人教版九年级下册数学各单元知识大全+测试卷(附答案)

合集下载

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含
答案
本文档包含了最新人教版九年级数学单元测试题全册以及相关的答案。

这些测试题可以帮助学生复和巩固数学知识,并检验他们在各个单元中的研究情况。

本文档的目的是为教师和学生提供一个方便的资源,以便他们能够更好地准备和应对数学单元测试。

通过解答这些测试题,学生可以了解自己对各个知识点的掌握程度,并及时进行补充研究。

测试题的答案部分会帮助学生核对自己的答案,并了解正确的解题方法。

这有助于他们纠正错误、提高解题能力,并在考试中取得更好的成绩。

本文档中的测试题均按照最新的人教版九年级数学教材编写,并尽量简洁明了。

题目类型多样,涵盖了各个数学知识点,包括代数、几何、概率等。

每个单元的测试题都相对独立,可根据需要选择和使用。

请注意,本文档中的内容均经过审核,并按照最新的教学要求编写。

然而,由于教材更新和不同教育机构之间的差异,建议在使用前先与教师核对,以确保测试题的适用性。

希望这份文档能对教师和学生在九年级数学研究中有所帮助。

祝大家学业进步,取得优异成绩!
*注意:本文档中的测试题和答案仅供参考,请勿用于非法用途。

作者和提供者不承担任何因使用本文档而产生的法律责任。

*。

九年级数学下册 各单元综合测试题附答案4套

九年级数学下册 各单元综合测试题附答案4套

人教版九年级数学下册第二十六章综合测试卷03一、选择题(每小题4分,共32分)1.下列函数是反比例函数的是()A .12y x =B .12y x =C .21y x =D .12y x =+2.当0x >时,函数5y x=-的图x 象在()A .第四象限B .第三象限C .第二象限D .第一象限3.反比例函数12ky x-=的图象x 经过点(2,3)-,则k 的值为()A .6B .6-C .72D .72-4.已知反比例函数1y x=,下列结论不正确的是()A .图象经过点1,1()B .图象在第一、第三象限C .当1x >时,01y <<D .当0x <时,y 随x 的增大而增大5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度ρ(单位:3kg/m )是体积V (单位:3m )的反比例函数,它的图象如图26-8所示,当310 m V =时,二氧化碳的密度是()A .35 kg/mB .32 kg/mC .3100 kg/mD .31 kg/m 6.如图26-9,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交2x 于1,2A (),2,1B --()两点,若12y y <,则x 的取值范围是()A .1x <B .2x -<C .20x -<<或1x >D .2x -<或01x <<7.若函数1y k x =-()和函数ky x=的图象在同一坐标系中,则其图象可为图中的()A .①③B .①④C .②③D .②④8.如果函数1ky x-=的图象与直线y x =没有交x 点,那么k 的取值范围是()A .1k >B .1k <C .1k ->D .1k -<二、填空题(每小题5分,共20分)9.试写出图象位于第二、第四象限的一个反比例函数的解析式________.10.点P 在反比例函数(0)ky k x=≠的图象上,点2,4Q ()与点P 关于y 轴对称,则反比例函数的解析式为________.11.若点,2P a ()在一次函数24y x =+的图象上,它关于y 轴的对称点在反比例函数ky x=的图象上,则该反比例函数的解析式为________.12.如图26-11,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在上的图象AB 上,点B ,E 在反比例函数ky x=上,1OA =,6OC =,则正方形ADEF 的边长为________.三、解答题(共48分)13.(8分)已知变量y 与1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数解析式。

人教版九年级下册数学各单元测试卷及答案(全套)

人教版九年级下册数学各单元测试卷及答案(全套)

第二十六章综合测试一、选择题(30分) 1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是( ) A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是( ) A .0m n +<B .0m n +>C .m n <D .m n >4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则( ) A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是( ) A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是( ) A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2cy x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是( ) A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为( ) A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为( ) A .4 B .3 C .2 D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________. 13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______. 17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C . (1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

人教版九年级下册数学全册测试卷含答案完整版

人教版九年级下册数学全册测试卷含答案完整版

人教版九年级下册数学全册测试卷含答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 .4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 .5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________.8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到.9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 .二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )=3 =-3 C. 12x =-D. 12x = 12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( )A.第一象限B.第二象限C.第三象限D.第四象限13.若抛物线y=+3x+m 与x 轴没有交点,则m 的取值范围是( )≤ ≥4.5 C.m> D.以上都不对14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )<0,b>0 -4ac<0 C.a -b+c<0 -b+c>015.函数是二次函数m x m y m +-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) 53B.3mC.10mD.12m (第14题)17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5 或-4 C.4 D.-418.二次函数y=ax 2+bx+c 的图象如图所示,则此函数解析式为( )=-x 2+2x+3 =x 2-2x -3 C.y=-x 2-2x+3 = -x 2-2x -319.函数y=ax 2+bx+c 和y=ax+b 在同一坐标系中大致图象是( )20.若把抛物线y=x 2+bx+c 向左平移2个单位,再向上平移3个单位,得到抛物线y=x 2,则( )=-2,c=3 =2,c=-3 C.b=-4,c=1 =4,c=7三、计算题(共38分)21.已知抛物线y=ax 2+bx+c 与x 轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。

人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(有答案)

人教版九年级下册数学 第28章 锐角三角函数  单元测试卷(有答案)

2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,各边都扩大5倍,则锐角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定2.用计算器求sin28°,cos27°,tan26°的值,它们的大小关系是()A.tan26°<cos27°<sin28°B.tan26°<sin28°<cos27°C.sin28°<tan26°<cos27°D.cos27°<sin28°<tan26°3.已知锐角α满足cosα=,则tanα是()A.B.C.2D.24.在直角三角形中不能求解的是()A.已知一直角边和一锐角B.已知斜边和一锐角C.已知两边D.已知两角5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(AC⊥BA)测得∠C=50°,则A、B间的距离应为()A.15sin50°米B.15cos50°米C.15tan50°米D.米6.如图,在高为2m,坡比为1:的楼梯上铺地毯,地毯的长度应为()A.4m B.6m C.m D.m 7.在Rt△ABC中,∠C=90°,cos A=,则sin B的值为()A.B.C.D.28.△ABC中,tan A=1,cos B=,则△ABC为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.在△ABC中,∠C=90°,a=5,c=13,用计算器求∠A约等于()A.14°38′B.65°22′C.67°23′D.22°37′10.如图,在某海岛的观察所A测得船只B的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m,当时的水位是+3m,则观察所A和船只B的水平距离BC是()A.50m B.50m C.5m D.53m二.填空题11.比较大小:sin87°tan47°.12.在Rt△ABC中,∠C=90°,AB=,BC=1,则tan B=.13.在△ABC中,∠B=74°37′,∠A=60°23′,则∠C=,sin A+cos B+tan C ≈.14.计算:tan45°+sin260°=.15.已知:∠α是锐角,且sinα•cosα=,则sinα+cosα=.16.一船向西航行,上午9时30分在小岛A的南偏东30°,距小岛A60海里的B处,上午11时,船到达小岛A的正南方向,则该船的航行速度为.17.如图,小明想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进20m至B处,测得仰角为60°,那么塔高约为m.(小明身高忽略不计,≈1.732)18.如图,已知l1∥l2,l1与l2之间的距离为,∠α=60°,则AB=.19.在Rt△ABC中,∠C=90°,若cos B=,则tan A=,若此时△ABC的周长为48,那么△ABC的面积.20.如图,△ABC中,∠C=90°,BC=4,AB的垂直平分线MN交AC于D,且CD:DA =3:5,则sin A=.三.解答题21.在Rt△ABC中,∠C=90°,AC=5cm,BC=2cm.求∠A,∠B的正弦、余弦和正切的值.22.如图,梯子AB的长为2.8m.当α=60°时,求梯子顶端离地面的高度AD和两梯脚之间的距离BC.当α=45°时呢?23.已知∠A为锐角,且cos A=,求sin A、tan A.24.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°.25.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C分别测得气球A的仰角∠ABD为45°,∠ACD为56°,求气球A离地面的高度AD(精确到0.1m).26.在直角坐标系中,点P(x,6)在第一象限,且OP与x轴正半轴的夹角α的正切值是.求x的值,及角α的正弦和余弦值.27.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.参考答案与试题解析一.选择题1.解:因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.2.解:∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469.故sin28°<tan26°<cos27°.故选:C.3.解:∵cosα==,∴可设b=x,则c=3x,∵a2+b2=c2,∴a=2x,∴tanα===2.故选:D.4.解:A、已知一直角边和一锐角能够求解;B、已知斜边和一锐角能够求解;C、已知两边能求解;D、已知两角不能求解.故选:D.5.解:因为AC=15米,∠C=50°,在直角△ABC中tan50°=,所以AB=15•tan50°米.故选:C.6.解:如图,根据题意得:AC=2m,i=AC:BC=1:,∴BC=AC=2m,∴地毯的长度应为:AC+BC=2+2(m).故选:D.7.解:在△ABC中,∠C=90°,∠A+∠B=90°,则sin B=cos A=.故选:A.8.解:由tan A=1,cos B=,得A=45°,B=30°,由三角形内角和定理,得C=180°﹣A﹣B=105°,故选:B.9.解:sin A==≈0.385,A=sin﹣10.385=22.64°=22°37′,故选:D.10.解:由题意得,AC=50米,∠ABC=30°,在Rt△ABC中,BC=AC cot∠ABC=50(米).故选:B.二.填空题11.解:∵sin87°<1,tan47°>tan45°=1,∴sin87°<tan47°,故答案为:<.12.解:∵∠C=90°,AB=,BC=1,∴AC==2,∴tan B==2,故答案为:2.13.解;∠C=180°﹣(∠A+∠B)=180°﹣135°=45°.sin A+cos B+tan C≈0.86935+0.26527+1≈2.1346.故答案为:45°;2.1346.14.解:tan45°+sin260°=1+()2=1.故答案为:1.15.解:∵(sinα+cosα)2=sin2α+2sinα•cosα+cos2α=1+2sinα•cosα,∴当sinα•cosα=时,原式=1+=,则sinα+cosα=±=±,∵∠α是锐角,sinα,cosα都为正数,∴sinα+cosα=.故答案为:.16.解:如图在Rt△ABC中,∠BAC=90°﹣60°=30°,AB=60海里,故BC=30海里,11时﹣9时30分=1.5小时,船航行的速度为30÷1.5=20海里/时.故答案为:20海里/时.17.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=20m.∴DC=BD•sin60°=20×≈17.32(m).故答案为:17.32.18.解:如图,过点B作BC⊥l2于点C,则BC=,在Rt△ABC中,∠BAC=α=60°,BC=,所以AB===2.故答案是:2.19.解:设c=5k,a=3k.由勾股定理得:b===4k.∴tan A==.∵△ABC的周长为48,∴5k+3k+4k=48.解得:k=4.∴3k=3×4=12,4k=4×4=16.∴△ABC的面积==96.故答案为:;96.20.解:如图,连BD,设CD=3x,则DA=5x,又∵MN垂直平分AB,∴DB=DA=5x,在Rt△BCD中,BC=4,∵BD2=CD2+BC2,∴(5x)2=(3x)2+42,∴x=1,∴AC=AD+DC=5x+3x=8x=8,在Rt△ABC中,AB===4.sin A=.故答案为:三.解答题21.解:由勾股定理得:AB===7(cm).∴sin A==,cos A==,tan A==,sin B==,cos B==,tan B===.22.解:∵AB=AC,AD⊥BC,∴BC=2BD,∠ABD=∠ACD.当α=60°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=60°,∴BD=AB•cos∠ABD=1.4m,AD=AB•sin∠ABD=m,∴BC=2BD=2.8m;当α=45°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=45°,∴BD=AB•cos∠ABD=m,AD=AB•sin∠ABD=m,∴BC=2BD=m.23.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=,∵tan A=,∴tan A==.24.解:(1)∵根据已知的式子可以得到sin(90°﹣α)=cosα,∴sin2α+sin2(90°﹣α)=1;(2)sin21°+sin22°+sin23°+…+sin289°=(sin21°+sin289)+(sin22°+sin288°)+…+sin245°=1+1+…1+=44+=.25.解:根据题意,得∠ADB=90°,∠ABD=45°,∴∠DAB=45°,∴AD=BD,∴CD=BD﹣BC=AD﹣20,在Rt△ADC中,∠ACD=56°,∴tan56°=,即1.48≈,解得AD≈61.7(m).答:气球A离地面的高度AD约为61.7m.26.解:如图所示,过点P作PQ⊥x轴于点Q,由P(x,6)且P在第一象限知OQ=x,PQ=6,∵tan∠POQ=tanα=,∴=,即=,解得x=9,则OP===3,∴sinα===,cosα===.27.解:∵75°>60°>30°>15°,∴cos75°<cos60°<cos30°<cos15°.。

2022-2023学年全国初中九年级下数学人教版单元测试(含答案解析)035457

2022-2023学年全国初中九年级下数学人教版单元测试(含答案解析)035457

2022-2023学年全国初中九年级下数学人教版单元测试考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一个“粮仓”的三视图如图所示(单位:),则它的体积是 A.B.C.D.2. 如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是( )A.B.C.D.3. 如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面面积是( )m ()21πm 330πm 345πm 363πm 360∘143–√7cm14cm21cm21cm3–√A.B.C.D.4. 一个正方形的正投影不可能是 A.正方形B.矩形C.线段D.点5. 下列几何体的主视图和俯视图相同的是() A. B. C.12π6π12+π6+π()D.6. 一个几何体的三视图如图所示,这个几何体是( )A.三棱柱B.四棱锥C.四棱柱D.圆锥7. 将如图所示的长方体木块沿虚线挖去一个小长方体,得到的几何体的左视图为()A.B.C.D.8. 如图是一个正五棱柱,它的左视图是( )8. 如图是一个正五棱柱,它的左视图是( ) A. B. C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 甲,乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是________.10. 已知一个直棱柱有条棱,它的底面边长都是,侧棱长为,则其侧面积为________.11. 如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.184cm 5cm cm 212. 一个物体的俯视图是圆,则该物体有可能是________(写两个即可).三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.如图,是由个大小相同的小立方体块搭建的几何体,其中每个小正方体的边长为厘米.直接写出这个几何体的表面积:________平方厘米;请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.14. 如图,由六个棱长为的小正方体组成一个几何体.分别画出这个几何体的主视图、左视图、俯视图;该几何体的表面积是________.15. 如图是由相同的个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为,试求出该几何体的表面积.16. 画出下面空心直三棱柱的三视图.(注:空心的部分是圆柱)101(1)(2)1cm (1)(2)cm 25a参考答案与试题解析2022-2023学年全国初中九年级下数学人教版单元测试一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】由三视图确定几何体的体积或面积【解析】首先判断该几何体的形状,然后根据其体积计算公式计算即可.【解答】解:观察发现该几何体为圆锥和圆柱的结合体,其体积为:.故选.2.【答案】C【考点】平行投影【解析】由于太阳光线为平行光线,根据切线的性质得到为排球的直径,,,在中,利用正弦的定义可计算出的长,从而得到排球的直径.【解答】解:如图,点与点为太阳光线与球的切点,π×4+×π×3321332=45πm 3C AB CD =AB CE =14cm 3–√Rt △CDE CD A B则为排球的直径,,,在中,,所以,即排球的直径为.故选:.3.【答案】B【考点】几何体的表面积由三视图判断几何体【解析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】先由三视图确定该几何体是圆柱体,底面半径是=,高是.所以该几何体的侧面积为=.4.【答案】D【考点】正投影与斜投影【解析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.【解答】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是点,AB CD =AB CE =14cm 3–√Rt △CDE sinE =CD CE CD =14⋅sin =14×=213–√60∘3–√3–√221cm C 2÷21cm 3cm 2π×1×36π(c )m 2故选.5.【答案】A【考点】简单组合体的三视图简单几何体的三视图【解析】此题暂无解析【解答】解:选项主视图和俯视图都是正方形,故符合题意;选项主视图是梯形+长方形,俯视图是圆环,故不符合题意;选项主视图是梯形,俯视图是圆环,故不符合题意;主视图是三角形,俯视图是平行四边形,故不符合题意.故选.6.【答案】B【考点】由三视图判断几何体【解析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:根据主视图和左视图都为三角形,俯视图是矩形,可得这个几何体为四棱锥.故选.7.【答案】B【考点】D A B C D A B作图-三视图【解析】此题暂无解析【解答】解:根据左视图的定义可知选注意:看不见的轮廓线上应画为虚线.故选.8.【答案】A【考点】简单几何体的三视图【解析】根据左视图的定义分析即可解答.【解答】解:根据左视图的定义,从左面看该几何体,得到的是两个长方形,且右侧看不到的棱都被左侧的棱挡住了,故正确.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】成比例【考点】平行投影【解析】甲乙两人的身高与影长之比应该相等.【解答】解:根据在同一时刻,不同物体的物高和影长成比例;故同一时刻他们的身高与其影长成比例.10.B .B A A【答案】【考点】几何体的表面积认识立体图形【解析】一个直棱柱有条棱,故为直六棱柱,然后根据底面边长都是,可知它有六个相同的侧面,且都是长为、宽为的长方形,侧面积等于个长方形面积之和.【解答】解:∵一个直棱柱有条棱,∴它是直六棱柱.又其底面边长都是,∴它有六个相同的侧面,且都是长为,宽为的长方形,∴.故答案为:.11.【答案】个或个或个【考点】由三视图判断几何体【解析】此题暂无解析【解答】此题暂无解答12.【答案】球,圆柱(合理即可)【考点】由三视图判断几何体【解析】120184cm 5cm 4cm 6184cm 5cm 4cm =6×5×4=120(c )S 侧m 2120678此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】如图所示:【考点】几何体的表面积简单组合体的三视图【解析】(1)根据几何体的形状得出其表面积即可;(2)直接利用三视图的画法得出符合题意的答案.【解答】解:这个几何体的表面积为:(平方厘米).故答案为:.如图所示:14.【答案】解:如图所示:36(2)(1)6×6×(1×1)=3636(2)(1)【考点】几何体的表面积作图-三视图简单组合体的三视图【解析】(1)主视图有列,每列小正方形数目分别为,,,左视图有列,每列小正方形数目分别为,,俯视图有列,每列小正方数形数目分别为,,.据此可画出图形.(2)根据三视图可求出几何体的表面积.【解答】解:如图所示:该几何体的表面积是:.故答案为:.15.【答案】解:如图所示:∵每个小正方体的棱长为,∴该几何体的表面积为:.【考点】作图-三视图几何体的表面积由三视图判断几何体【解析】分别利用三视图的观察角度不同进而得出其三视图,再利用几何体表面积求法得出答案.2432212213121(1)(2)4×2+5×2+3×2=24(c )m 224a 5+8+4+3=20a 2a 2a 2a 2a 2【解答】解:如图所示:∵每个小正方体的棱长为,∴该几何体的表面积为:.16.【答案】解:如图所示【考点】作图-三视图【解析】此题暂无解析【解答】解:根据题意,如图所示:a 5+8+4+3=20a 2a 2a 2a 2a 2。

人教版数学九年级下册第26章、第27章测试题及答案解析(各一套)

人教版数学九年级下册第26章、第27章测试题及答案解析(各一套)

人教版数学九年级下册第26章测试题一.选择题1. y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或22.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A. B.C. D.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.85.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.67.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣28.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>212.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.15.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b= (用含m的代数式表示);(2)若S△OAF +S四边形EFBC=4,则m的值是.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.三.解答题17. 画出的图象.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A (m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?答案解析一.选择题1.函数y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或2【考点】反比例函数.【分析】依据反比例函数的定义求解即可.【解答】解:由题意知:m2﹣3m+1=﹣1,整理得m2﹣3m+2=0,解得m1=1,m2=2.当m=l 时,m2﹣m=0,不合题意,应舍去.∴m的值为2.故选C.【点评】本题主要考查的是反比例函数的定义,依据反比例函数的定义列出关于m的方程是解题的关键.需要注意系数k≠0.2.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=【考点】反比例函数.【分析】直接利用反比例函数的定义分析得出答案.【解答】解:A、y=,是y与x2成反比例函数关系,故此选项错误;B、yx=﹣,y是x的反比例函数,故此选项正确;C、y=5x+6是一次函数关系,故此选项错误;D、=,不符合反比例函数关系,故此选项错误.故选:B.【点评】此题主要考查了反比例函数的定义,正确把握相关定义是解题关键.3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】反比例函数的图象特点.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.8【考点】反比例函数图象特点.【分析】根据反比例函数的对称性可得阴影部分的面积等于长是8,宽是2的长方形的面积,据此即可求解.【解答】解:阴影部分的面积是4×2=8.故选D.【点评】本题考查了反比例函数的图象的对称性,理解阴影部分的面积等于长是8,宽是2的长方形的面积是关键.5.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数是y=中,k=2>0,∴此函数图象的两个分支分别位于一、三象限.故选B.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出反比例函数y=在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.7.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣2【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行分析即可.【解答】解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不符合题意;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S=AC•CQ=(m﹣1)n=mn﹣n.四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选B.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数的性质.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=【考点】确定反比例函数表达式;反比例函数系数k的几何意义.【分析】先判断出k的符号,再由反比例函数系数k的几何意义即可得出结论.【解答】解:∵反比例函数的图象在二四象限,∴k<0.=2,∵PA⊥x轴于点A,且S△PAO∴k=﹣4,∴反比例函数的解析式为y=﹣.故选A.【点评】本题考查的是用待定系数法求反比例函数的解析式,熟知反比例函数系数k的几何意义是解答此题的关键.11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的综合应用.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.12.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x【考点】反比例函数在实际问题中的应用.【分析】利用工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y 天,即xy=100,即可得出答案.【解答】解:根据题意可得:y=.故选:B.【点评】此题主要考查了根据实际问题列反比例函数解析式,正确运用xy=100得出是解题关键.二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【考点】反比例函数的性质.【专题】开放型.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为﹣8.【考点】反比例函数图象的特点.【专题】数形结合.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴AO==,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.故答案为:﹣8【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形,注意:反比例函数图象上的点(x ,y )的横、纵坐标的积是定值k ,即xy=k ,这是解决问题的关键.15.如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= m + (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .【考点】反比例函数与一次函数的综合应用.【分析】(1)根据待定系数法点A 的纵坐标相等列出等式即可解决问题.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),所以S △ADM =2S △OEF ,推出EF=AM=NB ,得B (2m ,)代入直线解析式即可解决问题.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,且点A 的横坐标为m ,∴点A 的纵坐标为,即点A 的坐标为(m ,).令一次函数y=﹣x +b 中x=m ,则y=﹣m +b ,∴﹣m +b=即b=m +.故答案为:m +.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y=,一次函数y=﹣x +b 都是关于直线y=x 对称,∴AD=BC ,OD=OC ,DM=AM=BN=CN ,记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),∴S △ADM =2S △OEF ,由对称性可知AD=BC ,OD=OC ,∠ODC=∠OCD=45°,△AOM ≌△BON , ∴AM=NB=DM=NC ,∴EF=AM=NB ,∴点B 坐标(2m ,)代入直线y=﹣x +m +, ∴=﹣2m=m +,整理得到m 2=2,∵m >0,∴m=. 故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R≥3.6.【考点】反比例函数在物理学中的应用.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.三.解答题17.画出的图象.【考点】反比例函数图象的画法.【分析】从正数,负数中各选几个值作为x的值,进而得到y的值,描点,连线即可.【解答】解:列表得:x﹣4﹣2﹣11 24y0.512﹣2﹣1﹣0.5描点,连线得:【点评】本题主要考查反比例函数图象;注意自变量的取值为不为0的任意实数,反比例函数的图象为双曲线.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.【考点】反比例函数图象的特点.【专题】证明题.【分析】利用反比例函数图象上任意一点关于y=±x轴对称点还在反比例函数y=图象上进行证明.【解答】证明:设P(a,b)为反比例函数图象y=上任意一点,则ab=k,点P关于直线y=x的对称点为(b,a),由于b•a=ab=k,所以点(b,a)在反比例函数y=的图象上,即反比例函数图象y=关于y=x轴对称;点P关于直线y=﹣x的对称点为(﹣b,﹣a),由于﹣b•(﹣a)=ab=k,所以点(﹣b,﹣a)在反比例函数y=的图象上,即反比例函数图象y=关于y=﹣x 轴对称,即任意一个反比例函数图象y=关于y=±x轴对称.【点评】本题考查了反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=﹣x;②一、三象限的角平分线y=x;对称中心是坐标原点.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.【考点】反比例函数的性质.【分析】(1)过点B作BM⊥OA于点M,由等边三角形的性质结合点A的坐标找出点B的坐标,再利用中点坐标公式即可求出点D的坐标,最后利用待定系数法即可得出结论;(2)设过点B的反比例函数的解析式为y=,由点B的坐标利用待定系数法求出n的值,根据反比例函数的性质即可得出m的取值范围.【解答】解:(1)过点B作BM⊥OA于点M,如图所示.∵点A(4,0),∴OA=4,又∵△ABO为等边三角形,∴OM=OA=2,BM=OA=6.∴点B的坐标为(2,6).∵点D为线段AB的中点,∴点D的坐标为(,)=(3,3).∵点D为函数y=(x>0,k为常数)的图象上一点,∴有3=,解得:k=9.(2)设过点B的反比例函数的解析式为y=,∵点B的坐标为(2,6),∴有6=,解得:n=12.若要第一象限的双曲线y=与△BDE没有交点,只需m<k或m>n即可,∴m<9或m>12.答:若第一象限的双曲线y=与△BDE没有交点,m的取值范围为m<9或m>12.【点评】本题考查了反比例函数的性质、中点坐标公式、等边三角形的性质以及待定系数法求反比例函数的解析式,解题的关键是:(1)求出点D的坐标;(2)求出过点B的反比例函数的系数.本题属于基础题,难度不大,解决该题型题目时,利用等边三角形的性质结合中点坐标公式求出反比例函数图象上一点的坐标,再利用待定系数法求出反比例函数的系数即可.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.【考点】反比例函数系数k的几何意义.【分析】(1)AB交y轴于C,由于AB∥x轴,根据题意知道两个函数图象关于y轴对称,则点A、B关于y轴对称,由此求得可以得到a=﹣b,则易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;(2)根据函数图象上点的坐标特征得A、B坐标分别为:(a,),(b,﹣),根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的两腰相等的性质易得a2+()2=b2+(﹣)2,即(a2﹣b2)(1﹣)=0.由此可以求得ab的值.【解答】解:(1)如图1,设A(a,),B(b,﹣),当AB∥x轴时,=﹣,∴a=﹣b,∴S=×(a﹣b)×=×2a×=2;△OAB(2)如图2,设A(a,),B(b,﹣),∵△OAB是以AB为底边的等腰三角形,OA=OB,由OA2=a2+()2,OB2=b2+(﹣)2,∴a2+()2=b2+(﹣)2,整理得:( a2﹣b2)(1﹣)=0.∵AB与x轴不平行,∴|a|≠|b|,∴1﹣=0,∴ab=±2.∵a>0,b<0,∴ab<0.∴ab=﹣2.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、图形与坐标的性质,三角形的面积公式.注意:根据两个反比例函数的解析式可以得到这两个函数图象关于y轴对称,可以省去不少的计算过程.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式.【考点】确定反比例函数表达式.【分析】(1)由点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y轴的平行线交反比例函数的图象于点D,CD=,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=.【点评】此题考查了待定系数法求反比例函数的解析式以及平移的性质.注意准确表示出点D的坐标是关键.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【考点】反比例函数在实际问题中的应用.【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.人教版数学九年级下册第27章测试题一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=2.已知,那么的值是()A.3 B.4 C.5 D.63.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形C.两个五边形D.两个正方形4.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是()A.4:9 B.2:3 C.16:81 D.9:45.如图,四边形ABCD是平行四边形,E是BC的延长线上一点,AE与CD相交于F,与△CEF相似的三角形有()个.A.1 B.2 C.3 D.46.如图,D为△ABC边BC上一点,要使△ABD∽△CBA,应该具备下列条件中的()A.=B.=C.=D.=7.如图,在△ABC中,若DE∥BC,,DE=3cm,则BC的长为()A.3cm B.6cm C.9cm D.12cm8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.9.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD放大为原来的2倍后得到线段AB,则端点B的坐标为()A.(6,6)B.(6,8)C.(8,6)D.(8,2)10.关于对位似图形的表述,下列命题正确的有()①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.A.①②③④B.②③④C.②③D.②④11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.二、填空题12.如图,△OAC和△BAD都是等腰直角三角形,反比例函数在第四象限经过点B,若OA2﹣AB2=8,则k的值为.13.已知线段AB=1,C是线段AB的黄金分割点,且AC<CB,则AC的长度为.14.)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=.15.一块矩形绸布的宽AB=a m,长AD=1m,按照图中所示的方式将它裁成相同的n面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是.16.如图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是m.三、解答题17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)证明:△ACD∽△CBD;(2)已知AD=2,BD=4,求CD的长.18.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y= .(含x 的代数式),当x=时,y最大,最大面积是.19.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8,点P是AB上一个动点.(1)当AP=3时,△DAP与△CBP相似吗?请说明理由.(2)求PD+PC的最小值.20.如图,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.(1)证明:BE2=AE•DE;(2)若=1,=;并说明理由.答案解析一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A .=B .=C .=D .=【考点】比例的性质.【分析】熟练掌握比例的性质是解题的关键.【解答】解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选C.【点评】解答此题应把每一个选项乘以最简公分母后与原式相比较看是否相同.2.已知,那么的值是()A.3 B.4 C.5 D.6【考点】比例的性质.【分析】根据和比性质:=⇒=,可得答案.【解答】解:由=2,得==3.故选:A.【点评】本题考查了比例的性质,利用和比性质是解题关键.3.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形。

人教新版九年级数学下册《反比例函数》单元测试及答案

人教新版九年级数学下册《反比例函数》单元测试及答案

人教版 九下第二十六章《反比例函数》单元测试及答案【2】一、选择题(本题共10小题,每小题3分,共30分.每小题给出的4 个选项中只有一个是符合题目要求的。

)1、下列函数中,反比例函数是( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定 5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0) 6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数k y x =(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点。

若AOB S ∆=5,则k 的值为( ) (A )10 (B )10-(C )5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y y x x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( ) (A )k 1>k 2>k 3 (B )k 3>k 1>k 2 (C )k 2>k 3>k 1 (D )k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、填空题(本大题共6小题,每小题3分,共18分.请把下列各题的正确答实填写在横线上) 11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数y=25x -+13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若120x x <<时,210y y >>,则k 的取值范围是 .14、已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数1、一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

x 是自变量。

其中,a 是二次项系数;b 一次项系数;c 是常数项。

2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2。

3、二次函数的图象:c b a c bx ax y ,,(2++=是常数,)0≠a ,的图像是抛物线。

抛物线与它的对称轴的交点叫抛物线的顶点。

顶点是抛物线的最高点或最低点。

4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线c bx ax y ++=2的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。

(2)公式:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=。

5、二次函数的图象的特点:(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴;(2)抛物线()k h x a y +-=2的顶点是(h,k),对称轴是x=h ; (3)抛物线c bx ax y ++=2的顶点是(a b ac a b 4422--,),对称轴是ab x 2-=;①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点。

|a |越大,开口越小。

|a |越小,开口越大。

(4)几种特殊的二次函数的图像特征如下表:二、二次函数与二元一次方程的关系第二十七章 相似三角形一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。

(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。

2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比:相似多边形的对应边的比叫相似比。

相似比为1时,相似的两个图形全等。

二、相似三角形1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(①三边对应成比例②两个三角形的两个角对应相等;③两边对应成比例,且夹角相等;④相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

)3.相似三角形应用视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。

4.相似三角形的周长与面积:①相似三角形周长的比等于相似比。

②相似多边形周长的比等于相似比。

③相似三角形面积的比等于相似比的平方。

④相似多边形面积的比等于相似比的平方。

三、位似1.位似图形:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2.性质:在平面直角体系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形的对应点的坐标的比等于k或-k。

注意1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5.位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

位似多边形的对应边平行或共线。

位似可以将一个图形放大或缩小。

位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

6.根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

一、锐角三角函数1.正弦:在Rt△ABC中,锐角∠A的对边a与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边=a/c;2.余弦:在Rt△ABC中,锐角∠A的邻边b与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边=b/c;3.正切:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边=a/b。

①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。

4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边=b/a;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①sinA = cos(90°−∠A)等等。

6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

0≤sinα≤1,0≤cosα≤1。

同角的三角函数间的关系:tanα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=1二、解直角三角形1.解直角三角形: 在直角三角形中,由已知元素求未知元素的过程。

2.在解直角三角形的过程中用到的关系:(在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,)(1)三边之间的关系:a2+b2=c2;(勾股定理)(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinA =a/c;(a= c sinA)cosA =b/c;(b= c cosA)tanA=a/b。

sinA= cosB cosA =sinB sinA= cos(90°-A)sin2α+cos2α=1一、投影1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

2.平行投影:由平行光线形成的投影是平行投影。

(光源特别远) 3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影4.正投影:投影线垂直于投影面产生的投影叫做正投影。

物体正投影的形状、大小与它相对于投影面的位置有关。

5.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。

当物体的某个面顶斜于投影面时,这个面的正投影变小。

当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。

二、三视图1.三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。

三视图就是主视图、俯视图、左视图的总称。

另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

2.主视图:在正面内得到的由前向后观察物体的视图。

3.俯视图:在水平面内得到的由上向下观察物体的视图。

4.左视图:在侧面内得到的由左向右观察物体的视图。

5.三个视图的位置关系:①主视图在上、俯视图在下、左视图在右;②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。

③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。

6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。

二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x2的顶点坐标是,对称轴是 .2.函数y=(x-2)2+1开口,顶点坐标为,当时,y随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是 .4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 .5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________.8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到.9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 .二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )A.x=3B.x=-3C. 12x =-D. 12x = 12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( )A.第一象限B.第二象限C.第三象限D.第四象限13.若抛物线y=0.5x 2+3x+m 与x 轴没有交点,则m 的取值范围是( )A.m ≤4.5B.m ≥4.5C.m>4.5D.以上都不对14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )(第14题)A.a<0,b>0B.b 2-4ac<0C.a -b+c<0D.a -b+c>015.函数是二次函数m x m y m +-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) A.53m B.3m C.10m D.12m 17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5B.4或-4C.4D.-418.二次函数y=ax 2+bx+c 的图象如图所示,则此函数解析式为( )A.y=-x 2+2x+3B.y=x 2-2x -3C.y=-x 2-2x+3D.y= -x 2-2x -319.函数y=ax 2+bx+c 和y=ax+b 在同一坐标系中大致图象是( )20.若把抛物线y=x 2+bx+c 向左平移2个单位,再向上平移3个单位,得到抛物线y=x 2,则( )A.b=-2,c=3B.b=2,c=-3C.b=-4,c=1D.b=4,c=7三、计算题(共38分)(第18题)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。

相关文档
最新文档