控制工程基础第六章系统性能指标与校正
合集下载
控制工程基础6章

H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
机械工程控制基础(第6章-系统的性能指标与校正)

3 校准仪器
使用校准仪器对系统 进行精确的校准。
校正过程
1
准备
确保校正过程中的所有设备和仪器都处于正常工作状态。
2
收集数据
通过测量系统输出和输入数据来获得基准值。
3
校准
根据收集到的数据,对系统进行必要的校准。
校正的重要性
1 提高系统性能
通过校正系统,可以 提高系统的准确性和 稳定性。
2 降低风险
3 节省成本
校正可以减少系统故 障和意外事故的风险。
通过校正,可以提高 系统效率,减少能源 和材料的浪费。
校正的挑战
1 复杂性
系统可能由许多复杂的组件和控制算法组成,使校正变得复杂。
2 不确定性
不确定的环境条件和参数变化可能会对校正结果产生影响。
3 时间和资源
校正过程需要投入大量时间和资源,特别是对于大型系统。
机械工程控制基础
欢迎来到机械工程控制基础的第6章:系统的性能指标与校正。让我们一起探 索系统性能的重要性以及如何校正它们来提高效率和可靠性。
系统的性能指标
1 高效性
2 准确性
确保系统可以高效地执行指定的任务。
确保系统输出与预期目标保持一致。
3 响应速度
系统对输入的快速响应能力。
4 稳定性
系统在各种工况下可靠地运行。
系统的校正
1 目标设定
确定校正所需的目标和标准。
2 数据收集
通过测量和观察收集系统的当前性能数 据。
3 误差分析
4 调整过程
分析数据并确定系统存在的误差和偏差。
制定和执行校正方法,对系统进行必要 的调整。
校正方法
Байду номын сангаас
1 调整参数
机械工程控制基础(第6章-系统的性能指标与校正)

6.3.3 相位滞后-超前校正
11:12 第19页
系统稳定,但稳态精度不满意,瞬态响 应不满意 增大低频增益,提高c
第六章 系统的性能分析与校正
6.3.1相位超前校正
为了既能提高系统的响应速度,又能保证系统的其他 性能不变坏,就需对系统进行相位超前校正,即:常用于 系统稳态特性已经满足,而暂态性能差(相角裕量过小, 超调量过大,调节时间过长)。
一般而言,当控制系统的开环增益增大到满足其静态 性能所要求的数值时,系统有可能不稳定,或者即使能稳 定,其动态性能一般也不会理想。在这种情况下,可在系 统的前向通路中增加超前校正装置,以实现在开环增益不 变的前题下,系统的动态性能亦能满足设计的要求。
11:12 第20页
第六章 系统的性能分析与校正
11:12 第7页
第六章 系统的性能分析与校正
在无超调的情况下,误差e(t)总是单调的, 因此,系统的综合性能指标可取为
I
e t dt
0
式中,误差 e t x or t x o t xi t x o t 因
E s
0
et st dt e
11:12 第29页
在未校正系统的对数幅频特性图上找到幅值等于−Lm点所对 应的频率,该频率即为校正后系统新的剪切频率ωc′,同 时也是所选超前网络的ωm.根据ωm,确定T和αT ;
(5)确定超前校正环节的转折频率
第六章 系统的性能分析与校正
例7.2 如图所示单位反馈控制系统,按如下给定指标进 行校正,单位斜坡输入时的稳态误差ess = 0.05,相位裕量 50,幅值裕量20lg K g 10dB
控制工程基础- 第6章 控制系统校正

arctan 1 2
tr
n 1 2
tp
n
1 2
ts
3
n
或4
n
% exp( ) 100%
1 2
控制工程基础
控制系统校正的基本概念
二阶系统的频域性能指标
c n 1 4 4 2 2
arctan
2
1 4 4 2 2
p n 1 2 2
1
Mp
2
1 2
b n 1 2 2 2 4 2 2 4
控制工程基础
控制系统校正的基本概念
(2) 滞后校正装置 校正装置输出信号在相位上落后于输入信号,即
校正装置具有负的相角特性,这种校正装置称为滞后 校正装置,对系统的校正称为滞后校正(积分校正)。 主要改善系统的静态性能。 (3) 滞后-超前校正装置
若校正装置在某一频率范围内具有负的相角特性, 而在另一频率范围内却具有正的相角特性,这种校正 装置称滞后-超前校正装置,对系统的校正称为滞后超前校正(积分-微分校正)。
2. 频域性能指标
(1) 开环频域指标
开环截止频率ωc (rad/s) ; 相角裕度γ;
幅值裕度Lg 。 (2) 闭环频域指标
谐振频率ωp ; 谐振峰值 Mp ;
频带宽度ωb。
控制工程基础
控制系统校正的基本概念
3. 各类性能指标之间的关系 各类性能指标是从不同的角度表示系统的性能,它们之间
存在必然的内在联系。对于二阶系统,时域指标和频域指标之 间能用准确的数学式子表示出来。它们可统一采用阻尼比ζ和 无阻尼自然振荡频率ωn来描述。 二阶系统的时域性能指标
经变换后接入系统,形成一条附加的、对干扰的影响进 行补偿的通道。
控制工程基础
控制工程基础控制系统的校正课件

加强自适应校正技术的 研究,提高系统在复杂 环境中的适应性和稳定
性。
推动控制工程与其他学 科的交叉融合,为控制 系统校正引入更多的创 新思路和技术手段。
THANKS
感谢您的观看
07
结论与展望
结论总结
控制系统校正的重要性
通过校正可以改善控制系统的性能,提高系统的稳定性和精度。
校正方法的应用
在实际工程中,应根据系统的具体要求和特点选择合适的校正方法 。
校正效果的评价
采用仿真和实验手段对校正后的系统进行评估,以验证校正方法的 有效性。
展望未来发展趋势
智能控制技术的发展
随着人工智能和机器学习技术的不断 进步,智能控制方法在控制系统校正
滞后校正应用
适用于具有较小滞后和高频噪声干扰的系统,如 电子放大器、测量仪器等。
超前-滞后校正
超前-滞后校正网络
01
将超前校正网络和滞后校正网络组合使用,实现系统全频段性
能优化。
超前-滞后校正特点
02
可以兼顾系统的稳定性和快速性,减小超调量和调节时间,提
高系统的动态性能和稳态精度。
超前-滞后校正应用
比例微分校正
比例微分校正可以改善系统的动态性能,提高系统的 快速性。同时,微分作用还可以减小系统调节时间, 使系统更快地达到稳态。
06
校正方法的选择与 实施
校正方法的选择原则
性能指标要求
根据系统性能指标要求,选择适合的校正方 法。
系统稳定性
考虑校正方法对系统稳定性的影响,选择能 够提高系统稳定性的校正方法。
性。
实例二:滞后校正的应用
滞后校正原理
通过增加相位滞后环节,降低系统高频段的增益,提高系统抗高 频干扰能力。
控制工程基础第六章系统的综合与校正

2. 顺馈校正
顺馈校正是一种开环校正方式,不改变闭环系统的特性,对系统的稳定性没有什么影响,通过顺馈校正,可以补偿原系统的误差。
)
1
(
+
Ts
s
K
)
(
s
X
i
)
(
0
s
X
)
(
s
G
r
1
+
-
+
+
E(s)
φm=(50-18)+5=38
(4)确定超前校正装置系数
(5)确定补偿幅值及m 、c
A
(
w
) dB
40
-
20
设计相位超前校正网络 由稳态误差求开环增益K 绘制待校系统的Bode图,求待校系统的相位裕量’
例 已知
系统的Bode图如图,系统稳定,幅值裕量为∞,幅值交界频率 =6.3rad/s,(计算值6.17 rad/s),相位裕度’=20o, (计算值18o)。
(3)应当增加的最大相位超前角m
6.3 并联校正 反馈校正 改变反馈所包围环节的动态结构和参数,消除所包围环节的参数波动对系统性能的影响。 包围积分环节 原来的积分环节变成了惯性环节
(2)包围惯性环节 仍为惯性环节,增益下降由K1降为 ,时间常数下降由T降为 (3)包围振荡环节 系统阻尼比增大,能有效地减弱小阻尼环节的不利影响。
第六章 系统的综合与校正 基本要求 1.了解系统时域性能指标、频域性能指标和综合性能指标的概念;了 解频域性能指标和时域性能指标的关系。 2.了解系统校正的基本概念,了解各种校正的特点。 3.了解相位超前校正装置、相位滞后校正装置和相位滞后—超前校正 装置的模型、频率特性及有关量的概念、求法及意义;了解各种校 正装置的频率特性设计方法。 4.了解反馈校正、顺馈校正的定义、基本形式、作用和特点。
机械控制基础6-系统的性能指标与校正

无源阻容网络
传 递函 数
其中
频 率特 性
前半段是相位滞后部分,具有使增益衰减的作用,所以允许在低频段提高增益,以改善系统的稳态性能; 后半段是相位超前部分,可以提高系统的相位裕量,加大幅值穿越频率,改善系统的动态性能。
-20dB/dec
*
6.2.3 相位滞后—超前校正
例 设单位反馈系统开环传递函数 ,单位恒速输入时的稳态误差ess=0.2 ;相位裕度 , 增益裕度 ,
相位超前校正
相位超前校正是在不改变稳态精度的前提下,通过补偿系统的相位滞后,提高系统的稳定裕度和快速性。
m
-20lg
*
6.2.1 相位超前校正
基 本 步 骤
根据稳态精度确定系统开环增益K ; 计算系统的希望相位裕度与实际相位裕度的差 ; 根据 计算欲补偿的相位裕度:m= +50∼100; 由m计算校正环节参数:
无源阻容网络
传 递函 数
其中
频 率特 性
校正装置串入到系统前向通道后,使整个系统的开环增益下降倍.为满足稳态精度的要求,可提高放大器的增益予以补偿。故可只讨论:
*
6.2.1 相位超前校正
校正装置在整个频率范围内都产生正相位,故称为相位超前校正:
相位超前校正装置频率特性
为转角频率1/T、1/( T)的几何中点.
计算 :
*
*
6.2 串联校正
构造校正环节 校正环节传递函数 复核校正后系统的相位裕度 校正后系统开环传递函数 作校正后系统开环频率特性Bode图.由图可知,系统相位裕度为41.60,幅值裕度为14.3dB,满足要求。
幅频特性 系统低频增益不变,高频增益减少,幅频特性高频段下移20lg ; 幅值穿越频率降低,相位裕度增加. 意味着系统的响应速度将降低,但稳定性增加,而稳态精度不变。
机械工程控制基础系统的性能指标与校正共38页文档

k4
0,
即G(s) k4s ,则可消除干扰N(s)对输出结果的影响。
k1k2
机械工程控制基础
第六章系统的性能指标与校正
小结: 本章讲述了系统的性能指标以及校正的几种
类型,重点讲解了串联校正的几种形式、原理、 频率特性及设计方法,略讲了PID校正、反馈校 正及顺馈校正的特点及案例。
作业: 6.3、6.4、6.8
反馈校正的信号是从高功率点转向低功率点,常采用无源校 正装置。当必须改造未校正系统某一部分特性方能满足性能 指标要求时,应采用反馈校正。
机械工程控制基础 3)顺馈校正: 有输入/扰动直接校正系统。
第六章系统的性能指标与校正
机械工程控制基础
第六章系统的性能指标与校正
6.3 串联校正
串联校正又分
•增益调整 •相位超前校正 •相位滞后校正 •相位滞后—超前校正
机械工程控制基础
第六章系统的性能指标与校正
(dB) 0
0° -90°
相位滞后环节的Bode图
机械工程控制基础
第六章系统的性能指标与校正
校正前后系统的开环Bode图对比:
校正前:
增益幅度=-8dB
相位裕度γ=-20°
系统不稳定
校正后: 增益幅度=11dB 相位裕度γ=40° 系统稳定
机械工程控制基础
机械工程控制基础
第六章系统的性能指标与校正
机械工程控制基础
第六章系统的性能指标与校正
第六章 系统的性能指标与校正
本章主要内容
6.1 系统的性能指标 6.2 系统的校正 6.3 串联校正 6.4 PID校正 6.5 反馈校正 6.6 顺馈校正
机械工程控制基础
第六章系统的性能指标与校正
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ωb 2
)2
4ξ
2
ω
2 n
2
ωb4
(4ξ 2
2)ω
2 n
ωb2
ω
4 n
0
f1( )
ωb2
(4ξ 2 2)
(4ξ 2 2)2 4 2
ω
2 n
ωb
(2ξ 2 1)
4ξ 4
4ξ 2 2 整理课件
ωn
G(s)
s2
ω
2 n
2 n s
ω
2 n
A(0) 1
bt p f1 ( ) n
xo(t)1et
xo(t)1e0.33t
单位阶跃响应
单位速度
比较: 系统带宽越大,响应速度越快.
整理课件
9
3.综合性能指标(误差准则)
综合性能指标:是系统性能的综合测度,即是
误差对某一函数的积分。当系统参数将取最优
值时,综合性能指标取极值,也就是说,欲使
系统某些指标最优,可通过使综合性能指标取
极小值获得 ➢误差积分性能指标
增益调整的优点:提高稳态精度。
ess
1 或1 1K K
增益调整的弱点:
引起系统趋于不稳定(相对整稳理课定件 性降低)
20
例
G(s) K K 1
T s1 T2c21
K↑→ ↑c → b↑→提高系统的快速性。
但由于K↑→↓(或 K g↓) →稳定性下降。
因为: 18。 0arctacn
如果,使剪切频率 c 附近及以后频率范围内的相位提前
闭环系统不稳定。
处理方法:
(1)简单减小K,K→K' ,曲线 由①→②,虽然系统稳定了,但稳 态误差增大,不允许;
(2)增加新的环节,使频率特性 由①→③,既消除了不稳,又保持 了K值不变,不增大稳态误差。
ess
1 或1 1K K
整理课件
17
下图中,系统①稳定,但相位裕度较小。减小K值无作 用,加入新环节,增大相位裕度,如系统②。
优点:
不仅过渡过程结束的快,而且过渡过程的变化也比较
平稳。
整理课件
14
6.2系统的校正
系统的性能指标是根据系统要完成的具体任务规定的。 如数控机床的性能指标包括:
死区,最大超调量、稳态误差和带宽
一般情况下,系统的性能指标往往是相互矛盾的 例如: 减小系统稳态误差会降低系统的相对稳定性(K值的取值)
6 系统的性能指标与校正
系统正常工作条件: (1)稳定 (2)按给定的性能指标工作 本章介绍内容:
系统性能指标
系统的校正
串联校正
反馈整理课校件 正
PID校正 1
系统的性能指标
时域性能指标 频域性能指标 综合性能指标
整理课件
2
瞬态性能指标
1.时域性能指标
稳态性能指标
1.6
1.4
Mp
1.2
1
0.8
稳态偏差ξss 稳态误差ess
整理课件
4
2.频域性能指标
A B ( )
A max
(1)相位裕度
A (0)
A ( b )
(2)增益(幅值)裕度 K g
稳定性储备
0 M r b
(3)复现频率 M 复现带宽0~ M
(4)谐振频率
r 及谐振峰值 M
=
r
Am a x
(5)截止频率 b及截止带宽(简称带宽)0~ b
0.6
0.4
0.2
td
0
tr tp
5 ts
10
15
整理课件
3
1. 瞬态性能指标
1)上升时间 t r
2)峰值时间 t p
3)最大超调量 M p
4)调整时间 t s
5)振荡次数 N
6)延迟时间 t d
度量前提:
二阶振荡系统 单位阶跃信号输入
2.稳态性能指标 准确性
稳态性能指标 t→∞,xo ()
是指过渡过程结束后,实际 的输出量与希望的输出量之 间的偏差,称稳态误差ess.
稳态误差↑ K ↑
相对稳定性↑ K ↓
整理课件
15
在这种情况下,究竟需要满足哪个性能指标呢? 解决办法: ➢主要是考虑哪个性能要求是主要的,那么就要加以满 足。 ➢采用折中的方案,通过增加系统环节加以校正,使两 方面的性能指标都能得到适当满足。
整理课件
16
一、校正的概念
例:曲线①围绕(-1,j0)
n 1 2
f1 ( ) 1 2
f ( )
7
其它关系:
Me (M rM r21)/M (rM r21) p
r
3
ts
122
bts 3 (122)24244
arctan 2 142 22
整理课件
r b
8
例1: G 1(s)s1 1 G 1(s)3s11
b T ?
见P.176
系统一: ωb=ωT=1s-1 系统二: ωb=ωT=0.33s-1
整理课件
18
二、校正的分类
1.串联校正 校正环节 Gc(s) 串于前向通道的前端。
2.并联校正 (1)反馈校正
(2)顺馈校正
Xi(s) +-
G1(s)
+ - G2(s)Xo(s)
Gc(s) +
+
Gc(s)
+Xi(s)
G(s) Xo(s)
整理课件
19
6.3串联校正
Gc(s)的性质可分为 :
▲增益调整K: ▲相位超前校正; ▲相位滞后校正: ▲相位滞后-超前校正
(负得更少), 18。 0arctacn
则既可以提高增益又能保证稳定。
相位超前校正的作用:既提高系统
的响应速度,又保证其它特性(特别
➢误差平方积分性能指标
➢广义误差平方积分指标
整理课件
10
1).误差积分性能指标
设输出无超调(当 xi (t) = u(t) )
定义:(指标)
仅适用于无超调系统
I 0 e(t)dt
E1(s)=L[e(t)]=
e(t)estdt
0
lim
s
0
E1(s)=
lim
s
0
e(t)estdt
0
=
0
e(t)dt
A(0) A(b) 3dB
或 A( ) b 整理课件 1 0.707
5
A(0)
2
频域与时域性能指标间的关系
整理课件
6
证明: btp f ()
π
π
t p ωd
ωn
1ξ2
A(ωb )
1 A(0) 2
A( ω)
ω
2 n
(ωn 2
ω2
)2
4ξ
2
ω
2 n
ω
2
A(ωb )
ω
2 n
1
(ω
2 n
=I
整理课件
11
例2
xi (t) = u(t)
E (s)X i(s) E (s)G (s)
GB(s)
K Ks
1 s 1
K
bT K
K
b
T
K越大,响应愈快,误差愈小,
整理但课件是稳定性较差。
122).误差平方积分性能源自标适用条件:过渡过程有振荡
I=
0
e2(t)dt
特点:重视大的误差, 忽略小的误差。
上限可取为足够大的 T (T>> t s )。
最优系统:使误差平方积分取极小的系统。
特点:迅速消除大的误差。但易使系统产生振荡。
整理课件
13
3).广义误差平方积分指标
I[e2(t)ae2(t)d ] t a给定的加权系数。 0
最优系统就是使此性能指标I取极小的系统。 特点:
即不允许大的动态误差e(t)长期存在,又不允许大的 误差变化率e’(t)长期存在。