OCD=30°,∴∠OCB=60°.又∵OB=OC,∴△OBC是等边三角形,∴挖去的圆锥的高为2 3,底面圆的半径为2,∴圆柱的高为1+2 3,则挖去圆锥后该物体的表面积为(1+2 3)×4π+π×22+12×4π×4=(16+8 3)π.17. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π,∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝ ⎛⎭⎪⎫9-9π4=13π4-9.18. 【答案】6π [解析] 以边长为半径画弧,这三段弧的半径为正三角形的边长,即6 cm ,圆心角为正三角形的内角度数,即60°,所以每段弧的长度为60·π·6180=2π(cm),所以该莱洛三角形的周长为2π×3=6π(cm).三、解答题(本大题共4道小题)19. 【答案】解:(1)连接OD ,OC ,如图.∵C ,D 是半圆O 上的三等分点,∴AD ︵=CD ︵=BC ︵,∴∠AOD =∠DOC =∠COB =60°,∴∠CAB =30°.∵DE ⊥AB ,∴∠AEF =90°,∴∠AFE =90°-30°=60°.(2)由(1)知∠AOD =60°.∵OA =OD ,AB =4,∴△OAD 是等边三角形,OA =OD =2.∵DE ⊥AO ,∴AE =OE =12OA =1,∴DE =OD2-OE2=3,∴S 阴影=S 扇形OAD -S △OAD =60×π×22360-12×2×3=23π- 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD =AB ,∠D =30°,∴∠B =∠D =30°,∴∠DAB =120°.∵BC 是⊙O 的直径,∴∠BAC =90°,∴∠DAC =30°,∴∠BCA =60°.∵AO =CO ,∴△ACO 是等边三角形,∴∠CAO =60°,∴∠DAO =∠CAO +∠DAC =90°,即AD ⊥AO.又∵AO 是⊙O 的半径,∴直线AD 是⊙O 的切线.(2)由(1)知Rt △ADO 中,AO =2,∠D =30°,∴OD =2AO =4,∴AD =2 3,∴SRt △ADO =12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】解:(1)∵AD ∥BC ,∠BAD =120°,∴∠ABC =60°,∠ADB =∠DBC.又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°,∴AB ︵=AD ︵=DC ︵,∠BCD =60°,∴AB =AD =DC ,∠BDC =90°,∴BC是圆的直径,BC=2DC,∴BC+32BC=15,解得BC=6,∴此圆的半径为3.(2)设BC的中点为O,由(1)可知点O为圆心,连接OA,OD. ∵∠ABD=30°,∴∠AOD=60°.根据“同底等高的三角形的面积相等”可得S△ABD=S△OAD,∴S阴影=S扇形OAD=60×π×32360=32π.22. 【答案】13π4解:(1)如图(2)23πa103πa10πa(3)15πa 2(4)①30nπa②m(m+1)nπa。
九年级数学上册(第二十四章24.3~-24.4)知识梳理和复习
九年级数学上册(第二十四章24.3~-24.4)知识梳理与复习知识要点一:正多边形和圆1.下列说法中,不正确的是( )A.正多边形一定有个外接圆B.各边相等且各角相等的多边形一定是正多边形C.正多边形的内切圆和外接圆是同心圆D.正多边形既是轴对称图形,又是中心对称图形2.若同一个圆的内接正三角形、正方形、正六边形的边心距分別为r1,r2,r3,则r1,r2,r3等于( )A.1:2:3B.3:2:1C.1:2:3D.3:2:13.有一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个正六边形、这个纸片的最小半径是_______cm.4.已知圆的半径为6,则它的内接正三角形的边长是______, 内接正方形的边长是________.5.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于________.6.中心角是45°的正多边形的边数是__________.7.分别求半径为R的圆内接正三角形、正方形的边长、边心距和面积.8.如图,正六边形 ABCDEF内接于半径为R的⊙O,四边形EFGH是正方形.(1)求正六边形与正方形的面积比;(2)连接OF,OG,求∠OGF的度数;知识要点二:正多边形的画法及性质9.如图所示,正六边形内接于⊙O,⊙O的半径为10,则1 / 7图中阴影部分的面积为________10.按要求作图.(1)作⊙O,把⊙O分成四等份,分点为A,B,C,D;(2)过各分点A,B,C,D分别作⊙O的切线,相邻切线的交点分别为E,F,G,H;(3)观察四边形EFGB,并说明它的形状11.用等分圆的方法写出如图所示图案的画法知识要点三:弧长和扇形面积12.如图,△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆,若弧AB的长为12cm,那么弧AC的长是( )A. 10cmB. 9 cmC 8 cmD. 6cm13.如果扇形的圆心角为150°,面积为240πc㎡,那么扇形的弧长为( )A. 5π cmB. 10πcmC. 20π cmD. 40π cm14如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形,则半径为2的“等边扇形”的面积为_______.2 / 73 / 715.已知期形的半径为2cm ,面积是3π4cm ,则扇形的弧长是_______cm;扇形的圆心角为________.16.如图,在R △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm,分别以A,C 为圆心,以2AC的长 为半径作圆,将Rt △ABC 截去两个扇 形,则剩余(阴影)部分的面积为______ c ㎡(结果保留π)17.如图所示,AB 是⊙O 的直径,C ,D 是弧AB 的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴彫部分的面积为__________.18.已知南形的弧长是2π,圆心角为30°,则这个扇形的面积为多少?19. 如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连接AC ,BD.(1)求证:AC =BD;(2)若图中阴部分的面积是43πc ㎡,OA =2m 求0C 的长.20.如图,在⊙O 中,直径AB =2,CA 切⊙O 于点A ,BC 交⊙O 于点D ,若∠C =45°,则 (1)BD 的长是________; (2)求阴影部分的面积.4 / 7知识要点四:圆锥的侧面积和表面积21.如图(1),在正方形铁皮上剪下一个圆形和扇形、使之恰好围成图(2)所示的一个圆锥模型,设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为 ( )A R=2r B.R=49r C. R=3r D.R=4r22如图、如果从半径为9cm 的圆形纸片上剪去31圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为 ( ) A. 6cm B. 33 cm C 52 cm D 8cm 23.如图,圆锥形烟卤帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帕的侧面积是 ( ) A. 4000π c ㎡ B. 3 600πc ㎡C. 2 000π c ㎡D. 1 000π c ㎡ 24.如图,从一个直径为43dm 的圆形铁 皮中剪出一个圆心角为60°的扇形ABC , 并将剪下来的扇形围成一个圆锥,则圆锥 的底面半径为_______dm.25.将一块含30°角的三角尺绕较长的直角边旋转一周得一圆锥,设较短直角边的边长为1,则这个圆锥的侧面积为___________.26.如图,一个圆锥的高为33cm ,侧面展开图是半圆. 求:(1)圆锥的母线长与底面半径之比; (2)∠BAC 的度数;(3)圆锥的侧面积(结果保留π)27.某厂要选一块矩形铁皮加工一个底面半径为20cm、高为402cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),要想用料最省,矩形的长和宽分别是多少?5 / 7参考答案6 / 77 / 7。
九年级数学 第二十四章 圆周周测5(24.3—24.4)
第二十四章 圆周周测5一、选择题(共10小题,每小题3分,共30分) 1.正八边形的每个内角为( ) A .120°B .135°C .140°D .144° 2.下列正多边形中,既是轴对称图形,又是中心对称图形的是( ) A .正三角形 B .正方形 C .正五边形 D .正七边形 3.正五边形的中心角是( )A .108°B .90°C .72°D .60°4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠ABC =120°,OC =3,则弧BC 的长为( ) A .πB .2πC .3πD .5π5.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( ) A .32B .4C .13D .116.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A .21B .1C .23D .2 7.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )A .90°B .120°C .150°D .180°8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( ) A .π4169B .π3169C .π2169D .不能确定9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( ) A .π225B .13πC .25πD .π22510.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )A .4个B .6个C .8个D .10个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________ 12.一个扇形的半径为8 cm ,弧长为π316cm ,则扇形的圆心角为__________ 13.如图,△ABC 为⊙O 的内接三角形,AB =1,∠C =30°,则⊙O 的内接正方形的面积为______14.如图,⊙P 与x 轴切与点O ,点P 的坐标为(0,1),点A 在⊙P 上,且在第一象限,∠APO =120°,⊙P 沿x 轴正方向滚动.当点A 第一次落在x 轴上时,点A 的横坐标为________(结果保留π)15.如图,在△ABC 中,CA =CB =2,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________16.如图,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在弧AB 上,CD ⊥OA ,垂足为D .当△OCD 的面积最大时,图中阴影部分的面积为__________ 三、解答题(共8题,共72分)17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径18.(本题8分)如图,圆内接正五边形ABCDE 中,对角线AC 与BD 相交于点P ,求∠APB 和∠BDC 的度数19.(本题8分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°(1) 求证:CD 是⊙O 的切线(2) 若⊙O 的半径为2,求图中阴影部分的面积20.(本题8分)如图,已知菱形ABCD 的边长为1.5 cm ,B 、C 两点在扇形AEF 的弧EF 上,求弧BC 的长度及圆中阴影部分的面积21.(本题8分)如图,已知△ABC 的三个顶点的坐标分别为A (5,4)、B (1,0)、C (6,0) (1) 将△ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出A 的对应点A 1的坐标 (2) 先将△ABC 向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A 点运动轨迹的路径长 .22.(本题10分)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于点D ,以AB 上一点O 为圆心作⊙O ,使⊙O 经过点A 和点D (1) 判断直线BC 与⊙O 的位置关系,并说明理由 (2) 若AC =3,∠B =30° ① 求⊙O 的半径② 设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分面积(结果保留根号和π)23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F顺时针旋转90°得线段FG,连接EF、CG(1) 求证:EF∥CG(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC(1) 如图1,当弧AmC经过圆心O时,求AC的长(2) 如图2.当弧AmC与AB相切于A时①画出弧AmC所在圆的圆心P②求AC的长(3) 如同3,设弧AmC与直径AB交于D,DB=x,试用x的代数式表示AC_________(直接写出结果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆周周测5
一、选择题(共10小题,每小题3分,共30分)
1.正八边形的每个内角为()
A.120° B.135° C.140°
D.144°
2.下列正多边形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正方形C.正五边形D.正七边形
3.正五边形的中心角是()
A.108° B.90° C.72°D.60°
4.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠ABC=120°,OC=3,则弧BC的长为()
A.πB.2πC.3πD.5π
5.如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()
A.3
2B.4 C.13D.11 6.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这
个圆锥的底面半径为( )
A .21
B .1
C .2
3 D .2 7.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )
A .90°
B .120°
C .150°
D .180°
8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( )
A .π4169
B .π3169
C .π2
169 D .不能确定
9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( )
A .π2
25 B .13π C .25π D .π225
10.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都
在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()
A.4个B.6个C.8个D.10个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________
16cm,则扇形的圆心角为12.一个扇形的半径为8 cm,弧长为π
3
__________
13.如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O 的内接正方形的面积为______
14.如图,⊙P与x轴切与点O,点P的坐标为(0,1),点A在⊙P 上,且在第一象限,∠APO=120°,⊙P沿x轴正方向滚动.当点A 第一次落在x轴上时,点A的横坐标为________(结果保留π)15.如图,在△ABC中,CA=CB=2,∠ACB=90°,以AB的中点D 为圆心,作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________
16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB 上,CD⊥OA,垂足为D.当△OCD的面积最大时,图中阴影部分的面
积为__________
三、解答题(共8题,共72分)
17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径
18.(本题8分)如图,圆内接正五边形ABCDE中,对角线AC与BD 相交于点P,求∠APB和∠BDC的度数
19.(本题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°
(1) 求证:CD是⊙O的切线
(2) 若⊙O的半径为2,求图中阴影部分的面积
20.(本题8分)如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的弧EF上,求弧BC的长度及圆中阴影部分的面积
21.(本题8分)如图,已知△ABC的三个顶点的坐标分别为A(5,4)、B (1,0)、C(6,0)
(1) 将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出A 的对应点A1的坐标
(2) 先将△ABC向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A点运动轨迹的路径长.
22.(本题10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作⊙O,使⊙O经过点A 和点D
(1) 判断直线BC与⊙O的位置关系,并说明理由
(2) 若AC=3,∠B=30°
①求⊙O的半径
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分面积(结果保留根号和π)
23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F顺时针旋转90°得线段FG,连接EF、CG
(1) 求证:EF∥CG
(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积
24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC
(1) 如图1,当弧AmC经过圆心O时,求AC的长
(2) 如图2.当弧AmC与AB相切于A时
①画出弧AmC所在圆的圆心P
②求AC的长
(3) 如同3,设弧AmC与直径AB交于D,DB=x,试用x的代数式表示AC_________(直接写出结果)。