分式方程的增根与无解

合集下载

分式方程的增根和无解

分式方程的增根和无解

分式方程的增根和无解
增根和无解是分式方程中常见的两种情况。

增根是指分式方程化为整式方程后,产生的使分式方程的分母为$0$的根。

分式方程的增根问题是分式方程去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大。

无解是指分式方程本身就是一个矛盾等式,不论未知数取何值都不能使方程两边的值相等。

分式方程无解包括两种情况:一种情况是分式方程变形后,整式方程本身无解;另一种情况是整式方程有解,但这个解使原方程的分母为$0$,即为分式方程的增根,所以原分式方程无解。

总的来说,分式方程的增根和无解是两个不同的概念,增根是分式方程的一种特殊情况,而无解则是分式方程的一种极端情况。

分式方程的增根与无解详解(最新整理)

分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10

1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。

浅谈分式方程的增根与无解

浅谈分式方程的增根与无解

【八年级】浅谈分式方程的增根与无解在学习分式方程时,增根与无解是避不开的话题,也是绝大部分同学弄不清楚的地方。

今天,给大家带来 2 类典型的问题。

一、解分式方程时,增根是如何产生的?增根到底有多少个?二、增根与无解到底有怎样的区别与联系。

1.有关增根的问题1.1增根是如何产生的先看一个有意思的问题:x-1=0显然,我们都知道原方程的解为 x=1,但是如果我们没有直接移项,而是在方程的两边同时乘以 x,则原方程可化为 x(x-1)=0,可解得 x=0 或x=1.我们当然知道第一种方法是正确的,但是为什么我在等号两边同时乘了一个 x,就会变成两个解呢?这是因为两边同时乘的这个 x,我们没有确保它是不等于 0 的。

换言之,第二种解法的 x=0 就是这个一元一次方程的增根。

因为我在方程 x-1=0 两边同时乘以 x 后,得到的方程 x(x-1)=0 与原方程不是同解方程。

而我们解分式方程时,总是将分式方程化成整式方程进行求解。

由于这个过程扩大了原来末知数的取值范围,使得所化成的整式方程与原分式方程不是同解方程,带来了可能使所化成的整式方程成立,而使原分式方程分母为零的末知数的值,也即增根。

1.2增根到底有多少个再看一个有意思的问题,也是以前很多老师争论不休的问题。

故原方程无解,因此原方程的增根有 0 个。

这个问题为什么会产生歧义呢?这个方程的增根到底有几个?解法一、二、三到底哪个是正确的?首先,需要明确一点:解所有不含参数的分式方程,按照所有项移到方程左边,进而通分,这样的方式解得的分式方程永远都不会有增根,即解法三这样的。

因为这种解法,一直在进行等价转化,即都是同解方程。

那既然这种解法不会产生增根,为什么教材不提倡这种做法呢?笔者觉得原因有两个。

一、通过通分化简求值的方法相比于去分母化成整式方程更加麻烦,虽然不需要验根,但是对于复杂一些的分式方程,通分的计算量不小。

二、更重要的一点,通分的方法无法处理含参数的分式方程。

分式方程中增根及无解问题

分式方程中增根及无解问题

分式方程有增根、无解等问题【真题演练】1.(2021秋•德江县期末)关于x的方程有增根,则m的值是()A.0B.2或3C.2D.32.(2021秋•开福区校级期末)若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣63.(2021秋•庄浪县期末)若关于x的方程=2有增根,则m的取值是()A.0B.2C.﹣2D.14.(2021秋•黔西南州期末)若关于x的方程+2=有增根,则m的值是()A.﹣2B.2C.1D.﹣15.(2022春•原阳县月考)分式方程+2=有增根,则m=.6.(2022春•靖江市校级月考)已知关于x的分式方程有增根,则m=.7.(2021秋•新田县期末)解关于x的分式方程=时不会产生增根,则m的取值范围是.8.(2021秋•平江县期末)若关于x 的分式方程有增根,则m 的值是 .【真题演练】9.(2022春•江都区校级月考)若关于x 的分式方程无解,则实数a 的值为( ) A .7B .3C .3或7D .±710.(2022春•西峡县校级月考)若关于x 的分式方程无解,则m 的值为( ) A .﹣6B .﹣10C .0或﹣6D .﹣6或﹣1011.(2021春•南召县期中)若关于的x 方程无解,则a 的值为( ) A .或B .0或3C .或3 D .0或12.(2021秋•晋安区期末)若关于x 的分式方程=无解,则k 的值为( ) A .1或4或﹣6B .1或﹣4或6C .﹣4或6D .4或﹣613.(2021秋•两江新区期末)若关于x 的方程=1无解,则a =( ) A .3B .0或8C .﹣2或3D .3或814.(2021秋•官渡区期末)若关于x的方程无解,则a的值为()A.2B.C.1或2D.2或15.(2022•南海区一模)若关于x的方程无解,则a =.16.(2021秋•虎林市校级期末)若关于x 的分式方程无解,则a 的值为()A.﹣2B.1C.﹣2或1D.1或0【真题演练】17.(2022春•海陵区校级月考)关于x的方程有正数解,则m取值范围是.18.(2022•禅城区一模)若关于x的分式方程=有正整数解,则整数m为.19.(2022•仁寿县模拟)已知关于x的方程=5的解不是正数,则m的取值范围为.20.(2022•任城区一模)关于x的分式方程的解是正数,则a的取值范围是.21.(2021秋•北安市校级期末)关于x的方程的解不小于1,则m的取值范围为.22.(2021秋•绵阳期末)若关于x的方程的解为整数,则满足条件的所有整数a的和等于.23.(2022春•普宁市校级月考)若分式方程的解为整数,则整数a=()A.a=±2B.a=±1或a=±2C.a=1或2D.a=±124.(2021秋•南沙区期末)若正整数m使关于x的分式方程的解为正数,则符合条件的m的个数是()A.2B.3C.4D.525.(2021秋•合川区期末)若a≥﹣4,且关于x的分式方程+3=有正整数解,则满足条件的所有a的取值之积为.。

【doc】怎样区别分式方程的增根与无解

【doc】怎样区别分式方程的增根与无解

怎样区别分式方程的增根与无解责旧.蝙辑:王二喜刘顿学习了解分式方程以后,不少同学把增根与无解混为一谈.为了掌握这两个概念,现举例说明这两个概念的区别和联系.一.岔将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,可能产生不适合原分式方程的解或根,这种根称为增根.如,若方程—+3=有增根,则这个增根一定是=2.一二_徭绣罗解分式方程的关键是去分母将分式方程转化为整式方程.对原分式方程的解来说,各分式的分母不能为零,而对去分母后得到的整式方程来说,没有这个限制.因此,解分式方程时,必须检验.2O09.3的增根与无解怎样区剔分式方程课程_IiI赍源_…i庭裔锄辑分式方程无解有两种情形:一种是将原分式方程两边都乘以最简公分母,去分母并整理得到的整式方程为ax=b,若a=O,而b≠0,则此整式方程无解,即原分式方程无解;另一种是化分式方程为整式方程,整式方程的解是原分式方程的增根,此时分式方程无鳃.,ll如,若关于的方程一1=0无解,试求n的值.将原方程去分母转化为(o一1)x+2=O,即(n一1)一2.当n一1=0时,~Ja=l,此时整式方程无解.所以当n=1时,原方程无解.对于方程(.~1)x+2=O,当=1时,原方程无解.所以当(n一1)×1+2=0时,即o=一1,原方程无解.所以a为1或一1.在解本题时,考虑问题要全面,不要只考虑原分式方程有增根的情形,而忽略了整式方程无解,则原分式方程无解的情况.一分薅方癌警车麟按哮暴分式方程有增根,则增根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.如,解分式方程=3一刍,可得x=2,把=2代人(2一),得2一x=O,即=2使分式方程的分母2一为0.所以x=2不是原方程的解,x=2 是原方程的增根,此方程无解.在本题中,分式方程有增根,方程无解.请思考下面两道题:1.若关于的方程:m无解,求m的值.2.m为何值时,关于的方程+x2-4=会产生增根.目I2OO9.3。

分式方程的增根和无解(精品公开课)演示教学

分式方程的增根和无解(精品公开课)演示教学

∴ x=2或x=-2是 整式方程的根. 当x=2时 2(a-1) =-10, 则a= -4
当x=-2时-2(a-1)=-10,解得a=6.
∴ a=-4或a=6时.原方程产生增根.原分式方程无解。
综上所述:当 a= 1或-4或6时原分式方程无解.
论,整式方程无解和整式方程的解为增根.而无解
• 4、分式方程 x 2 ● x 1 1- x
• 中的一个分 子被污染成了●,已知 这个方程无解,那么被污染的分子 ●应该是 。
(1)方程
X-4 x-5
=
1 X-5
有增根,则增根是_X_=_5
(2)
1-X x-2
=
1 2-X
-2
有增根,则增根是_X_=_2
(3) 解关于x的方程
x-3 x-1
=
知识回顾:
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
a是分式 最简公分母不为0 最简公分母为0 a不是分式
方程的解
方程的解
a就是分式 方程的增根
解分式方程 1 x 1 2 x2 2x
格式该怎么写呢? 1、(找最简公分母)方程两边都乘以。。。,得
。。。。。。 2、整理得(或化简得) 。。。。。。 3、 解这个方程,得 。。。。。。 4、检验: 把。。。代入。。。。。。=。。。 5、(结论)。。。。。。
解方程: (1) x 1 3 x 2
x2 2x
X=1
(2)
x x
2 2
16 x2
4
1
X=-2 不 是是 分分 式式 方方 程程 的的增解根
.

分式方程的增根与无解

分式方程的增根与无解

分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

无解≠增根

无解≠增根
无解≠增根
陈峰
分式方程的无解和增根令许多初学分式 增根和整式方程无解这两种情况讨论。
方程的同学头疼,无解是不是一定意味着这个
解 :将 方 程 两 边 同 时 乘 x(x-1),得 x
方程有增根?本文试通过几道例题来谈谈它 (x-a)-3(x-1)=x(x-1),
们的差别。
整理方程,得(a+2)x=3。
又∵分式方程无解,∴x=1 即为增根。
不能等于 1,而对于变形后的方程来说,x=1。
当增根为 1 时,得 a+2=3,解得 a=1。
因此 x=1 是在去分母过程中“增加”的根,这个
综上所述,当 a=-2 或 a=1 时,该分式方程
根原本是不存在的,这样的根就是增根。
无解。
例1
若方程
x x-3
-2=
m x-3
二、无解可能出现增根,也可能真没解
分式方程的根如果是增根,则分式方程无
解。反之却不一定成立。如果分式方程无解,
还有可能是化为整式方程后,整式方程就是无
解的。
例2
若关于 x 的分式方程
x-a x-1
-
3 x
=
1
无解,则 a=

【分析】分式方程无解,需要分分式方程有
技巧点评:已知分式方程无解,可先考虑
去分母,将它们化成整式方程,然后讨论是整
x=
k
5
3

因为
x<0,所以
k
5
3

k
5
3
≠-3,所以 k≠-12。
所以当 k<3 且 k≠-12 时,原分式方程的解
为负数。
(作者单位:海安高新区仁桥初级中学)
46 策略方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈分式方程的增根与无解
分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.
分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:
例1 解方程2
344222+=---x x x x .
例2 解方程
22321++-=+-x x x x .
例3若方程32x x --=2m x
-无解,则m=——————. 例4当a 为何值时,关于x 的方程223242
ax x x x +=--+①会产生增根? 若将此题“会产生增根”改为“无解”,即:
当a 为何值时,关于x 的方程223242
ax x x x +=--+①无解?
练习题: 24. b a a b a b --- 25. 3
24332⎪⎭
⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y y x
26. ()1
302341200431-⎪⎭
⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛- 27. ()()222234a a a a -÷-
28. )1(1a a a a -÷- 29. )(22a b b a a
ab a -÷-
30. 先化简,再求值:13)181(++÷+-
-x x x x 其中32=x
解下列方程:
31.x
x x 1512=-+ 32. 22416222-+=--+-x x x x x
用心想一想,解决生活中的实际问题
33. 甲商品每件价格比乙商品贵6元,用90元买得甲商品的件数与用60元买得乙商品的件数相等,求甲、乙两种商品每件价格各是多少元?。

相关文档
最新文档