土地利用模型

合集下载

城市土地利用变化模型及其驱动因素探究

城市土地利用变化模型及其驱动因素探究

城市土地利用变化模型及其驱动因素探究引言城市土地利用变化是城市化进程中的重要问题,它直接影响到城市规划、土地资源的可持续利用以及社会经济发展。

了解城市土地利用变化模型及其驱动因素,对于合理规划城市发展、保护土地资源具有重要价值。

本文将探究城市土地利用变化模型及其驱动因素,以期提供理论与实务指导。

一、城市土地利用变化模型城市土地利用变化模型是对城市土地利用变化的规律进行建模描述的方法,旨在揭示土地利用变化的动态过程,以帮助预测未来的土地利用情况。

目前常见的城市土地利用变化模型有马尔可夫链模型、细胞自动机模型和基于地统计学的模型等。

1. 马尔可夫链模型马尔可夫链模型是一种基于概率的统计模型,通过分析土地利用状态之间的转移概率,预测未来的土地利用状况。

该模型假设土地利用状态之间的转移概率只与当前状态有关,与历史状态无关。

马尔可夫链模型简单、易于计算,但不考虑历史的影响因素,模拟结果有一定的不确定性。

2. 细胞自动机模型细胞自动机模型是一种基于空间交互的模型,将城市土地划分为若干个细胞,并根据细胞之间的交互规则模拟土地利用变化过程。

该模型考虑了空间布局的影响,可以较好地模拟城市土地利用的空间分布特征。

然而,细胞自动机模型的参数设置较为复杂,对数据的要求较高。

3. 基于地统计学的模型基于地统计学的模型是一种通过对土地利用变化进行区域统计分析,揭示其空间分布格局与变化趋势的方法。

该模型通过构建土地利用变化的空间模式,探讨土地利用变化与驱动因素之间的关系,并预测未来的土地利用情况。

这种模型同时考虑了驱动因素的作用,可以为城市规划和土地资源管理提供科学依据。

二、城市土地利用变化的驱动因素城市土地利用变化是多种驱动因素的综合结果,从经济、社会、环境等多个角度分析驱动因素,对于把握城市土地利用变化的规律及制定相应的政策具有重要意义。

以下是常见的城市土地利用变化的驱动因素。

1. 经济因素经济因素是城市土地利用变化的主要驱动力之一。

LUR模型

LUR模型

LUR模型简述土地利用回归模型(Land Use Regression, LUR)是基于ArcGIS平台建立起来的大气、土壤等污染物浓度与土地利用、交通、工业排放、地形、气候、人口密度等相关因素之间关系的统计回归模型,用来预测研究区域内任意位置的污染物浓度及评估污染物空间分布的主要影响因素。

在最近的研究中,LUR模型被证明是一个高效的评估污染物浓度空间变化的方法。

简单的说,LUR模型就是利用有限监测站点的污染物浓度数据结合土地利用等特征变量来评估那些没有监测站点区域的污染物浓度,并分析其主要影响因素。

根据相关文献总结,该模型建立大致可分为以下几个步骤:(1) 目标污染物样本数据的获取。

研究的内容不同,用于建立LUR模型的样本数据不同,主要包括样本数据来源、样本数量大小与分布、采样方法、采样时间及样品处理等方面。

样本数据应随机的分为两个部分,一部分用于模型的构建,一部分用于模型的验证。

(2) 土地利用数据收集与特征变量的选取。

基于土地利用类型(林地、河流海水、湖、光滩、城市建设用地、农村建设用地等)、社会经济信息(耕地面积、人口、工业产值、农业产值等)、道路交通等要素,借助ArcGIS平台的空间分析工具提取相应的基础特征变量,绘制空间分布图。

(3) 分析方法构建及变量的相关性分析。

分析方法的构建是LUR模型中非常重要的一个步骤,具体的有圆形缓冲区分析法、半圆形缓冲区分析法,滑动窗口分析方法等。

基于ArcGIS平台提取每个划分区内的土地利用类型等自变量,分析不同空间尺度的自变量与污染物浓度的相关性,根据相关性的大小分析自变量对污染物浓度的影响范围,并基于分析结果选取用来构建LUR模型的影响变量。

(4) LUR模型构建。

以经过相关性分析后选取的具有统计显著性的影响变量为自变量,以污染物浓度数据为因变量,采用多元线性回归的分析方法构建LUR模型。

由于各变量的单位都不统一,所以在建立方程之前要对各种数据进行标准化处理。

几种土地利用变化模型的介绍

几种土地利用变化模型的介绍

几种土地利用变化模型的介绍1马尔可夫链模型马尔可夫理论是一种用于随机过程系统的预测和优化控制问题的理论,它研究的对象是事物的状态及状态的转移,通过对各种不同状态初始占有率及状态之间转移概率的研究,来确定系统发展的趋势,从而达到对未来系统状态的预测的目的[1]。

马尔可夫链是一种随机时间序列,它在将来取什么值只与它现在的取值有关,而与它过去取什么值无关。

这种性质称为无后效性。

马尔可夫链模型的建立过程:①确定系统状态:研究某一地区的土地利用/覆被变化,首先确定当地的土地利用类型,植被类型,确定其土地利用状态。

②建立状态概率向量:设马尔可夫链在tK 时取状态E1、E2、⋯、En 的概率分别为P1、P2 ⋯Pn而0≤Pi ≤,1则向量[P1、P2 ⋯Pn]称为t K时的状态概率向量。

③建立系统转移概率矩阵:一步转移概率:设系统可能出现N 个状态E1、E2 ⋯En,则系统由T K时刻从Ei 转移到T k+1 时刻Ej 状态的概率就称为从i 到j 的转移概率。

p ij p(E i E j )状态转移概率矩阵:在一定条件下,系统只能在可能出现的状态E1、E2 ⋯En 中转移,系统在所有状态之间转移的可能性用矩阵P 表示,称P为状态转移概率矩阵。

P p ij N N,其中p ij P{E i E j}P11 ?P1n??= [ ? ??]P n1 ?P nnNp ij 1 i 1,2, N j1p ij0 i, j 1,2, N为了运用马尔可夫模型对事件发展过程中的状态出现的概率进行预测,还需要再介绍一个状态概率πj(k) :表示事件在初始( k=0)状态为已知的条件下,经过k 次状态转移后,在第k 个时刻处于状态E j的概率。

∑j n=1πj(k) = 1从初始状态开始,经过k 次状态转移后到达状态E j 这一状态转移过程,可以看作是首先经过( k-1)次状态转移后到达状态E i(i = 1,2 ? ,n),然后再由E i经过一次状态转移到达状态E j。

城市规划中的土地利用变化模拟与分析

城市规划中的土地利用变化模拟与分析

城市规划中的土地利用变化模拟与分析城市规划是现代城市发展过程中必要的一环,土地利用变化是城市规划中重要的一部分。

因此,土地利用变化模拟与分析就显得尤为重要。

本文就城市规划中的土地利用变化模拟与分析开展探讨。

一、土地利用变化的意义1.1 确保城市发展土地利用变化是城市规划中一个必不可少的环节。

随着城市化进程的不断加快,城市面积不断扩大,人口数量不断增加,城市的规划工作也面临着更多的挑战。

而土地利用变化模拟与分析则是确保城市发展的一个重要手段,可以对城市未来的发展进行规划和指导。

1.2 优化城市空间规划土地利用变化模拟与分析也可以帮助城市规划精细化。

通过分析城市土地利用变化的趋势和模式,可以帮助城市规划者更好地理解城市的发展趋势和特点,从而优化城市空间规划,合理利用城市资源。

1.3 促进城市可持续发展土地利用变化模拟与分析可以为城市的可持续发展提供支持。

通过了解城市土地利用的现状和未来发展趋势,可以引导城市规划者采取一些措施来促进城市可持续发展,如推广节能环保、发展清洁能源等。

二、土地利用变化模拟与分析方法2.1 土地利用模型土地利用模型是土地利用变化模拟与分析的重要工具。

主要有:CA模型、CLUE-S模型、LUCIS模型、SLEUTH模型、GALUD模型等。

CA模型(即元胞自动机模型)采用离散化的方式来描述城市的发展规律,通过将城市区域划分为网格来模拟城市的演化过程。

CLUE-S模型是一款景观变化和生态系统服务的模型,可以反映土地利用变化的影响因素。

LUCIS模型可根据遥感数据估算土地利用变化,精度高。

SLEUTH模型主要用于城市扩张和土地利用变化的研究,特别适用于城市边缘区域。

GALUD模型则是模拟城市地下水利用和管理的模型,可以评估城市地下水利用对城市水资源的影响。

2.2 GIS技术GIS技术是土地利用变化模拟与分析中的重要工具。

它可以通过空间分析的方法将各种数据进行叠加分析,从而得出城市土地利用的变化趋势和规律。

理论地理学的土地利用模型分析

理论地理学的土地利用模型分析

理论地理学的土地利用模型分析引言土地利用是指人类对土地资源的开发利用方式。

土地利用模型是研究土地利用规律和预测未来土地利用变化的重要工具。

理论地理学通过模型分析来揭示土地利用的动态过程和机制,为合理规划和管理土地资源提供科学依据。

本文将从理论地理学的角度出发,分析土地利用模型的原理、方法和应用,并探讨未来发展的趋势。

1. 土地利用模型的原理土地利用模型的建立基于理论地理学的基本原理,包括环境约束、经济行为和社会文化等方面的因素。

具体而言,土地利用模型包括以下几个方面的原理:1.1 环境约束原理环境约束原理认为土地利用行为受到自然环境条件的限制。

例如,山地地区适合发展林业和旅游业,而河谷地带适合发展农业和工业。

环境约束原理将自然环境因素与土地利用模型相结合,可以预测不同地区的土地利用类型和变化趋势。

1.2 经济行为原理经济行为原理认为土地利用是由经济活动驱动的。

经济因素包括土地价格、劳动力成本、市场需求等,都对土地利用决策产生影响。

经济行为原理将土地利用模型与经济理论相结合,可以预测不同经济条件下的土地利用决策和变化趋势。

1.3 社会文化原理社会文化原理认为土地利用受到社会文化因素的影响。

社会文化因素包括人口结构、教育水平、文化习惯等,都对土地利用决策产生影响。

社会文化原理将土地利用模型与社会科学相结合,可以预测不同社会文化背景下的土地利用决策和变化趋势。

2. 土地利用模型的方法土地利用模型的建立需要采用适当的方法和技术手段。

目前常用的土地利用模型方法主要包括以下几种:2.1 统计模型统计模型基于历史数据和统计技术,通过建立变量之间的关系模型,从而预测未来的土地利用情况。

常用的统计模型包括回归模型、时间序列模型等。

2.2 神经网络模型神经网络模型模拟人类大脑的学习和记忆能力,通过训练和调整网络参数,来模拟土地利用的演变过程。

神经网络模型可以识别非线性关系,适用于复杂的土地利用模型。

2.3 细胞自动机模型细胞自动机模型是基于元胞(cell)和临近关系的模型,将土地划分为规则的格网,模拟土地利用的演化过程。

几种土地利用变化模型的介绍

几种土地利用变化模型的介绍

几种土地利用变化模型的介绍1马尔可夫链模型马尔可夫理论是一种用于随机过程系统的预测和优化控制问题的理论,它研究的对象 是事物的状态及状态的转移,通过对各种不同状态初始占有率及状态之间转移概率的研究,来确定系统发展的趋势,从而达到对未来系统状态的预测的目的[1]。

马尔可夫链是一种随机时间序列,它在将来取什么值只与它现在的取值有关,而与它过去取什么值无关。

这种性质称为无后效性。

马尔可夫链模型的建立过程:①确定系统状态:研究某一地区的土地利用/覆被变化,首先确定当地的土地利用类型,植被类型,确定其土地利用状态。

②建立状态概率向量:设马尔可夫链在 tK 时取状态E 1、E 2、…、En 的概率分别为P 1、P 2 …Pn 而0≤Pi≤1,则向量[P 1、P 2 …Pn ]称为t K 时的状态概率向量。

③建立系统转移概率矩阵:一步转移概率: 设系统可能出现N 个状态E 1、E 2 … En ,则系统由T K 时刻从Ei 转移到T k+1时刻Ej 状态的概率就称为从i 到j 的转移概率。

状态转移概率矩阵:在一定条件下,系统只能在可能出现的状态E 1、E 2 … En 中转移,系统在所有状态之间转移的可能性用矩阵P 表示,称P 为状态转移概率矩阵。

P =[P 11⋯P 1n ⋮⋱⋮P n1⋯P nn]为了运用马尔可夫模型对事件发展过程中的状态出现的概率进行预测,还需要再介绍一个状态概率πj (k ):表示事件在初始(k=0)状态为已知的条件下,经过k 次状态转移后,在第k 个时刻处于状态E j 的概率。

∑πj (k )=1n j=1从初始状态开始,经过k 次状态转移后到达状态E j 这一状态转移过程,可以看作是首先经过(k-1)次状态转移后到达状态E i (i =1,2⋯,n ),然后再由E i 经过一次状态转移到达状态E j 。

则有: πj (k )=∑πi (k −1)Pij n i=1 (j=1,2,…,n) 如果某一事件在第0时刻的初始状态已知,则可以求得它经过k 次状态转移后,在第k 时刻处于各种可能的状态的概率,完成对这一事件未来发展的预测。

DEM模型在土地利用变化中的应用

DEM模型在土地利用变化中的应用

DEM模型在土地利用变化中的应用DEM(Digital Elevation Model)是数字高程模型的缩写,是一种利用数字手段构建地理地形等高线模型的方法。

在土地利用变化中,DEM模型可以被广泛应用,以通过分析土地高程、地貌信息等,来预测土地变化趋势、评估土地利用方式、分析土地变化过程等,为地理信息决策提供科学依据,具有重要意义。

一、DEM模型在土地利用变化的应用1.预测土地变化趋势DEM模型可以通过分析土地高程、地貌等信息,推测未来土地利用变化的趋势。

比如,通过对统计局发布的土地利用变化数据进行DEM模型分析,可以预测未来某区域的土地变化方向和速度,从而为相关部门的土地开发规划决策提供依据。

2.评估土地利用方式DEM模型可以通过分析土地高程、地貌等信息,评估不同土地利用方式对环境和资源的影响程度。

例如,通过对某个地区不同土地利用方式的DEM模型分析,可以得出每种方式对地貌、水资源、生态环境等方面的影响程度,从而为该区域的土地开发规划提供价值参考。

3.分析土地变化过程DEM模型可以通过对已有土地利用变化数据的分析,揭示土地变化的过程与原因。

例如,通过对某一地区不同年份的DEM模型数据进行对比,可以发现在某种特定高程或地形条件下的土地变化趋势,从而分析该区域土地变化的驱动因素,为相关部门制定土地开发策略提供参考。

二、DEM模型在土地利用变化中的优势1.提高决策科学性DEM模型可以通过分析土地高程、地貌等信息,完整、系统地揭示土地利用变化的特征与规律,进而为土地开发规划决策提供科学依据,提高决策科学性。

2.提高决策效率DEM模型可以自动对土地利用变化数据进行处理和分析,避免了传统人工处理数据的繁琐过程,提高了决策效率。

3.提高决策精准性DEM模型可以根据具体地区的高程、地貌等信息,对土地利用变化趋势进行量化预测和评估,从而提高了决策精准性。

三、DEM模型在土地利用变化中的应用案例1、DEM模型在土地评估方面的应用以贵州省为例,该省全域山脉密集,因此DEM模型在土地利用评估方面的应用十分广泛。

城市土地利用交通模型

城市土地利用交通模型
城市土地利用交通模型
— PECAS模型及其应用
一、概念 二、系统结构 三、活动强度分派/分布模块 四、空间开发模块 五、系统计算流程 六、模型讨论 七、模型应用
一、概念
PECAS (Production, Exchange and Consumption Allocation System)是生产、交易和消费分派系统。该模型 系统建立在一个综合的供求平衡的结构下, 运用不同的技术 参数以及购销两清的市场机制(Market Clearing) , 来模拟各 行业活动生产和消费的各种产品从生产市场到消费市场的各 自流通过程。这些产品包括商品、服务、劳工、用地等。产 品从生产市场到交易市场, 再从交易市场到消费市场的流通 量是根据产品的供求关系、区位、交通(负)效用等, 运用N L(Nested Logit)模型加以分派/分布的。产品流通量再被转 换成交通需求量, 并被加载到交通(道路或公交)。
交易市场某种产品的供应合计(Aggregate Supply, AS)应为销售量(式11)与输入量(式19)之和:
需求合计(Aggregate Demand,AD)则应为购买量 (式15)与输出量(式20)之和:
由此可知,任一交易市场需求超过供应的总量 (Total Excess Demand,TED)应为:
同样地,任一产品c在第z分区(独立于消费过程) 的购买综合效用可表示为:
第z分区a类消费活动使用单位c类产品的购买综合 效用为:
3.5 产品输出和输入量
产品的输出与输入行为发生在分析区域内任一分 区和分析区域外界之间的经济互动过程中。在任一交易 分区k,任一产品c的输入输出量可确定如下:
3.6 购销平衡算法
二、系统结构
PECAS模型中的几个概念:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ann Reg Sci(2008)42:1–10DOI10.1007/s00168-007-0155-1EDITORIALModelling land-use change for spatial planning supportEric Koomen·Piet Rietveld·Ton de NijsPublished online:6September2007©Springer-Verlag2007Abstract Land-use change is a key factor in the development of the human and physical environment.Models of land-use change help understand this intricate sys-tem and can provide valuable information on possible future land-use configurations. The latter is crucial for policy makers across the globe that have to deal with such varied topics as:urbanisation,deforestation,water management,erosion control and the like.This paper provides a concise introduction to the current state of land-use models,their applications to spatial policy issues and the main research issues in this field.It thus establishes the background for the six papers that make up this special issue on modelling land-use change for spatial planning support.JEL Classification C15·C53·R14·R521IntroductionLand use is the most clearly visible result of human interaction with the biophysical environment.In all but the most inhospitable and remote mountain ranges,deserts and forests,man has altered the pristine landscape through various types of use.Besides the obvious residential,commercial and agricultural uses,land can also serve pur-E.Koomen(B)·P.RietveldFaculty of Economics and Business Administration,Vrije Universiteit Amsterdam,De Boelelaan1105,1081HV Amsterdam,The Netherlandse-mail:ekoomen@feweb.vu.nlP.Rietvelde-mail:prietveld@feweb.vu.nlT.de NijsNational Institute for Public Health and the Environment(RIVM),PO Box1,3720BA,Bilthoven,The Netherlandse-mail:ton.de.nijs@rivm.nl2 E.Koomen et al. poses such as recreation,wood production or biodiversity preservation.The use of land is normally reflected in its outward appearance(land cover),but this relation is more complex than is initially nd can simultaneously be used for differ-ent functions(e.g.,agriculture and recreation)or locally have different main functions related to the same cover(e.g.,nature reserve and wood production).In fact,many authors therefore explicitly distinguish between land cover and land use(Lambin et al. 2001;Turner et al.1995).For convenience,we use the term land use predominantly in this and the following papers,referring to both land cover and actual land use.Changes in land use are amongst the most controversial consequences of human actions,as is clear from the heated debate on urban sprawl(Brueckner2000;Glaeser and Kahn2004).The conversion of land may impact soil,water and atmosphere (Meyer and Turner2007)and is therefore directly related to environmental issues of global relevance.The large-scale deforestation and subsequent transformation of agri-cultural land in tropical areas are examples of land-use changes with strong impacts on biodiversity,soil degradation and the material resources to support human needs (Lambin et al.2003).Land-use change is also one of the relevant factors among the determinants of climate change and the relationship between the two is interdepen-dent;changes in land use may impact on the climate whilst climatic change will also influence opportunities for future land-use(Dale1997;Watson et al.2000).Planners worldwide thus seek to steer land-use developments through a wide range of interven-tions that either constrain certain developments(e.g.,restrictive greenbelt policies)or favour them(e.g.,designation of economic development zones or ecological corri-dors).They also play an active role in shaping the landscape through their own spatial investments in,for example,infrastructure or the creation of more general funds and subsidies,as is exemplified in the Common Agricultural Policy of the European Union.For the formulation of adequate spatial policies the involved parties normally make use of models that simulate possible spatial developments.Such models can support the analysis of the causes and consequences of land-use change(Verburg et al.2004). They facilitate the understanding of the processes at hand and help producing maps of possible future land-use configurations.It is especially the latter possibility that is the topic of the current special issue.As an introduction to the subsequent papers we will briefly discuss here:the typical,policy-related applications of such land-use models,the main characteristics of these models and the current research topics in this field.After providing this general background to the topic of this special issue we will briefly introduce the included papers.2Policy related applications of land-use change modelsSimulations of land-use change provide an important element in studies related to the preparation,development and,to a lesser extent,evaluation of large-scale spatial plans and strategies.Figure1presents these subsequent phases of the spatial planning process as cyclical activity,comparable to the spinning top model for public policy evaluation described by Vedung(1997).Below,we will briefly discuss typical land-use model applications for each of these phases of the spatial planning process.In the preparation phase,simulations of future land use provide policymakers with an impression of the possible developments they face.Based on this knowledge,theyModelling land-use change for spatial planning support3can assess the need for action and start drafting appropriate policy proposals.Typi-cal methods to generate these reference or baseline simulations of future land use are trend analysis and scenario studies.Trend analysis can be used to simulate the possible future state of land-use systems on the basis of observed,past spatial developments. By using various statistical techniques,it is relatively easy to represent autonomous land-use developments as an extrapolation of current trends(Schneider and Pontius 2001;Serneels and Lambin2001).However,such an approach makes no attempt to actually understand the processes that drive land-use change and thus misses a clear theoretical foundation.It is,furthermore,not well suited to simulate long-term developments,non-linear pathways of change or the possible impacts of diverging socio-economic developments.Additional theoretical insights are thus welcomed in these basic empirical–statistical models(Parker et al.2003;Veldkamp and Lambin 2001)and such examples are provided by,amongst others,Chomitz and Gray(1996) and Geoghegan et al.(2004).Scenario analyses are especially suited for long-term studies that deal with a wide array of possible developments and the implied uncertainties.By systematically describing several alternative views of the future,one can simulate a broad range of possible spatial developments,thus offering a full overview of the potential land-use nd-use models are used here to indicate possible future land-use patterns according to the specified scenario conditions,as is demonstrated in numer-ous applications(De Nijs et al.2004;Frenkel2004;Solecki and Oliveri2004;Verburg et al.2008).It is important to note here that each individual outlook to the future in a scenario-study will not necessarily contain the most likely prospects,but,as a whole, the simulations provide the bandwidth of possible changes(Dammers2000).It is not necessary to develop scenarios that are as probable as possible.Instead,the scenar-ios should stir the imagination and broaden the view of the future.As indicated by Xiang and Clarke(2003)important aspects of useful scenario analyses are:plausi-ble unexpectedness and informational vividness.A specific approach that generates possible alternative solutions to land-use allocation problems is offered by optimisa-tion techniques.These calculate an optimal land-use configuration based on a set of prior conditions,criteria and decision variables(Aerts2002;Pijanowski et al.2002).4 E.Koomen et al. Especially the mathematic programming techniques(such as genetic algorithms)that can determine the optimal solution for different,divergent objectives are interesting for policymakers who are interested in the optimal configuration of an area based on different,often conflicting,policy goals(Loonen2007).In the subsequent policy development phase,the implementability of different alter-natives is assessed.Trend and scenario-based simulations of future land use can help here when they contain reference to envisaged spatial policies.The resulting land-use simulations will then offer a depiction of their possible outcomes.Policymakers can thus be confronted with the likely outcomes of their decisions as is demonstrated by Ritsema van Eck and Koomen(2008).A more specific form of this type of ex-ante evaluations is the dedicated assessment of the land-use impact of a single spatially explicit plan or project.Examples of which are offered by studies on the possible impacts of a new location for a large airport(Scholten et al.1999)and assessments of the likely consequences of policy reforms for agricultural land use(Sheridan et al. 2007;Van Meijl et al.2006).These studies might be combined with trend analyses to specifically assess the additional impact of the selected project.The application of land-use models in the evaluation of the impacts of actually implemented policies and strategies is rare,but Geurs and van Wee(2006)provide an interesting exception in their ex-post evaluation of30years of urban development in the Netherlands.3Land-use model characteristics and research prioritiesRecent surveys of operational models for land-use change are numerous.Briassoulis (2000)offers an extensive discussion of the most commonly used land-use change models and their theoretical backgrounds.Waddell and Ulfarson(2003)and Verburg et al.(2004)offer more concise overviews and focus on the future directions of research in thisfield.A cross-sectional overview of current progress on the analysis of land-use change processes,the exploration of new methods and theories and the appli-cation of land-use simulation models is documented in a recent book of Koomen et al.(2007).All surveys show a heterogeneous group of model approaches with con-siderable differences regarding their theoretical backgrounds,starting points,range of applications,mon characteristics to distinguish between models include their temporal resolution(dynamic vs.static models),spatial resolution(zones vs. grids),central objective(land use nd user),simulation approach(determinis-tic vs.probabilistic),simulation process(transformation vs.allocation)and level of integration(sector specific vs.integrated).A more in-depth discussion on these charac-teristics and many theories and methods that underlie most current models is provided elsewhere(Koomen and Stillwell2007).The ongoing advances in computing tech-nology and the rapidly increasing amounts of ever more detailed geographical data-sets help modellers worldwide to develop faster andfiner scaled models of land-use change.Those developments have made it also possible to explore new data-demand-ing and computing-intensive modelling approaches that simulate the behaviour of groups of stakeholders or agents(Parker et al.2003)or microsimulate at the level of individuals(Waddell et al.2003).New technological developments in thefield ofModelling land-use change for spatial planning support5 (three-dimensional)visualisation are particularly helpful in sharing land-use simula-tion results with policy makers and other stakeholders(Borsboom-van Beurden et al. 2006;Rodríguez et al.2007).Combining the strengths of all available concepts,approaches and techniques in stead of elaborating on the approach belonging to the modeller’s own discipline is regarded as one of the most important tasks for future research(Verburg et al.2004). More specifically they list the following priorities in developing a new generation of land-use models:1.Better address the multi-scale characteristics of land-use systems by encompass-ing the scale dependencies of the interrelated socio-economic and biophysical processes at various levels.2.Develop new techniques to assess and quantify neighbourhood effects to betterunderstand the use of such small-scale dependencies that are common in cellular automata based models.3.Pay explicit attention to temporal dynamics to properly incorporate issues as pathdependency,nonlinear pathways of change,feedbacks and time lags.This issue is closely related to the validation of models.4.Further integration of techniques and methods developed in different disciplinesis necessary for modellers to move beyond their own disciplinary traditions and construct truly multidisciplinary models.5.Assess the effects of land-use change and their feedback on land use following pro-cesses as,for example,soil degradation and infrastructure development induced urbanisation.6.Address the interaction between urban and rural areas that is,for example,mani-fest in the possibly unequal development of these areas and the emergence of new multifunctional land-use types.The papers in this special issue deal with a number these issues as will be discussed below.4Layout special issueThis special issue presents a number of papers that aim to strengthen the link between land-use models and their policy-related applications.Thefirst two papers(Hagoort et al.2008;Pontius et al.2008)deal with the calibration and validation of land-use models.A necessaryfirst step to confidently apply any model of land-use change in a policy oriented context.The papers discuss,amongst others,the validity of model out-comes at various scales and the quantification of neighbourhood rules.The following two papers(Shiftan2008;Verburg et al.2008)highlight the importance of integrating different modelling approaches,one of them presenting a multi-scale,multi-model approach to analyzing land-use change.The last two papers(Frenkel and Ashkenazi 2008;Ritsema van Eck and Koomen2008)focus on developing policy-related indica-tors to assess the effects of land-use change,and give explicit attention to the impacts of urbanisation.Table1list the included papers,their relation to the research issues introduced before and the policy themes they try to address.A short introduction to the papers is provided below.6 E.Koomen et al. Table1Overview of the included papers,their related research issues and the policy themes they addressContribution scaledependencies NeighbourhoodeffectsTemporaldynamicsMethodologicalintegrationLand-usechangeeffectsUrban ruralinteractionPolicy themesPontius et al.X Various policythemes;methodologicalcontributionHagoort et al.X X Various policythemes;methodologicalcontributionVerburg et al.X X X X Urbanisation;agricultural landabandonmentShiftan X X Urbanisation andtravel behaviour Frenkel andAshkenaziX X UrbanisationRitsema van Eck and Koomen X X Urbanisation;land-use diversity4.1Calibration and validation of land-use modelsPontius and a large number of other land-use modelling researchers apply methods of multiple resolution map comparison to quantify characteristics for13applications of9different popular peer-reviewed land-change models.Each modelling application simulates change of land categories in raster maps from an initial time to a subsequent time.For each modelling application,the statistical methods compare:(1)a reference map of the initial time,(2)a reference map of the subsequent time,and(3)a prediction map of the subsequent time.The three possible two-map comparisons for each appli-cation characterize:(1)the dynamics of the landscape,(2)the behaviour of the model, and(3)the accuracy of the prediction.The three-map comparison for each application specifies the amount of the prediction’s accuracy that is attributable to land persistence versus land change.Results show that the amount of error is larger than the amount of correctly predicted change for12of the13applications at the resolution of the raw data.The applications are summarized and compared using two statistics:the null resolution and thefigure of merit.According to thefigure of merit,the more accurate applications are the ones where the amount of observed net change in the reference maps is larger.This paper facilitates communication among land change modellers, because it illustrates the range of results for a variety of models using scientifically rigorous,generally applicable,and intellectually accessible statistical techniques.Hagoort,Geertman and Ottens investigate which,how and to what extent land-use related neighbourhood effects play a role in urban dynamics.The inclusion of such effects is the starting point in many Cellular Automata based models of land-use change that support spatial planning.Their research shows that regional and tempo-ral calibration of neighbourhood rules is a refinement in the application this type of land-use models that pays off by increasing the validity of the model outcomes.This questions the appropriateness of land-use model applications that simulate the land-use changes nationally and use the results for regional planning purposes.RegionallyModelling land-use change for spatial planning support7 and temporally calibrated neighbourhood rules better“explain”past land-use changes and their application allows for a better evaluation and justification of spatial policy scenarios and their effects on future land-use dynamics.4.2Integrating different modelling approachesVerburg,Eickhout and Van Meijl describe a methodology in which a series of models has been used to link global-level developments influencing land use to local-level impacts.It is argued that such an approach is needed to properly address the processes at different scales that give rise to the land use dynamics in Europe.The global eco-nomic model ensures an appropriate treatment of macro-economic,demographic and technology developments and changes in agricultural and trade policies influencing the demand and supply for land use related products while the integrated assessment model accounts for changes in productivity as a result of climate change and global land allocation.The land-use change simulations at a high(1km2)spatial resolu-tion make use of country specific driving factors that influence the spatial patterns of land use,accounting for the spatial variation in the biophysical and socio-economic environment.Results indicate the large impact abandonment of agricultural land and urbanization may have on future European landscapes.The high spatial and thematic resolution of the results allows the assessment of impacts of these changes on different environmental indicators,such as carbon sequestration and biodiversity.The global assessment allows,at the same time,to account for the tradeoffs between impacts in Europe and effects outside Europe.Shiftan discusses the advantages and potential of activity-based models for ana-lyzing the effect of land-use policies on travel behaviour.He suggests improvements that will extend the general framework to achieve a better understanding of travellers’responses to various land-use policies and shows its advantages over trip-based models, which simply do not have such capabilities.The improved activity-based approach is illustrated through a case study based on the Portland activity-based model combined with a stated-preference residential choice model.A package of land-use policies—including improved land use,school quality,safety,and transit service in the city centre—is introduced,and their effect on household redistribution and regional travel is tested using this integrated framework.The results of this case study show that the effects of the land-use policies introduced had only marginal effects on regional travel.4.3Developing policy-related indicatorsFrenkel and Ashkenazi measure and analyze urban sprawl in Israel,based on a large sample of urban settlements.Higher sprawl rates were found to correlate significantly with higher population and land-consumption growth rates,which imply a higher con-sumer preference to reside in more sprawling patterns.Variables that are linked with sprawl in Western countries were usually found to be significant in Israel,as well; however,unlike other Western countries,urban sprawl in Israel is rather spatially dispersed,and not necessarily found on the edges of metropolitan areas.Based on8 E.Koomen et al. theirfindings,the authors call for the implementation of more interdisciplinary sprawl measures such as transportation and accessibility,aesthetic and ecological policies.Ritsema van Eck and Koomen present two sets of functional indicators that were implemented and tested for the assessment of spatial aspects of future land-use con-figurations as simulated by a land-use model.This is potentially useful for the ex-ante evaluation of spatial planning policies.The indicators were applied in a Dutch case study and relate to two important themes in Dutch spatial planning:compact urban-isation and mixing of land uses.After a short introduction of these themes,the sets of indicators are presented which are used for their evaluation.These indicators are applied to simulations based on two opposing scenarios for land-use development in the Netherlands up to2030.The proposed indicators allow for a critical compari-son of the land-use patterns in the two scenarios with respect to the selected policy themes.Single indicators capture individual aspects of urbanisation like magnitude, spatial pattern,concentration,compactness and mixing of land uses.It is,however, the combined use of composition and configuration indicators at various scale levels that makes it possible to unambiguously interpret the projected spatial developments. Acknowledgments We thank the Dutch National research programme“Climate Changes Spatial Plan-ning”and the“Environment,Surroundings and Nature”(GaMON)research programme of the Netherlands organization for scientific research(NWO)for sponsoring the work involved in organizing this special issue.Furthermore,we would like to thank the Organising Committee of the European Regional Science Association for allowing a special“Modelling Land-Use Change”session to be held at the ERSA2005 conference in Amsterdam.It was the success of this occasion that provided the inspiration for this special st,but not least,we are particularly grateful to the authors and reviewers who contributed their papers and valuable comments to this issue.ReferencesAerts J(2002)Spatial decision support for resource allocation.PhD Dissertation,Universiteit van AmsterdamBrueckner JK(2000)Urban sprawl:diagnosis and remedies.Int Reg Sci Rev23(2):160–171 Borsboom-van Beurden JAM,Van Lammeren RJA,Bouwman AA(2006)Linking land use modelling and3D visualisation:a mission impossible?In:Van Leeuwen J,Timmermans H(eds)Innovations in design and decision support systems in architecture and urban planning.Springer,Dordrecht, pp85–102Briassoulis H(2000)Analysis of land use change:theoretical and modeling approaches.In:The web book of regional science(/regscweb.htm).Regional Research Institute,West Virginia UniversityChomitz KM,Gray DA(1996)Roads,land use and deforestation:a spatial model applied to Belize.World Bank Econ Rev10:165–174Dale VH(1997)The relationship between land-use change and climate change.Ecol Appl7(3):753–769 Dammers E(2000)Leren van de toekomst.Over de rol van scenario’s bij strategische beleidsvorming.Uitgeverij Eburon,DelftDe Nijs TCM,de Niet R,Crommentuijn L(2004)Constructing land-use maps of the Netherlands in2030.J Environ Manage72(1–2):35–42Frenkel A(2004)The potential effect of national growth management policy on urban sprawl and the depletion of open spaces and nd Use Policy21(4):357–369Frenkel A,Ashkenazi M(2008)The integrated sprawl index;measuring the urban landscape in Israel.Ann Reg Sci(this issue)Geoghegan J,Schneider L,Vance C(2004)Temporal dynamics and spatial scales:Modeling deforestation in the southern Yucatán peninsular region.Geojournal61(4):353–363Modelling land-use change for spatial planning support9 Geurs K,Van Wee B(2006)Ex-post evaluation of thirty years of compact urban development in the Netherlands.Urban Studies43(1):139–160Glaeser E,Kahn M(2004)Sprawl and urban growth.In:Henderson V,Thisse JF(eds)Handbook of regional and urban economics:cities and geography,handbooks in economics,vol4,Elsevier,Amsterdam Hagoort MJ,Geertman S,Ottens HFL(2008)Spatial externalities,neighbourhood Rules and CA land-use modelling.Ann Reg Sci(this issue)Koomen E,Stillwell J(2007)Modelling land-use change.Chapter 1.In:Koomen E,Stillwell J, Bakema A,Scholten HJ(eds)Modelling land-use change;progress and applications.Springer, Dordrecht,pp1–21Koomen E,Stillwell J,Bakema A,Scholten HJ(2007)Modelling land-use change;progress and applica-tions.In:Geojournal library,vol90.Springer,DordrechtLambin EF,Turner BL,Geist HJ,Agbola SB,Angelsen A,Bruce JW,Coomes OT,Dirzo R,Fischer G, Folke C,George PS,Homewood K,Imbernon J,Leemans R,Li X,Moran EF,Mortimore M, Ramakrishnan PS,Richards JF,Skanes H,Stone GD,Svedin U,Veldkamp TA,V ogel C,Xu J(2001) The causes of land-use and land-cover change,moving beyond the myths.Glob Environ Change 11(4):5–13Lambin EF,Geist HJ,Lepers E(2003)Dynamics of land-use and land-cover change in tropical regions.Ann Rev Environ Resour28:205–241Loonen W,Heuberger P,Kuijpers-Linde M(2007)Spatial optimisation in land-use allocation problems.Chapter9.In:Koomen E,Stillwell J,Bakema A,Scholten HJ(eds)Modelling land-use change;progress and applications.Springer,Dordrecht,pp147–165Meyer WB,Turner BL(2007)Changes in land use and land cover.Cambridge University Press,Cambridge Parker DC,Manson SM,Janssen M,Hoffmann MJ,Deadman PJ(2003)Multi-agent systems for the sim-ulation of land use and land cover change:a review.Ann Assoc Am Geogr93(2):316–340 Pijanowski BC,Brown DG,Manik G,Shellito B(2002)Using neural nets and GIS to forecast land use changes:a land transformation put Environ Urban Syst26(6):553–575Pontius Jr RG,Boersma W,Castella J-C,Clarke K,De Nijs T,Dietzel C,Duan Z,Fotsing E,Goldstein N, Kok K,Koomen E,Lippitt CD,McConnell W,Pijanowski BC,Pithadia S,Mohd Sood A,Sweeney S,Trung TN,Veldkamp TA,Verburg PH(2008)Comparing the input,output,and validation maps for several models of land change.Ann Reg Sci(this issue)Ritsema van Eck J,Koomen E(2008)Characterising urban concentration and land-use diversity in simu-lations of future land use.Ann Reg Sci(this issue)Rodríguez JN,Omtzigt N,Koomen E,De Blois F(2007)3D visualisations in simulations of future land use:exploring the possibilities of new,standard visualisation tools.Paper for the joint workshop on Visualization and Exploration of Geospatial Data,ISPRS/ICA/DGfK,27–29June,2007,Stuttgart, GermanySchneider LC,Pontius Jr RG(2001)Modeling land-use change in the Ipswich Watershed,Massachusetts, USA.Agric Ecosyst Environ85:83–94Scholten HJ,Van de Velde RJ,Rietveld P,Hilferink M(1999)Spatial information infrastructure for scenario planning:the development of a land use planner for Holland.In:Stillwell J,Geertman S,Openshaw S(eds)Geographical information and planning.Springer,Heidelberg,pp112–134Serneels S,Lambin EF(2001)Proximate causes of land-use change in Narok District,Kenya:a spatial statistical model.Agric Ecosyst Environ85:65–81Sheridan P,Schroers JO,Rommelfanger E(2007)GIS-based modelling of land-use systems;EU Common Agricultural Policy reform and its impact on agricultural land use and plant species richness.Chapter21.In:Koomen E,Stillwell J,Bakema A,Scholten HJ(eds)Modelling land-use change;progress andapplications.Springer,Dordrecht,pp375–389Shiftan Y(2008)The use of activity-based modeling to analyze the effect of land-use policies on travel behavior.Ann Reg Sci(this issue)Solecki WD,Oliveri C(2004)Downscaling climate change scenarios in an urban land use change model.J Environ Manage72:105–115Turner II BL,Ross RH,Sanderson S,Fischer G,Fresco LO,Leemans R(1995)Land Use and land-cover change-science/research plan.IGBP report35/HDP report7.Stockholm/Geneva,IGBP/HDPVan Meijl H,Van Rheenen T,Tabeau A,Eickhout B(2006)The impact of different policy environments on agricultural land use in Europe.Agric Ecosyst Environ114(1):21–38Vedung E(1997)Public policy and program evaluation.Transaction Publishers,New Brunswck,NJ Veldkamp A,Lambin EF(2001)Editorial;predicting land-use change.Agric Ecosyst Environ85:1–6。

相关文档
最新文档