基于暗通道先验的单幅图像去雾改进算法

合集下载

基于暗通道原理的图像去雾算法改进

基于暗通道原理的图像去雾算法改进

电子技术与软件工程Electronic Technology&Software Engineering计算机与多媒体技术Computer And Multimedia Technology基于暗通道原理的图像去雾算法改进倪金卉(吉林建筑科技学院吉林省长春市130114)摘要:本文基于暗通原理改进的去雾算法针对透射率细化过程比较耗时的问题,通过结合Retinex算法进行改进;针对暗通道去雾类似区域出现颜色失真、色偏效应,采用分割出天空区域在求取大气参数A,提高求取大气参数A的精度,并结合阈值法对透射率加个增幅项;针对暗通道去雾处理后的图像有偏暗的现象,采用自适应对数映射算法进行色调调整.该改进算法能较好的还原出无雾图像,并具有很好的保留边缘细节信息等特性.关键词:图像去雾;暗通道去雾;透射率;还原图像雾是十分普遍的大气现象,釆集图像时目标图像和雾被一起釆集,这种图像比无雾图像看起来朦胧模糊且伴有颜色偏灰白、对比度下降现象。

何恺名博士通过大量户外自然图像釆集实验得出,在户外自然无雾图像中,除去天空区域外,绝大多数的图像数据块中都有一些在某个色彩通道上亮度值很小的像素,并提出了暗通道先验原理模型,通过暗通道先验假设直接恢复岀无雾的图像。

但在实际应用中,利用软抠图算法来细化粗糙的透射率,会导致算法的复杂度很高。

经过大量实验对比分析,本文题提出一种基于暗通道先验原理的改进算法。

户外釆集的图像,天空区域一般在图像的中上部,利用这种特点对是否存在天空进行判断和分割。

从而避免高亮物体对大气参数求取过程的影响并提高了求取大气参数的精度。

结合Retinex算法、利用快速双边滤波器对透射率滤波从而消除Halo现象和色彩失真。

针对像素点的值接近大气光值时,对透射率加上增幅项来消除出现的色斑色块效应。

1暗通道先验原理去霧算法1.1大气散射模型在近些年计算机视觉领域,有一种得到广泛应用的雾天图像成像物理模型为:I(x)=/(/(x)+/1(1-r(x))(1)其中,I(x)为获取的有雾降质图像:J(x)为无雾的场景真实图像:A为大气参数;t(x)为透射率。

基于暗通道先验的图像去雾算法改进研究

基于暗通道先验的图像去雾算法改进研究

基于暗通道先验的图像去雾算法改进研究摘要:暗通道先验去雾算法求得的的透射率比较精细,去雾效果优于大多数去雾算法。

然而在暗通道求取过程中,最小值滤波的处理会使得暗色向外扩张,导致透射率扩张变大,使得去雾后的图像在边缘部分产生“光晕”现象。

为了减弱光晕效应,利用形态学理论对粗略透射率进行腐蚀处理,腐蚀掉扩张变大的透射率,然后使用容差机制修复不符合暗原色先验的明亮区域透射率,再使用引导滤波精细化透射率,最后利用去雾模型复原图像。

实验表明,改进后的算法去雾效果更佳、去雾速度更快,具有更强的鲁棒性。

关键词:暗通道先验去雾;腐蚀;引导滤波DOIDOI:10.11907/rjdk.161089中图分类号:TP312文献标识码:A 文章编号:1672-7800(2016)005-0030-040 引言雾霾天气不仅影响人们的出行,也给视频监控、自动驾驶等涉及室外图像应用的领域带来了很大挑战,并引起了相关研究人员的重视,如今已出现了不少研究成果。

图像去雾的研究方法可分为两大类,基于图像增强的方法和基于物理模型的方法。

早期图像去雾研究主要利用图像处理的知识来去雾,Kim[1]提出对雾图进行局部直方图均衡处理的方法,这种方法根据每个像素的邻域对像素进行处理,可以突出图像的特征,但运算量较大,算法复杂度较高。

Land[2-3]基于色彩恒常性提出了Retinex即视网膜皮层理论,其后出现了一些基于Retinex的图像增强算法[4-6],与其它图像增强算法相比,基于Retinex的图像增强算法处理的图像,局部对比度相对较高,色彩失真较小。

基于图像增强的去雾方法可以利用成熟的图像处理算法来增强图像的对比度,突出图像中的特征信息,但这种方法会造成图像部分信息损失,导致图像失真。

图像去雾的另一类是基于物理模型的方法,该方法研究大气悬浮颗粒对光的散射作用,通过大气散射模型来复原图像,恢复的图像效果更真实,图像信息能得到较好保存。

Narasimhan等[7]提出了雾霾天气条件下的单色大气散射模型,后来基于物理模型的方法几乎均建立在此模型之上。

基于暗通道先验的图像去雾优化算法

基于暗通道先验的图像去雾优化算法
Optim ized dehazing m ethod based on dark channel prior
W ANG Xin ,SUN Ying ying,M ENG Jian
(Changchun University of Technology ,School of Computer Science and Engineering,
王 昕 春 130012)
摘 要 :暗通 道 先 验 算 法 虽 然 在 单 幅 图像 去 雾 方 面取 得 了 一 定 的 效 果 ,但 是 该 算 法 运 行 时 间 较 长 ,另 外 对 环 境 光 的 计 算 不 太 准 确 ,不 适 用 于 天 空 区 域 ,会 导 致 复 原 图 像 色 彩 失 真 、亮 度 偏 暗 。针 对 这 些 缺 陷 ,本 文 提 出 一 种 改 进 的 w hite Patch Retinex算 法 ,对 原 有 图像 去 雾 算 法 进 行优 化 。 首 先 ,通 过 改 进 的 white Patch Retinex算 法 计 算 出环 境 光 。其 次 通 过 暗 通 道 先 验 算 法 获 得 透 射 率 。最 后 根 据 得 到 的环 境 光 和 透射 率 ,求 解 大 气 散 射 模 型 ,从 而 得 到 去 雾 后 的 图像 。实 验 结 果 表 明 ,该 算 法 不 仅 运 行 时 间 较 短 ,对 分 辨 率 为 600×800的 图 像 处 理 时 间 平 均 为 5 S左 右 ,且 能 解 决 天 空 区域 失 真 问题 ,去 雾 后 的 图 像 具 有 较 高 的 亮 度 和 对 比度 。 关 键 词 :去 雾 ;暗通 道 先 验 ;改 进 的 W hite Patch Retinex算 法 ;引 导 滤 波 中 图 分 类 号 :TP317.4 文 献 标 识 码 :A doi:10.3788/YJYX¥20163105.0506

基于暗原色先验图像去雾算法的研究与改进

基于暗原色先验图像去雾算法的研究与改进

基于暗原色先验图像去雾算法的研究与改进作者:王亮万舟来源:《软件》2017年第09期摘要:暗原色先验算法在单幅图像去雾方面有较好的效果,但该算法对处理器要求较高,且耗时长,很难应用于对实时性要求较高的图像去雾。

针对这一问题,提出了一种基于暗通道先验的改进算法:首先用高斯滤波替代软抠图方法消除块状效应、平滑透射率,根据给定的雾浓度系数粗略恢复无雾图像;然后增大雾的浓度系数,结合峰值信噪比和暗原色先验算法对图像进行去雾处理,最终恢复无雾图像。

与典型的去雾算法相比,改进后的算法运算量显著减少,保证去雾效果的同时计算速度明显提高。

关键词:暗原色先验;图像去雾;高斯滤波;峰值信噪比0 引言目前,无人机广泛用于航拍、交通监测、空中侦察和测绘等方面。

其轻便、机动灵活、隐蔽性强的特点,使其具有很高的应用价值,越来越受到人们的重视。

然而无人机雾天执行任务时,由于大气中气溶胶对光线的吸收和散射作用,造成无人机拍摄图像质量下降。

图像的退化和模糊使得图像中基本信息特征失真受损,导致目标识别不清。

因此,对无人机图像进行去雾技术研究意义重大。

雾天下由于从目标物体反射的光线与大气粒子的相互作用,发生折射、散射、吸收融合等光学现象,造成能量大幅衰减,感光装置接收到的光线强度发生变化,从而引起图像灰度值分布过于集中、像素间的对比度降低等。

目前无人机去雾算法主要分为两类:基于图像处理的图像增强,通过对雾化图像锐化处理提高对比度,凸显图像中的细节信息,但会造成一定的细节丢失,并不能真正地实现去雾。

该类方法主要包括gamma校正、直方图均衡、小波变换、对比度拉伸等;第二,基于物理模型的图像复原,通过对整个过程清晰的了解构建物理模型,反演退化过程,获得清晰无雾的图像。

该类方法主要包括基于偏微分方程、基于深度关系、基于先验信息等。

如基于暗通道先验的图像去雾算法,虽然能获得较好的清晰度和对比度,但该基于先验信息的方法依然存在计算复杂,明亮区域透射率估算不准确,色彩过于饱和等问题。

基于暗通道先验的图像去雾算法改进

基于暗通道先验的图像去雾算法改进

基于暗通道先验的图像去雾算法改进王凯;王延杰;樊博【摘要】To develop an algorithm for haze removal based on the physics model,this paper proposes an improved and fast method for single image haze removal using dark channel prior.First,we intro-duce the degraded model for describing the formation of a haze image and several algorithms based on this model.Second,we introduce the method of He’s single image haze removal using dark channel prior.The image quality of He’s method is satisfactory,but it is a time consuming method because of refining the transmission map with guide filter.We propose an optimized method based on estimating transmission by scene depth directly and the runtime of the new algorithm decreases a lot.Finally,we realize the algorithm in MATLAB and compare the runtime with the original algorithm.Results dem-onstrates that the new method provides a reliable transmission estimation and a better image quality with around 40% computation time of He’s method,and the results of haze images with sky are less halos.The optimized method execute fast and the results demonstrate the new method abilities to re-move the haze layer as well as provide a high quality transmission estimation as a byproduct of haze removal which can be used for other applications.%为了实现基于物理模型的图像复原去雾算法,文中提出了一种改进的基于暗通道先验的图像去雾算法。

关于暗通道先验图像去雾算法的改进.doc

关于暗通道先验图像去雾算法的改进.doc

关于暗通道先验图像去雾算法的改进
在社会经济高速发展的今天,人们生活水平得到不断的提高,对安全方面有了更高的需求,于是安全防护变得越来越重要,而监控是安防工作最强有力的措施,得到广泛应用。

然而在雨、雾等恶劣的天气条件下,尤其现今环境问题日益严峻,雾霾天气越来越频繁的出现,监控系统的可靠性受到巨大的挑战。

我们获得的图像会很容易会发生特征信息衰减甚至毁坏等情况,导致图像无法准确提供我们所需要的信息,成为安全防护工作中巨大的隐患,因此进行图像去雾技术的相关研究工作具有非常重大的意义。

本文详细的介绍了暗通道先验去雾算法,以及大气散射模型,透射率优化等相关知识。

并且针对暗通道先验方法对于灰白色景物、明亮的天空等一些特殊区域并不适用的缺点进行改进。

这些区域的共同特点是三个颜色通道的值都比较高,会使暗通道的值偏大影响去雾效果,于是我们采用一些有效方法将三个颜色通道的值分别降低使它们接近于零,经过这样的处理后获得三幅暗通道都非常小的图像,然后对它们进行去雾复原,最后加权求得所需要的清晰图像。

实验结果表明,该方法对带灰白色景物或天空等背景的图像去雾效果优于已有方法,并能有效的减少当下流行的暗通道先验方法在此种情况下进行去雾所出现的噪声,使视觉效果得到提升。

基于暗通道先验图像去雾的方法改进

基于暗通道先验图像去雾的方法改进

基于暗通道先验图像去雾的方法改进
崔冰琪;解振东;李红
【期刊名称】《信息通信》
【年(卷),期】2013(000)006
【摘要】基于暗通道先验的规律在单幅图像处理中取得了很好的效果,但是在计算较高分辨率的图像时会消耗大量的内存,而且需要很长的计算时间。

针对这一问题,文章提出通过小波变换提取图像的低频信息和高频信息。

由于有雾图像的雾气信息主要集中在低频带区域,所以只需要对低频部分进行暗通道先验去雾,再和高频信息进行重构即可恢复无雾清晰图片。

这种方法大幅减少了去雾的计算量,同时也减少了内存的消耗,而去雾效果和暗通道先验去雾差别不大。

【总页数】2页(P60-61)
【作者】崔冰琪;解振东;李红
【作者单位】成都理工大学信息科学与技术学院,四川成都610059;成都理工大学信息科学与技术学院,四川成都610059;成都理工大学信息科学与技术学院,四川成都610059
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.一种改进的基于暗通道先验的图像去雾算法 [J], 包斌;李亚岗
2.基于暗通道先验的图像去雾改进 [J], 冯昕晨;穆平安
3.基于改进暗通道先验算法的图像去雾 [J], 邱清辉
4.基于改进暗通道先验的图像去雾算法 [J], 辛娇娇; 陈本豪; 郭元术; 张红丽; 高洁
5.基于暗通道先验理论的图像去雾算法改进 [J], 车雯雯;李竹林;徐雪丽
因版权原因,仅展示原文概要,查看原文内容请购买。

基于暗通道先验的图像清晰化去雾算法研究

基于暗通道先验的图像清晰化去雾算法研究

基于暗通道先验的图像清晰化去雾算法研究基于暗通道先验的图像清晰化去雾算法研究摘要:随着计算机视觉领域的发展,图像去雾技术在许多应用中得到了广泛的应用,例如无人机拍摄、视频监控等。

而暗通道先验是一种经典的图像去雾方法,它基于图像中存在的低亮度区域。

本文针对基于暗通道先验的图像清晰化去雾算法进行了深入研究,通过实验验证了该方法的有效性。

1. 引言图像去雾是一种重要的图像增强技术,在许多应用中发挥着关键作用。

然而,由于大气散射的影响,图像可能会出现模糊、低对比度的现象。

因此,图像去雾算法的研究成为了计算机视觉领域的热点问题之一。

2. 暗通道先验原理暗通道先验是一种基于全局的图像先验知识。

它认为,在大部分的自然图像中,至少有一个通道的像素值在某些区域非常接近于零。

这一观察启发了基于暗通道先验的图像去雾算法。

3. 基于暗通道先验的图像去雾算法基于暗通道先验的图像去雾算法主要包括以下几个步骤:(1)估计全球大气光照:通过计算每个像素点在RGB三个通道上的最大值来估计全球大气光照。

(2)计算暗通道:对输入图像进行滤波操作,得到每个像素点的暗通道。

(3)估计透射率:通过计算每个像素点的暗通道除以全球大气光照,得到透射率。

(4)恢复原始图像:根据透射率和全球大气光照,对输入图像进行去雾处理,恢复清晰的图像。

4. 实验结果与分析本文通过实验对比了基于暗通道先验的图像去雾算法和其他经典的图像去雾算法。

实验结果表明,基于暗通道先验的图像去雾算法在提高图像清晰度和对比度方面具有较好的效果。

5. 算法优化尽管基于暗通道先验的图像去雾算法具有较好的效果,但仍然存在一些问题。

例如,对于包含高光和投影阴影的图像,该算法可能会导致一些伪影。

因此,对算法进行进一步的优化是有必要的。

6. 结论本文针对基于暗通道先验的图像清晰化去雾算法进行了深入研究。

通过实验验证了该方法的有效性。

然而,该算法仍然存在一些不足之处,需要进一步改进。

未来,我们可以通过结合其他图像处理技术来改进和优化该算法,提高图像去雾效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于暗通道先验的单幅图像去雾改进算法
基于暗通道先验的单幅图像去雾改进算法
摘要:
近年来,随着计算机视觉和图像处理领域的快速发展,图像去雾成为了研究的热点之一。

在单幅图像去雾中,暗通道先验算法是一种非常有效的算法。

本文提出了一种基于暗通道先验的单幅图像去雾改进算法,通过对暗通道进行优化得到更好的去雾效果。

实验结果证明,该算法在去雾效果和图像细节保持方面都达到了较好的效果。

关键词:暗通道先验算法;单幅图像去雾;图像细节保持 1. 引言
在许多户外场景中,雾霾天气会导致图像质量下降,进而影响计算机视觉和图像处理的性能。

因此,图像去雾技术的研究对于提高图像质量和准确性具有重要意义。

在过去的几年中,许多基于单幅图像的去雾算法被提出,其中暗通道先验算法是一种广泛应用的方法。

2. 暗通道先验算法
暗通道先验算法是一种利用图像中存在的暗通道来估计场景中全球大气光照的方法。

暗通道可以理解为图像中最暗的区域,它存在于几乎所有户外图像中。

该算法基于以下观察结果:在大气无光散射模型中,透射率和全球大气光照成反比关系。

因此,通过估计图像中最暗区域的暗通道来获得全球大气光照估计,并进一步计算出场景的透射率。

最后,通过修复的透射率和原始图像重建无雾图像。

然而,传统的暗通道先验算法在一些情况下存在一定的局限性。

首先,传统算法往往难以处理场景中存在强光源的情况。

这是因为在强光照射下,暗通道不再是局部最暗的区域,导致估计的透射率不准确。

其次,传统算法对于具有复杂纹理和细节的图像在去雾后可能存在伪影和失真问题。

3. 改进算法
为了克服传统暗通道先验算法的局限性,本文提出了一种基于暗通道先验的单幅图像去雾改进算法。

改进算法分为以下几个步骤:
3.1 强光源处理
对于存在强光源的图像,传统算法往往难以准确估计透射率。

因此,我们在预处理阶段采用了一种强光源检测和过滤的方法。

首先,通过检测图像中较亮的区域来判断是否存在强光源。

然后,对于存在强光源的图像,我们利用图像分块和平滑操作来减弱其影响,使传统暗通道算法能够更好地适应这样的场景。

3.2 细节保持
为了解决图像去雾后可能出现的伪影和失真问题,本文提出了一种细节保持策略。

通过基于暗通道先验估计的透射率,我们构造了一个模糊核函数,并对原始图像进行卷积操作。

这样,我们在去雾的同时保持了图像的细节信息。

4. 实验结果与分析
为了评估改进算法的效果,我们在多个数据集上进行了实验。

与传统暗通道算法相比,改进算法在去雾效果和细节保持方面都取得了显著的改善。

通过量化评估和主观感知实验,我们证明了改进算法的优越性。

5. 结论
本文提出了一种基于暗通道先验的单幅图像去雾改进算法,通过处理强光源和采用细节保持策略,该算法在去雾效果和图像
细节保持方面取得了显著的改善。

未来的研究可以进一步优化算法的性能并扩展应用范围
本文提出了一种基于暗通道先验的单幅图像去雾改进算法。

该算法通过处理强光源和采用细节保持策略,有效地提高了去雾效果并保持了图像细节。

实验结果表明,与传统暗通道算法相比,改进算法在去雾效果和细节保持方面都取得了显著的改善。

未来的研究可以进一步优化算法的性能并扩展其在其他领域的应用范围。

改进算法具有潜力成为图像去雾领域的重要研究方向。

相关文档
最新文档