杭州市2018年中考数学《圆性质的典型题目串讲》备考周周讲

合集下载

浙江省中考数学复习第一部分考点研究第六单元圆第27课时与圆有关的计算(含近9年中考真题)试题(20

浙江省中考数学复习第一部分考点研究第六单元圆第27课时与圆有关的计算(含近9年中考真题)试题(20

浙江省2018年中考数学复习第一部分考点研究第六单元圆第27课时与圆有关的计算(含近9年中考真题)试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第六单元圆第27课时与圆有关的计算(含近9年中考真题)试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第六单元圆第27课时与圆有关的计算(含近9年中考真题)试题的全部内容。

第一部分考点研究第六单元圆第27课时与圆有关的计算浙江近9年中考真题精选(2009~2017)),)命题点1弧长的相关计算(杭州2014。

16,台州2考,温州2015。

13,绍兴2015.8)1. (2015绍兴8题4分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B =135°,则错误!的长是()A。

2π B。

π C. 错误! D. 错误!第1题图2. (2017宁波9题4分)如图,在Rt△ABC中,∠A=90°,BC=2错误!.以BC的中点O为圆心的圆分别与AB,AC相切于D,E两点,则错误!的长为()第2题图A。

错误! B. 错误! C. π D. 2π3。

(2015温州13题5分)已知扇形的圆心角为120°,弧长为2π,则它的半径为________.4. (2016台州13题5分)如图,△ABC的外接圆O的半径为2,∠C=40°,则错误!的长是________.第4题图5。

(2017台州13题5分)如图,扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120˚,AB长为30厘米,则错误!的长为________厘米(结果保留π).第5题图6。

(通用版)中考数学一二轮复习第28-30讲 圆经典精讲

(通用版)中考数学一二轮复习第28-30讲 圆经典精讲

第28讲圆经典精讲金题精讲题一:如图,AB是圆O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=12∠BOD,则圆O的半径为( )A.B.5 C.4 D.3题二:半圆形的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的端点PQ,线段PQ交y轴于点A,则点A的坐标为_________.题三:如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为__________.题四:如图,正方形ABCD的对角线相交于点O,点F在AD上,AD=3AF,△AOF的外接圆交AB于点E,则AEAF的值为( )A.32B.3 C.53D.2题五:如图,AB为圆O的直径,PD切圆O于点C,与BA的延长线交于点D,DE垂直PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是圆O的切线.(2)若PB=3,DB=4,求DE的长.第29讲圆2019中考真题赏析本讲课正在更新中,届时同学们可从网站上下载该讲的电子版文档。

第30讲圆2018中考真题赏析新题赏析题一:如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB 与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8C.D.题二:如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为弧BB ,则图中阴影部分的面积为_________.题三:如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(πm2B.40πm2C.(πm2D.55πm2题四:如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为_________cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为_________cm.题五:如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为_________时,四边形ECFG为菱形;②当∠D的度数为_________时,四边形ECOG为正方形.第28讲 圆经典精讲金题精讲题一:B . 题二:)3,0(. 题三:22.题四:D .题五:(1)∵∠EDB =∠EPB ,∠DOE =∠POB ,∴∠E =∠PBO =90°, 又∵OB 是圆O 的半径,∴PB 是圆O 的切线.(2)设圆O 的半径是r ,连接OC ,如图:∵ PB =3,DB =4,∴PD=522=+DB PB .∵PD 切圆O 于点C ,∴OC ⊥PD ,∴222CD OC OD +=,即222)4(2r r -=+, 解得:23=r ,∴DO =4-r =25,PO 253322=+=r . ∵∠EDB =∠EPB ,∠DOE =∠POB , ∴△DOE ∽△POB ,∴DEDO PB PO =, 即253253=DE ,解得:DE =5.第29讲 圆2019中考真题赏析本讲课正在更新中,届时同学们可从网站上下载该讲的电子版文档。

浙江省杭州市中考数学第一轮复习(课件)第六章第一节

浙江省杭州市中考数学第一轮复习(课件)第六章第一节

A. 6
2
C. 3
B. 2 D. 2
【思路点拨】连接OE,OF,OC,利用正三角形性质与正方形 性质,设圆的半径为R,分别用R表示出EF与GH,求出 EF .
GH
【解析】如解图,连接OE,OF,OC,且
OC交EF于点M.∵△AEF是圆内接正三角形,
∴∠EOM=60°,设OE=R,则OM= 1 R,
【名师提醒】图中两条弦的位置没有明确给出时,要分 情况讨论,即两条弦在圆心的同侧和异侧两种情况.
(1)圆内接四边形的对角18 _互___补__ 如图 ∠A+∠BCD=_1_9__1_8_0___,∠B+∠D =_2_0_1_8_0_(2)
圆内接四边形的任意一个外角等于它的
_2_1__对__角__如图(4),∠DCE=_2_2_∠__A___
如图(5)所示,
设正n多边形的边长为a,则边心距 r
总结:在同圆或等圆中,如果两个圆心角、两条弧、 两条弦、两个弦心距中有一对量相等,那么它们所对 应的其余各对量都相等
垂径 定理 及其 推论
定理:垂直于弦的直径⑦_平__分__弦,并且平分弦所对
的两条弧 1.平分弦(不是直径)的直径垂直于弦,
推 并且平分弦所对的两条弧 理
2.平分弧的直径垂直平分弧所对的弦
只要满足其中两个,另外三个 结论一定成立,即知二推三
圆周 角定 理及 其推 论
定理:圆周角的度数等于它所对弧上的圆心角度数的14
1
__一__半____,如图(3)∠BAC =_____2____∠BOC
推论1:同弧或等弧所对的圆周角 16__相__等___,相等的圆周角
所对的弧也相等,如图(3),∠BAC =∠BDC
2

2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析):第16讲圆 知识归纳+真题解

2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析):第16讲圆  知识归纳+真题解

【知识归纳】1.圆上各点到圆心的距离都等于.2.圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3.垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.组量,那么它们所对应的其余各组量都分别.5.同弧或等弧所对的圆周角,都等于它所对的圆心角的.6.半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.【知识归纳答案】1.圆上各点到圆心的距离都等于半径.2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心.3.垂直于弦的直径平分弦,并且平分弦所对的两条弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等.5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的对角互补.真题解析1.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【考点】M2:垂径定理.【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.8【考点】M2:垂径定理;KQ:勾股定理.【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OB﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.3.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米【考点】M3:垂径定理的应用.【分析】连接OF,交AC于点E,设圆O的半径为R米,根据勾股定理列出方程,解方程即可.【解答】解:连接OF,交AC于点E,∵BD是⊙O的切线,∴OF⊥BD,∵四边形ABDC是矩形,∴AD∥BD,∴OE⊥AC,EF=AB,设圆O的半径为R,在Rt△AOE中,AE===0.75米,OE=R﹣AB=R﹣0.25,∵AE2+OE2=OA2,∴0.752+(R﹣0.25)2=R2,解得R=1.25.1.25×2=2.5(米).答:这扇圆弧形门的最高点离地面的距离是2.5米.故选:B.学科网4.小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点【考点】M3:垂径定理的应用.【分析】根据题意可知所求的圆形玻璃是△ABC的外接圆,从而可以解答本题.【解答】解:由题意可得,所求的圆形玻璃是△ABC的外接圆,∴这块玻璃镜的圆心是△ABC三边垂直平分线的交点,故选B.5.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12B.15C.16D.18【考点】M5:圆周角定理;M2:垂径定理.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选A.学科网6.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.7.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.【考点】M6:圆内接四边形的性质.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选D.8.以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b 的取值范围是()A.0≤b<2B.﹣2C.﹣22D.﹣2<b<2【考点】MB:直线与圆的位置关系;F7:一次函数图象与系数的关系.【分析】求出直线y=﹣x+b与圆相切,且函数经过一、二、四象限,和当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时b的值,则相交时b的值在相切时的两个b的值之间.【解答】解:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=2.则OB=OC=2.即b=2;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣2.则若直线y=x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D.9.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2B.﹣πC.1D.+π【考点】MC:切线的性质;MO:扇形面积的计算.【分析】设AT交⊙O于D,连结BD,先根据圆周角定理得到∠ADB=90°,则可判断△ADB、△BDC都是等腰直角三角形,所以AD=BD=CD=AB=,然后利.用弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD故选C.二.填空题(共5小题)10.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为5cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.11.在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为15°或105°.【考点】M2:垂径定理;T7:解直角三角形.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE==,sin∠AOD==,∴∠AOE=45°,∠AOD=30°,∴∠BAO=60°,∠CAO=90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.12.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.【考点】M3:垂径定理的应用;MO:扇形面积的计算.,根据扇形面积公式求【分析】连接OA、OB,根据三角形的面积公式求出S△AOB出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,=×8×8=32,∴S△AOB扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.13.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【考点】M5:圆周角定理;L8:菱形的性质.【分析】根据菱形的性质得到∠ACB=∠DCB==51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB==51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.14.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为(7,4)或(6,5)或(1,4).【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】由勾股定理求出PA=PB==,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=,即可得出点C 的坐标.【解答】解:∵点A、B、P的坐标分别为(1,0),(2,5),(4,2).∴PA=PB==,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB==,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).学科网三.解答题(共9小题)15.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【考点】MA:三角形的外接圆与外心.【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径.【解答】(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.16.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.【考点】MA:三角形的外接圆与外心;KW:等腰直角三角形.【分析】(1)只要证明∠AEP=∠ABP=45°,∠PAB=90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,可得PM=AN,由△PCM,△PNB都是等腰直角三角形,推出PC=PM,PB=PN,可得PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4;【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∴∠AEP=∠ABP=45°,∵PE是直径,∴∠PAB=90°,∴∠APE=∠AEP=45°,∴AP=AE,∴△PAE是等腰直角三角形.(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM PNB都是等腰直角三角形,∴PC=PM,PB=PN,∴PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4.(也可以证明△ACP≌△ABE,△PBE是直角三角形)17.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.18.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】MB:直线与圆的位置关系;MO:扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB 的面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.学科网(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,==,∴S扇形AOB﹣S扇形DOF=×2×2﹣=2﹣.则阴影部分的面积为S△ODB故阴影部分的面积为2﹣.19.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=、AN=2,即可求出CH、AH 的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=,∠DFA=∠ACH,∴=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=2,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=,∴圆O的直径的长度为2r=.20.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.21.如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【考点】MC:切线的性质;AB:根与系数的关系;T7:解直角三角形.【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.22.如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB 的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.【考点】MC:切线的性质.【分析】(1)首先证明∠DAE=2α,在Rt△ADE中,根据两锐角互余,可知2α+β=90°,(0°<α<;(2)连接OF交AC于O′,连接CF.只要证明四边形AFCO是菱形,推出△AFO 是等边三角形即可解决问题;【解答】解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.23.已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【考点】MI:三角形的内切圆与内心.【分析】(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.。

中考数学总复习(浙江地区)课件: 第23讲 圆的基本性质

中考数学总复习(浙江地区)课件: 第23讲 圆的基本性质

1.常见的辅助线 (1)有关弦的问题,常作其弦心距,构造以半径、弦的一半、弦心距为边 的直角三角形,利用勾股定理知识求解(如图①辅助线构造直径所对的圆周角是直角来进行证
明或计算(如图②);
(3)有等弧或证弧相等时,常连等弧所对的弦或作等(同)弧所对的圆周(心)
︵︵ 2.(2016·绍兴)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上,AB=BC, ∠AOB=60°,则∠BDC 的度数是( D ) A.60° B.45° C.35° D.30°
3.(2016·杭州)如图,已知 AC 是⊙O 的直径,点 B 在圆周上(不与 A、C 重合),点 D 在 AC 的延长线上,连结 BD 交⊙O 于点 E,若∠AOB= 3∠ADB,则( D ) A.DE=EB B. 2DE=EB C. 3DE=DO D.DE=OB
2.圆的有关性质 (1)圆的对称性: ①圆是_轴__对__称___图形,其对称轴是____过__圆__心__的__任__意__一__条__直__线____. ②圆是__中__心__对__称_____图形,对称中心是__圆__心____. ③旋转不变性,即圆绕着它的圆心旋转任意一个角度,都能与原来的图形 重合.
角(如图③).
2.分类讨论
在圆中,常涉及到分类讨论,如一条弦所对的弧有优弧和劣弧两种,则其
所对的圆周角不一定相等;另外,有关于弦的问题也需要分类讨论,如有
两条弦时,需要分在同侧还是异侧等.
1 . (2016· 黄 石 ) 如 图 所 示 , ⊙ O 的 半 径 为 13 , 弦 AB 的 长 度 是 24 , ON⊥AB,垂足为N,则ON=( A ) A.5 B.7 C.9 D.11
(5)点和圆的位置关系(设d为点P到圆心的距离,r为圆的半径): ①点P在圆上⇔_____d_=__r_____; ②点P在圆内⇔_____d_<_r___; ③点P在圆外⇔____d_>_r __. (6)过三点的圆: ①经过不在同一直线上的三点,有且只有一个圆. ②经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角 形的外心;三角形的外心是三边___垂__直__平__分__线____的交点,这个三角形叫 做这个圆的内接三角形.锐角三角形的外心在三角形内部;直角三角形 的外心在斜边中点处;钝角三角形的外心在三角形的外部. (7)圆的内接四边形: 圆内接四边形的对角___互__补______.

浙教版中考数学圆的基本性质2

浙教版中考数学圆的基本性质2
O P A D B
问题(2):图中有哪些相似的三角形?
问题(3):若点C在圆周上运动(不和A,B重合), 在此运动过程中,哪些线段是不变的,哪些线段发 生了改变?
2018/5/31 18
如图,弦AB和CD交于点P,且CD是 ∠ACB的平分线
C O P A B
问题(4):若弦AB= 3 , ∠BAD=30°, 在点C运 动的过程中,四边形ADBC的最大面积为多少? 此时∠CAD等于多少度?
B
C
O
A
2018/5/31
26
例题讲解
例3、如图,在⊙O中,AC=BD,
(1)图中有哪些相等关系?
(2)如果∠1=45°,求∠2的度数。 (3)如果AD是⊙O的直径,∠1=45°
求∠BDA的度数.
D
2018/5/31
C
B
1 O
2
27
A
D 例4:如图,AC是⊙O的直径,弦BD 交AC于点E. (1)△ADE~△BCE吗? 说明理由; (2)若CD=OC,求sinB的值. 解: (1) △ADE~△BCE ∵ ∠A=∠B, ∠D=∠C ∴ △ADE~△BCE (2) 若CD=OC, 则AC=2DC,
2018/5/31
35
三寸人间 / 三寸人间
归去苏息吧."东舌暗自嘀咕咯壹下."给本宿主检测壹下韩擒虎の四维,还有梁师泰の四维/""回复宿主,韩擒虎武力95,智力82,统率88,政治64/梁师泰武力94,智力54,统率75,政治43/""幸亏召唤咯长辽,否然还真是壹个强敌,那梁师泰也是隋唐十 八好汉之壹,何时居然在咯韩擒虎手下"次日午时,东舌与诸将都在商讨整兵之策,突然壹名放哨兵急匆匆跑进大堂,跪在地上:"禀告殿下

浙江省中考数学复习第一部分考点研究第六单元圆第25课时圆的基本性质(含近9年中考真题)试题(202

浙江省2018年中考数学复习第一部分考点研究第六单元圆第25课时圆的基本性质(含近9年中考真题)试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第六单元圆第25课时圆的基本性质(含近9年中考真题)试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第六单元圆第25课时圆的基本性质(含近9年中考真题)试题的全部内容。

第一部分考点研究第六单元圆第25课时圆的基本性质浙江近9年中考真题精选(2009~2017)),)命题点1与圆的基本性质有关的计算(杭州2考,绍兴2015.12)1. (2016舟山8题3分)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则错误!的度数是( )A。

120°B。

135°C。

150°D。

165°第1题图2。

(2016杭州8题3分)如图,已知AC是⊙O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()第2题图A. DE=EBB. 2D E=EBC。

错误!DE=DO D. DE=OB3. (2015丽水13题4分)如图,圆心角∠AOB=20°,则错误!旋转n°得到错误!,则错误!的度数是________.第3题图4。

(2015绍兴12题5分)如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于__________度.第4题图5. (2015杭州19题8分)如图①,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′·OP=r2,则称点P′是点P关于⊙O的“反演点”.如图②,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.第5题图命题点2垂径定理及应用(温州2013.7,绍兴2考)6。

2018年中考数学(浙江)总复习练习:考点跟踪突破23圆的基本性质

考点跟踪突破23 圆的基本性质A 组 基础闯关一、选择题 1.(2017·乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB ,CD 与水平地面都是垂直的,根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( B )A .2米B .2.5米C .2.4米D .2.1米,第1题图) ,第2题图)2.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( D )A .45°B .30°C .75°D .60° 3.(2016·杭州)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与点A ,C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E.若∠AOB =3∠ADB ,则( D )A .DE =EB B .2DE =EBC .3DE =DOD .DE =OB 4.(2017·广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连结CO ,AD ,∠BAD =20°,则下列说法中正确的是( D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD,第3题图) ,第4题图) ,第5题图)5.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ︵上,且不与点M ,N 重合,当点P 在MN ︵上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( A )A .不变B .变小C .变大D .不能确定二、填空题 6.(2017·包头)如图,点A ,B ,C 为⊙O 上的三个点,∠BOC =2∠AOB ,∠BAC =40°,则∠ACB =__20__度.,第6题图) ,第7题图)7.(2017·株洲)如图,已知AM 为⊙O 的直径,直线BC 经过点M ,且AB =AC ,∠BAM =∠CAM ,线段AB 和AC 分别交⊙O 于点D ,E ,∠BMD =40°,则∠EOM =__80°__.8.(2017·十堰)如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于点D.若AC =6,BD =52,则BC 的长为__8__.9.(2017·襄阳)在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为__15°或105°__.三、解答题10.如图,一条公路的转弯处是一段圆弧(AB ︵).(1)用直尺和圆规作出AB ︵所在圆的圆心O ;(要求保留作图痕迹,不写作法) (2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.解:(1)作图如图所示:(2)连结AB ,OB ,OC.设OC 交AB 于点D ,∵AB =80 m ,C 为AB ︵的中点,∴OC ⊥AB.∴AD =BD =40 m ,CD =20 m .设OB =r m ,则OD =(r -20)m.在Rt △OBD 中,OB 2=OD 2+BD 2,∴r 2=(r -20)2+402,解得r =50,∴AB ︵所在圆的半径是50 m.11.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连结BD.(1)求证:点E 是BD ︵的中点;(2)当BC =12,且AD ∶CD =1∶2时,求⊙O 的半径.解:(1)证明:连结AE ,DE ,∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC.∵∠CDB =90°,DE 是斜边BC 的中线,∴DE =EB.∴ED ︵=EB ︵,即点E 是BD ︵的中点.(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∴BD 2=(3x )2-x 2=8x 2.在Rt △CDB 中,(2x )2+8x 2=122,∴x =23,∴OA =32x =33,即⊙O 的半径是3 3.B 组 能力提升12.(2017·潍坊)如图,四边形ABCD 为⊙O 内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连结BD ,∠GBC =50°,则∠DBC 的度数为( C )A .50°B .60°C .80°D .90°,第12题图) ,第13题图)13.(2017·凉山州)如图,已知四边形ABCD 内接于半径为4的⊙O 中,且∠C =2∠A ,则BD =__43__.14.如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.(1)求证:AO 平分∠BAC ;证明:连结OB.在△AOB 与△AOC 中,⎩⎨⎧AB =AC ,OB =OC ,AO =AO ,∴△AOB ≌△AOC (SSS ),∴∠BAO =∠CAO ,∴AO 平分∠BAC.(2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.解:过点C 作CE ⊥AB 于点E , ∴sin ∠BAC =CE AC =35.设AC =5m (m >0),则CE =3m ,∴AE =AC 2-CE 2=(5m )2-(3m )2=4m ,BE =AB -AE =AC -AE =5m -4m =m.在Rt △CBE 中,∠BEC =90°,BC =6,BE =m ,CE =3m ,∴m 2+(3m )2=62. 解得m =3105,m =-3105(舍去).∴AC =5m =5×3105=310.C 组 拓展培优15.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ.(1)如图①,当PQ ∥AB 时,求PQ 的长度;(2)如图②,当点P 在BC 上移动时,求PQ 长的最大值.解:(1)连结OQ ,如图①,∵PQ ∥AB ,OP ⊥PQ ,∴OP ⊥AB.在Rt △OBP 中,∵tan ∠B =OP OB ,∴OP =3tan30°=3,在Rt △OPQ 中,∵OP =3,OQ =3,∴PQ =OQ 2-OP 2= 6.(2)连结OQ ,如图②,在Rt △OPQ 中,PQ =OQ 2-OP 2=9-OP 2,当OP 的长最小时,PQ 的长最大,此时OP ⊥BC ,则OP =12OB =32,∴PQ 长的最大值为9-(32)2=332.。

浙江省中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇(2021学年)

浙江省2018年中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇的全部内容。

第22讲圆的基本性质1.圆的有关概念考试内容考试要求圆的定义定义1:在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆.b 定义2:圆是到定点的距离定长的所有点组成的图形.弦连结圆上任意两点的叫做弦.直径直径是经过圆心的,是圆内最的弦.弧圆上任意两点间的部分叫做弧,弧有____________________之分,能够完全重合的弧叫做____________________.a等圆能够重合的两个圆叫做等圆。

同心圆圆心相同的圆叫做同心圆.2.圆的对称性考试内容考试要求圆的对圆是轴对称图形,其对称轴是任意一条经过c3.圆周角4.点与圆的位置关系的半径为r,点到圆心的距离为d)考试内容考试要求基本思想分类讨论思想:在很多没有给定图形的题目中,常常不能根据题目的条件把图形确定下来,因此会导致解的不唯一性.对于这种多解题必须要分类讨论,分类时要注意标准一致,不重不漏.如:圆周角所对的弦是唯一的,但是弦所对的圆周角不是唯一的.c基本方法辅助线:有关直径的问题,如图,常作直径所对的圆周角.1.(2016·绍兴)如图,BD是⊙O的直径,点A、C在⊙O上,\o(AB,︵)=错误!,∠AOB=60°,则∠BDC的度数是( )A.60°B.45°C.35°D.30°2.(2015·宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.20°D.28°3.(2017·绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为____________________.第3题图第4题图4.(2017·湖州)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D。

2018届浙江省中考数学复习阶段测评(5)圆(含答案)


M,
A. 10 cm B. 5 cm C. 6 cm D. 10 cm
,(第 5 题图 ))
,(第 6 题图 ))
,( 第 7 题图 ))
7. (2017 苏州中考 )如图 ,在 Rt△ ABC 中 , ∠ ACB =90° , ∠A = 56° , 以 BC 为直径的⊙ O 交 AB 于点 D,
︵︵ E 是⊙ O 上一点 ,且 CE= CD , 连结 OE, 过点 E 作 EF⊥ OE, 交 AC 的延长线于点 F, 则∠ F 的度数为 ( C )
A. 92° B.108° C. 112° D .124°
8. (昆明中考 )如图 , AB 为⊙ O 的直径 , AB = 6, AB ⊥弦 CD, 垂足为 G,EF 切⊙ O 于点 B, ∠ A = 30°, 连 结 AD , OC,BC ,下列结论不正确的是 ( D )
A. EF∥CD B.△ COB 是等边三角形
C. CG= DG
︵ D.BC 的长为
3 2π
(第 8 题图 )
(第 9 题图 )
9. (朝阳中考 )如图 , 分别以五边形 ABCDE 的顶点为圆心 , 以 1 为半径作五个圆 ,则图中阴影部分的面积之 和为 ( C )
A.32π B. 3π C.72π D .2π
10. (滨州中考 )若等腰直角三角形的外接圆半径为 2, 则其内切圆的半径的长为 ( B )
阶段测评 (五 ) 圆 时间: 90 分钟 满分: 120 分 一、选择题 (每小题 3 分 , 共 30 分 ) 1. (2017 南京中考 )过三点 A(2 , 2), B(6 , 2), C(4 ,5)的圆的圆心坐标为 ( A )
17
17
A. (4, 6 ) B. (4, 3) C. (5, 6 ) D. (5, 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年杭州中考数学备考周周练——圆性质的典型题目串讲
知识概要
1.垂径定理
1、定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
2、推论:
(1)平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
【注意】
1、直径是弦,但弦不一定是直径,只有过圆心的弦才是直径,直径是最长的弦.
2、在同圆中,同弧所对的圆周角相等,但是同弦所对的弧有两条,所以所对的圆周角有两种,可能相等,也可能互补.
3、涉及到平行弦之间的距离问题,共顶点之间的弦夹角问题时,需要分类讨论.
2.圆周角定理
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.
【注意】
1.圆心角、弧、弦三者之间的关系可以直接运用定理推得,但弦心距的关系要通过全等等其它方法来证明。

2.应用圆心角、弧、弦之间的关系以及圆心角定理时,不要忽略“同圆或等圆”的前提。

3.弦所对的弧有优弧、劣弧两条,解题时要注意分类讨论。

4.在应用定理时,一定要保证在“同弧或等弧”前提。

3.圆的内接四边形
1、定义:四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形.
2、性质
(1)圆内接四边形对角互补;
(2)圆内接四边形的任意一个外角等于它的内对角,即外角等于内对角.
4.与弧长有关的计算
5.与扇形有关的面积计算
6.与弓形面积有关的计算
弓形的面积计算:弓形的面积问题可以转化成扇形面积和三角形面积来计算.根据弧的情况不同,有以下三种情况:
典型例题
【例1】如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()
【分析】本题考查的是圆的垂径定理,同时也考查了勾股定理和等腰直角三角形的性质.我们可以做PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,求得D点坐标,判断△OCD,△PED的形状.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出结果。

答案
【例2】如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()
A.40° B.45° C.50° D.60°
【分析】此题考查了圆周角定理与等腰三角形的性质.难度不大,需要注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用。

首先连接OB,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数,又由OB=OC,根据等边对等角的性质,即可求得∠OCD的度数.
答案
【例3】(2016秋•杭州期末)如图,在⊙O中,弦AC,BD相交于点M,且∠A=∠B
(1)求证:AC=BD;
(2)若OA=4,∠A=30°,当AC⊥BD时,求:
①弧CD的长;
②图中阴影部分面积.
【分析】这道题目考查的是垂径定理,扇形面积的计算,以及全等三角形的判断和性质,我们需要根据题意作出辅助线,构造出直角三角形是解答此题的关键.第一问可以延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,根据圆周角定理得出∠EDB=∠FCA=90°,故可得出△DEB≌△CFA,由此得出结论;
第二问第一小问延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,CD,OD,OC,求出∠COA的度数,再由三角形外角的性质得出∠EOA的度数,由弧长公式即可得出结论;第二小问过O作OG⊥AC于G,OH⊥BD于H,连接OM,根据垂径定理得到AG=AC,BH=BD,推出四边形OGMH是正方形,根据正方形的性
质得到GM=HM=OG=OH,得到AM=BM,解直角三角形得到相关长度,根据全等三角形的性质得到∠B,求得∠AOB度数,得到结果.
答案
变式练习
【练习1】如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF=cm.
【练习2】如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=度.
【练习3】如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以CM、DM为直径作两个大小不同的⊙O1和⊙O2,则图中阴影部分的面积为(结果保留π).
【练习4】如图,等腰Rt△ABC的直角边长为4,以A为圆心,直角边AB为半径作弧BC1,交斜边AC于点C1,C1B1⊥AB于点B1,设弧BC1,C1B1,B1B围成的阴影部分的面积为S1,然后以A为圆心,AB1为半径作弧B1C2,交斜边AC于点C2,C2B2⊥AB于点B2,设弧B1C2,C2B2,B2B1围成的阴影部分的面积为S2,按此规律继续作下去,得到的阴影部分的面积S3= .
答案
【练习1】6
【练习2】38
【练习3】50π
【练习4】
11。

相关文档
最新文档