液压挖掘机讲座三——多路阀液压系统(中位闭式负载敏感和压力补偿)
三一重装掘进机液压传动录像讲稿(机械课件)解读

排量不可调的泵,叫做定量泵。
定量泵主要特点:结构简单,价格便宜;采用定量泵的液压系统,执行机构速度的 调节只能采用节流调速;定量泵的输出流量为常数,因而系统效率较低。 3.3.2 变量泵 排量可调的泵,叫做变量泵。 变量泵主要特点:结构复杂,价格较贵;采用变量泵的液压系统,执行机构速度的 调节可采用容积调速或容积-节流调速;变量泵的输出流量始终和系统的需要相适应。 3.3.3 变量泵的主要类型 1)负载敏感变量 2)恒功率变量 3)恒压变量 4)恒流变量 5)伺负变量 三一掘进机液压系统采用的LRDS变量泵具有负载敏感、恒功率、恒压等多种功能。
2019/3/16
第三篇 液压控制阀
第四篇 附件和液压油 第五篇 液压系统
三一重型装备有限公司
3
第 1 章 液压概论
1.1 液压传动的工作原理
液压传动:就是通过受压液体在密 闭容积中的流动传递动力。
教具演示
各种传动:其特点均和介质的性质有关, 液压传动也不例外。
工作介质的性质决定了液压传动的特点:
液体体积几乎不可压缩——液压传动响应快,刚性大; 液压油可传热——摩擦生热,热量传给油,散热容易; 流量可无级调节——执行机构运动平稳,可以无级调速; 流体参数表现为流量和压力——元件通用化、系列化、标准化; 液压油有润滑性,无孔不入,容易流动——零件在油中工作,寿命长。 缺点:油的粘度受温度影响大,有泄漏,元件精度要求高,配管不如配电容易等。 掌握工作介质的性质,是设计、使用和维护保养液压系统的前提。
TPt DP P pP qct Ft A vc Δpc
2019/3/16
qPt
qPt TPt VP 2n pP
三一重型装备有限公司
负载敏感多路阀的工作原理

负载敏感多路阀的工作原理
负载敏感多路阀是一种用于控制液压系统的阀门,它能够根据负载的变化实时调整流量和压力。
下面是负载敏感多路阀的工作原理:
1. 压力传感器:负载敏感多路阀通常配备有压力传感器。
压力传感器会实时监测系统中的液压压力变化。
2. 液压流量调节:负载敏感多路阀根据压力传感器的反馈信号来调节系统中的液压流量。
当系统中的负载增加时,压力传感器会检测到压力的变化并将这一信号传递给阀门。
3. 比例阀控制:根据压力传感器的反馈信号,负载敏感多路阀中的比例阀会自动调整阀门的开度。
比例阀的开度变化会影响液压系统中的液压流量和压力。
4. 系统调节:当负载增加时,阀门会自动打开以增加液压流量和压力,从而满足系统的需求。
当负载减少时,阀门会自动关闭以减少流量和压力。
总的来说,负载敏感多路阀通过压力传感器检测系统中的液压压力变化,并根据这些变化自动调节阀门的开度,从而实现对液压流量和压力的控制。
这种阀门能够根据系统的需求实时调整工作参数,提高系统的效率和性能。
液压基础知识培训-多路阀

手动
手动+气动
手动+电动
机动
多路阀结构
二、换向阀的原理
A
B
T
P
P - 压力油口 A、B - 工作油口 T - 回油口
不同的“通”和“位”的滑阀式换向阀主体部分的结构形式和图形
符号
名称
结构原理图
图形符号
二位二通
2-position 2-port
二位三通
2-position 3-port
二位四通
三、HC-M45多路阀
1、整体铸造 2、多种控制方式 3、45L/min、30L/min、15L/min三档流量 选择 4、只有在进油口有一个溢流阀 5、阀杆的机能根据客户需要进行配置
方框表示“位”,方框数表示位数; “↑”表示连通,“ T”表示堵塞; 在一方框内“↑”的首尾及“ T ”与 方框交点数表示通数; 每一方框表达的内容,为该阀芯在此位工作时的连通方式。
多路阀就是多个换向阀油路进 油并联,回 油并联。
串联油路
串并联油路
混合油路
多路阀
一、多路阀定义
多路阀是指由两个或两个以上换向阀为主体,并根据不同的工作要求加 上安全阀、单向阀、补油阀等辅助装置构成的多路组合阀。
换向阀按操作阀芯运动的方式可分为手动、机动、电磁动、液动、电液动、 气动等。换向阀是利用阀芯在阀体孔内作相对运动,使油路接通或切断而改 变油流方向的阀。 多路换向阀是若干个单联换向阀、安全溢流阀、单向阀和补油阀等组合成的 集成阀。具有结构紧凑、压力损失小等优点。 多路换向阀控制回路能操纵多个执行元件运动,主要用于工程机械、起重运 输机械和其他要求集中操纵多个执行元件运动的行走机械。操纵方式多为手 动操纵,当工作压力较高时,则采用减压阀先导操纵。 多路换向阀控制回路按连接方式分为串联、并联、串并联三种基本油路。
液压挖掘机培训PPT课件

挖掘机作业过程
挖掘机一个作业循环包括以下动作: 1. 挖掘 通过回转铲斗、回转斗杆以及它们的复合动作,实现铲斗的破
土、装土。 2. 满斗回转 铲斗装满土后,动臂提升、同时进行平台回转到卸土位置
; 3. 卸土 平台回转到位后制动,由斗杆调节卸土半径,铲斗翻转卸土 4. 回位 铲斗卸土,转台反转,动臂、斗杆配合,回到挖掘位置
行走直线功能
动臂提升优先
回转优先
中位负流量控制信号
行走二次升压
斗杆闭锁回ຫໍສະໝຸດ 机构采用川崎M2X120B—CHB—10A,最大流量207L/min, 液压马达排量121cm³/r,减速机速比20.04,齿轮轴输出。回转马达 带有停车制动器,制动阀,缓冲阀,延时阀
A,B:液压马达主油口 M:液压马达补油口 Dr:马漏油口 PX:回转控制口 PG:先导控制口
小腔节流原理
大腔节流原理
活塞密封
OK型密封,起主密封作用 支承环,每边两个,起支承、吸尘作用 活塞由螺母锁紧
主操作阀原理图
主操作阀
为提高作业效率,提高构件运动速度,动臂提升,斗杆大小腔都实现双泵合流,其工 作原理如下:
斗杆合流
铲斗合流
斗杆再生回路,当斗杆无负载下落时,为提高斗杆运行速成度 ,在斗杆油缸伸出时,把活塞杆腔的油引回大腔,实现再生功能, 其工作原理如下图:
行走直线功能,当挖掘机陷入坑中或其它特殊工况时,要求挖 掘机能边行走边动工作装置(动臂、斗杆、铲斗、回转),能实现 挖掘机的自救或其它功能,其工作原理如下:
1。回转平台:由回转平台、液压传动装置、伺服 操纵装置、动力装置、司机室、空调系统、电器系 统等组成。
2。工作装置由动臂、斗杆、铲斗、联杆、摇杆、 油缸等组成。
负载敏感和压力补偿的定义讲解

解决办法:一
是回转单独使用 单泵供油, 二是回转压力补 偿阀采用K<1的 压力补偿结构。
A2=A3=A1, K=A/A1 压力平衡式 Pin×A1=PL×A3=PLS ×A2 Pin=K×( PL +PLS )
多路阀主阀芯压降: ΔP=Pin-PL=K*PLS-(1-K)* PL 上式中,除回转K<1外,其余K=1,即ΔP=PLS
负载敏感和压力 补偿的定义
广西玉柴工程机械有限责任公司 易友南
一、负载敏感
通过感应检测出负载压力、流量和功率变化信号,向 液压系统进行反馈,实现节能控制、流量和调速控制、 恒力矩控制、力矩限制、恒功率控制、功率限制,转速 限制,同时动作和原动机动力匹配等控制的总称。
控制方式包括液压控制和电子控制。 负载敏感系统的液压元件: 负载敏感阀-----将压力、流量和功率变化信号向阀进行 反馈,实现控制功能的阀; 负载敏感泵-----将压力、流量和功率变化信号向泵进行 反馈,实现控制功能的泵和马达;
复合动作时,各阀的负载压力PL不同,但由于压 力相同补的偿,阀而都经受各相压同力的补P偿LS作阀用的,压因差此Pin-PL=ΔP是
Δ差P,’=起P-P到in了=负P-载PL均S-衡PL器此的压。差正好补偿了负载压力
PL+ΔP+ΔP’= PL+ PLS+P- PL-PLS=P
四、NACHI(不二越)负载敏感系统
发动机转速感受阀门F: P成r=正P2比H1,-P2帮L0P等r大式小右随边转即速节而流改件变S。的P压r作降用,于其H与阀通,过P的r↑,流量则
Qp↑。Pr=0.25~1.96Mpa
由于油泵调节阀H的目标压差随发动机转速而变, 使系统与发动机工况相匹配,在发动机转速范围
力士乐闭中心负载敏感压力补偿挖掘机液压系统

力士乐闭中心负载敏感压力补偿挖掘机液压系统主要内容介绍了力士乐闭中心负载敏感压力补偿挖掘机液压系统组成及其工作原理、特性。
重点分析了多路阀液压系统、液压泵控制系统、各主要液压作用元件液压回路及多路阀先导操纵系统等。
目前液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用”开中心”系统, 而国外著名的挖掘机厂家基本上都采用”闭中心”系统。
闭中心具有明显的优点, 但价格较贵。
国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV) 挖掘机油路。
LUDV 意为与负载无关的分配阀。
LUDV系统力士乐挖掘机液压系统可以看作由以下4 部分组成:①多路阀液压系统(主油路) ;②液压泵控制液压系统(包括与发动机综合控制) ;③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统;④多路阀操纵和控制液压系统。
LUDV系统是力士乐等公司在改进负荷传感技术的基础上发展起来的,它是不受负载影响的流量分配系统,它将常开式压力补偿改为常闭式,泵所提供的流量与负载所需相匹配,避免了不必要的空流和节流损失。
即使泵的流量小于系统复合动作所需的流量,各动作的相对速度也不会发生变化,从而保证动作的协调性,避免动作冲击。
1 多路阀液压系统多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。
力士乐采用的闭中位负载敏感压力补偿多路阀液压系统的工作原理见图1 (因换向阀不影响原理分析, 故未画出) 。
图1 挖掘机力士乐主油路简图挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。
1.1 工装油路工作装置和行走油路(除回转外) 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV)系统, 具有抗饱和功能。
挖掘机多路阀详解(2)

三、分流比(抗流量饱和)负载敏感阀系统当多个执行器同时动作,其流量需要超过泵的供油流量时,会出现负荷较大的执行元件速度变慢,甚至停止。
使得几个机构不能同时动作,影响挖掘机正常工作。
当出现流量饱和时,不能满足各执行元件流量的需要,较合理的方法是各执行元件都相应地减少供油量,对应各阀杆操纵行程,按比例分配流量。
我们称这种系统为分流比负荷敏感阀系统。
通常的负荷敏感阀系统的特点是各操纵阀由独立的压力补偿器来设定阀杆的进口压力和出口压力之差是一定的。
各阀杆的补偿压力可以设定为不相同,阀杆进出口压差是由弹簧力所决定。
其主要问题是要起补偿作用必须油流经操纵阀产生的压降达到补偿压力。
在并联油路中油优先流向低负荷执行器,在流量不足时,高负荷执行器得不到足够流量,因此不能起补偿作用。
为了解决此问题,将压力补偿器进行改进,让它起负荷均衡器作用,低负荷的执行器通过压力补偿器的节流,使它与高负荷执行器的负荷压力相同,这样各路负荷相等,就避免了油优先流向低负荷执行器问题。
线的任何处。
1.布置在泵—操纵阀之间:一般称为阀前补偿,如图2(a)所示。
压力补偿阀在前,操纵阀节流调速在后,先补偿,后节流,操纵阀节流和换向作用合二为一。
2.布置在操纵阀—执行器之间:一般称为阀后补偿,由于执行器一般都是双作用,有两条油路,为了避免阀后两条油路设两个压力补偿阀,因此操纵阀增加一个节流油道。
操纵阀节流调速在压力补偿阀之前,先节流后补偿,换向部分在压力补偿阀之后,如图2(b)所示。
两者用双线相连,表示节流和换向两者组合成操纵阀。
3.布置在执行器和回油路之间:可称为回油补偿,操纵阀节流调速在进入执行器之前,执行器回油,经操纵阀后,通过压力补偿阀回油。
操纵阀1 进出口的压差1111L L m P P P P P -=-=∆对压力补偿阀2 取力平衡得122L m L p P P P P +=+ 212L L m p P P P P -=-油流通过压力补偿阀2的压差为21L L P P -,正好补偿了两执行器压力负荷的差值。
挖掘机负载敏感系统介绍(中文)

并能防止液压执行机构产生停滞。
LUDV功能
中位
(1)行程限制块(2)二次压力释放/防蚀阀(3)负载保持阀(4) LUDV压力补偿阀(5)先导梭阀
(6)控制阀杆(7)输入测流口pA (8)输入测流口pB (9)输出测流口BT (10)输出测流口AT
这个LUDV部件压力补偿阀安排在控制阀芯测流口的下游,它包含有一个控制阀芯(13)和一个能限定稳固初始位置的微压缩弹簧(14)。
独立操纵或最高负载执行机构
先导控制装置的先导压力使得控制阀芯(6)克服弹簧力相应按比例的移动。这个图中,A口的先导压力推着阀芯克服B侧控制盖内的弹簧力向右移动。控制阀芯的测流输入节流口(7)打开了从泵来的P口与P‘通道的连接。该压力使得压力补偿阀(13)打开并且被施加到单向阀(3)上。
在LUDV系统中,所有执行机构部分的p测流节流口总相同。但不是一个恒定值。根据非饱和状态的程度,它可能在设定值pLS控制器和大约2 bar的压力之间变化(见表:p依赖需求的流量),在这个范围内,LUDV系统按比例相应地分配流量。
由于这个原因,即使在非饱和状态下,LUDV系统内负载压力最高的执行机构也将不会陷入停顿状态,所有使用中的执行机构的速度根据ቤተ መጻሕፍቲ ባይዱ启的通流面积按比例减小。
说明:不同负载压力情况下的压力补偿阀的功能
如果在非饱和状态范围内的同步动作中,执行机构的速度减小,也就是测流节流口关闭,非饱和程度减少,如果其它的仍还起作用的部件的p测流节流口增加,执行机构动作速度的也就相应增加。
给机器的指令控制信号由液压或电子的控制装置动作产生,并立即响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多路阀液压系统(中位闭式负载敏感和压力补偿)一、液压传动存在的问题液压传动是工程机械理想的传动装置,工程机械的进步和发展依赖液压技术。
目前工程机械是液压工业最大的市场,液压件一半以上用于工程机械,工程机械对液压技术提出了很高的要求,液压技术的发展主要是满足工程机械的需要,液压技术的水平主要体现在工程机械上,例如:液压件的大型化、小型化和高压化等,最高使用压力已达70MPa。
工程机械和液压技术两者互相促进共同发展。
因此有必要深入分析液压传动的特点及其存在的问题,工程机械对液压传动所提出的要求,以便进一步提高和改进液压传动的性能。
液压传动通过管道连接传递能量,恰如生物血管,只需管路就能把能量输送到需要的地方。
给设计布置上带来了很大的灵活性和方便性,液压传动容易实现各种运动形式,很适合工程机械多处需要动力,多作业装置,实现复杂运动的要求。
液压传动传递的功率密度大(单位体积或单位重量所传递的功率)、结构紧凑、重量轻,适合工程机械强劲有力,重型大马力的要求。
液压传动具有优良的传动性能,传动平稳,易防止过载,调速简单,具有无级变速性能,维修简单,使用寿命长等,能很好地满足工程机械的传动性能要求。
液压传动具有良好的操纵控制性能,液压是机械和电子的接口,电液控制是机电信一体化的关键技术。
但是液压传动存在着不尽人意的不足之处,有的已经改进,还有待解决的问题需进一步动脑筋。
在工程机械使用过程中存在着以下需解决的问题。
1.节能要求:适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。
要求液压系统能反向吸收作业装置的能量,具有能量再生利用的储能功能。
12.调速要求:希望操纵阀控制调速时,不受负载压力变化和油泵流量变化的影响,能按人的操纵指示来调速。
3.复合动作操纵要求:单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。
合理地分配流量,实现理想复合动作。
4.液压泵(单泵或多泵)和原动机的匹配问题:能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火;为了节能,要求液压泵和发动机联合工作在最经济点上。
5.单泵供多执行器压力损失问题:当单泵供几个执行器时,根据帕斯卡原理,系统压力由克服最大负荷所需压力来确定,因此供给负荷较低的油路中,必然存在压力损失,能不能利用电路中变压器这样东西来解决这个问题,人们正在探索。
上述的液压传动存在的问题,需要人们解决,推动着液压技术的发展,其中有些问题已解决,60年代提出了液压传动和控制的新概念——负载敏感(Load Sensing)和压力补偿(Pressure Compensation),就是解决节能、调速和复合动作等的一项技术措施。
二、开中心六通多路阀存在的问题工程机械初期曾广泛采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。
并联供油路,组成并联油路。
把二种油路采用各种方式组合起来,就构成了复杂多变的工程机械油路。
(一)操纵阀的结构简图和符号图:如图1所示。
2(二)操纵阀的开口特性和调速特性操纵阀在中位时泵压力油P通过直通油道,通过各阀,最后回油箱T,执行器动作时P →D的阀口逐渐关小,P→A和B→T的阀口逐渐开大,其开口面积变化(方向阀的开口特其调速是采用旁路节流和进油节流的组合,其调速作用是通过阀杆节流,控制去油缸和回油箱的开口量来实现的,如图2(b)所示。
由于是靠回油节流建立的压力来克服负载压力,因此调速特性受负载压力和油泵流量的3影响,如图2(c)所示,图中①表示低负载,②表示高负载。
当滑阀行程一定,负荷压力增大,去油缸的流量减小,如图2(d)所示。
随着负载压力增加和液压泵流量的减少,阀杆调速的死区(空行程)增大,而阀杆有效调速范围的行程减小,调速特性曲线(流量随行程变化)变陡,阀杆行程稍有变化,流量变化大,使调速操作性能差。
这是开式油路的一大缺点。
工程机械工作过程负载压力是不稳定变化着的,液压泵的流量也在不断变化,因此使其调速操作性能很不稳定,操纵困难。
而且阀杆操纵力大,由于负荷压力变化引起阀口ΔP变化,液动力变化造成阀杆操纵力改变,操纵力的不规则性,使微调控制更加困难。
开式油路操纵性能另一缺点是:当一泵供多个执行器同时动作时,因液压油是向负载轻的执行器流动,需要对负载轻的执行器控制阀杆进行节流,特别是像工程机械这类机械,各执行器的负荷时刻在变化,但又要合理地分配流量,能相互配合实现所要求复合动作,是很难控制的,操纵性差。
另外开中心直通型油路由于很难控制去各执行器的流量,要适应工程机械各种作业工况的流量分配要求,不得不在多路阀中加上各种控制阀,因此有些工程机械不能采用通用多路阀,而必须采用专用多路阀,其结构很复杂。
总之,这类油路可控性差,司机要精确控制工作装置是很困难的,全靠司机感觉、经验和临场发挥。
因此司机操作要求注意力高度集中,其精神负担和心理负担是很重的。
三、初期的负载敏感阀系统该系统采用四通阀,并联供油。
(一)阀组入口压力补偿流量控制阀阀组入口压力补偿系统如图3(a)所示。
该负载敏感系统由定量泵、阀组入口溢流阀型压力补偿器、操纵阀杆可变节流器和梭阀网络组成。
在四通多路阀组入口处设旁通型压力补偿流量控制阀(又称溢流阀型压力补偿器45或三通压力补偿器),其工作原理和调速阀相同,在定差溢流阀后,设节流阀组成调速阀。
操纵阀杆可控的开口面积变化起可变节流阀作用(如图3b 所示)。
操纵阀的进口压力和经操纵阀杆节流去执行器的压力分别引到定差溢流阀阀心的左右两端。
当操纵阀多个阀杆同时动作时,通过梭阀网络检出执行器中负荷压力最高的压力,作通过操纵阀的流量γ∆⋅α⋅=p g c Q 2 式中:c 为流量系数,α为节流开度(与阀行程有关),g 为重力加速度,γ为油的比重, Δp 为补偿阀压差。
其中c ,g ,γ可认为是常数,则p k Q ∆α=,由于补偿阀压差一定(由弹簧力决定),则通过操纵阀的流量由阀杆行程所决定,与负荷无关,流量和阀杆行程之间关系如图3(c )所示,流量和负荷压力关系如图3(d )所示。
该系统的特点是:1.在操纵阀杆都处于中位时,溢流阀背面油压回油箱,起卸载阀作用,中位卸载压力为3.5bar 左右。
由于中位通过卸载阀卸油,操纵阀杆是封闭的,油液不通过阀杆,因此俗称闭心(闭中心)油路。
2.有一个操纵阀杆动作时,油泵通过该阀组的流量,由该阀杆的行程所确定,和其负载和油泵流量无关。
泵的出口压力比负载压力约高10bar左右,(用于克服补偿器液阻和操纵阀液阻)。
3.泵入口旁通压力补偿阀只响应最高负载压力,多个操纵阀杆同时动作时,只是负载压力最高的得到补偿,该执行器流量由此阀杆行程确定。
而其他阀杆操纵时的流量分配是不确定的。
4.溢流旁通型压力补偿阀可作为优先供油阀,即将旁通回油箱改为旁通供给下游阀。
该阀首先保证它控制的阀的供油需要,剩下的才供给其下游阀。
(二)各阀杆单独压力补偿流量控制阀仅在阀组入口设旁通型压力补偿流量控制阀,在多阀杆同时动作时,只是负荷压力最高的得到补偿,而其他阀杆流量是不确定的,为了解决此问题,在操纵阀各阀杆前增设减压阀型压力补偿流量控制阀(或称直通型或二通型压力补偿器),如图4(a)所示,减压阀型压力补偿流量控制阀结构如图4(b)所示。
该阀与调速阀工作原理相同,它是在定差减压阀后设节流阀组成调速阀,操纵阀杆可控开口面积变化,起可变节流阀的作用。
操纵阀阀杆入口压力和经操纵阀杆节流后去执行器的压力分别引到定差减压阀阀芯的左右两端。
7图4 各阀杆压力补偿系统其通过流量p k Q ∆=,当减压阀弹簧力设定后,Δp 可认为不变,因此通过阀杆的流量只和k (阀杆行程)有关,基本不受负载压力变化的影响,多阀杆同时动作时彼此没有影响,提高了各阀杆的调速控制性能。
减压阀型压力补偿流量控制阀设计压降一般为7bar 左右,但是这种负载敏感系统存在一个缺点,当液压泵流量足够时,通过操纵阀阀口的压差都能达到补偿压力,这时各阀入口压力补偿阀都能起调节作用。
当多个执行器同时动作时,其操纵阀都在大开度下工作。
各执行器总流量需求往往会超过泵的供油流量,即所谓的流量出现饱和。
这时由于并联供油,油首先供给低压执行器,满足低压执行器的需要,流经低压操纵阀的压力降能达到补偿压力,其压力补偿阀能起控制流量作用。
即泵流量不足时首先保证供给低压执行器,多余下来的油才供给高压执行器,此时流向高压执行器操纵阀的流量不足,达不到压力补偿阀起作用的压力。
高压执行器动作速度降低,甚至不动(由于泵的油都供给负荷低的执行器,其油泵输出压力可能低于最高负荷压力)。
此时进入达到补偿压差的低压执行器,可由其操纵阀行程来控制其速度,达不到补偿压差的高压执行器,不能用操纵阀来控制其运动。
(三)变量泵负载敏感系统以上所述的是定量泵负载敏感压力补偿系统,执行元件调速采用节流调速,能量损失大,为了减少能量损失,应把节流调速改为容积调速,为此采用变量泵负载敏感压力补偿系统,如图6所示。
该系统采用了负载敏感泵,其变量机构由伺服油缸和油泵调节阀组成。
油泵调节阀左端受油泵压力P作用,右端受最大负载压力P L和弹簧力作用。
当左端油泵压力作用力小于右端最大负载压力和弹簧力作用时,阀在右位,伺服缸回油,在其弹簧力作用下,油泵处于最大排量位置。
当左端油泵压力作用力大于右端最大负载压力和弹簧力作用时,阀在左位,油泵压力油进入伺服缸,压缩弹簧使油泵的流量减少。
图6 变量泵负载敏感系统该系统当操纵阀都在中位时,所有负载压力线无油压都回油,油泵压力只需克服油泵调节阀弹簧力,就能使油泵调节阀处于左位,油泵油进入伺服缸,使油泵排量变得最小,实现中位卸载。
当油泵压力作用力大于最大负载压力作用力和卸载阀弹簧力时,卸载阀打开,油泵回油,由于卸载阀弹簧作用力设计成大于油泵调节阀弹簧作用力,因此油泵调节阀处于左位,油泵压力油进入伺服缸,使油泵排量变得很小,实现高压卸载。
当操纵某一操纵阀阀杆时,由于操纵阀杆节流,压力补偿阀和沿途阻力损失,使油泵压力P大于负载压力P L。
当P作用力大于P L作用力加弹簧力时,使阀处于左位,压力油进入伺服缸,克服弹簧力,使油泵排量减小。
由于油泵排量减小,使得操纵阀和压力补偿阀的节流压降和沿途压降都减小,则压差P-P L减小,使油泵调节阀向右移动,取得新的平衡,即8旗开得胜操纵阀开度减小时,油泵排量也随之减少,实现容积调速,按需供油。
当多阀杆同时动作时,油泵响应最大负载操纵阀进行变量供油。
9旗开得胜四.分流比(抗流量饱和)负载敏感阀系统(一)概述10初期负载敏感压力补偿系统,当多个执行器同时动作,其流量需要超过泵的供油流量(即流量饱和)时,只有低压执行器能得到补偿,会出现负荷较大的执行元件速度变慢,甚至停止。