金属疲劳破坏机理及断口分析
第五章__材料的疲劳性能(1)分析

疲劳微裂纹形成的三种形式
表面滑移带开裂解释 1)在循环载荷作用下,即使循环应力未超过材料屈服强 度,也会在试样表面形成循环滑移带 2)循环滑移带集中于某些局部区域(高应力或簿弱区) 3)循环滑移带很难去除,即使去除,再次循环加载时, 还会在原处再现 (驻留滑移带)
特征: 1)驻留滑移带一般只在表面形成,深度较浅,随循环次数 的增加,会不断地加宽 2)驻留滑移带在表面加宽过程中,会出现挤出脊和侵入 沟,在这些地方引起应力集中,引发微裂纹
四:疲劳裂纹扩展速率
试验表明:测量疲劳裂纹长度和循环周数的关系如图
疲劳裂纹扩展曲线
Δσ2﹥Δσ1
从图可知: 1)曲线的斜率da/dN(疲劳裂纹扩展速率)在整个过程中 是不断增长的 2)当da/dN无限增大,裂纹将失稳扩展,试样断裂 3)应力增加,裂纹扩展加快,a-N曲线向左上方移动,ac相 应减小 结论:裂纹扩展速率da/dN 和应力水平及裂纹长度有关 根据断裂力学: 可定义应力强度因子幅为
特征 1)疲劳源区比较光滑(受反复挤压,摩擦次数多) 2)表面硬度因加工硬化有所提高 3)可以是一个,也可能有多个疲劳源(和应力状态及 过载程度有关)
疲劳裂纹扩展区
是疲劳裂纹亚临界扩展的区域
特征 1)断口较光滑,分布有贝纹线(或海滩花样),有时还有 裂纹扩展台阶 2)贝纹线是疲劳区的最典型特征,贝纹线是以疲劳源为圆 心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向 3)近疲劳源区贝纹线较密,远离疲劳源区贝纹线较疏
5.2 疲劳破坏机理
一:金属材料疲劳破坏机理
疲劳裂纹的萌生
1)在材料簿弱区或高应力区,通过不均匀滑移, 微裂纹形成及长大而完成 2)定义裂纹长度为0.05—0.10mm时为裂纹疲劳 核,对应的循环周期为裂纹萌生期
材料疲劳性能

一、 交变载荷及其描述
1、概念:交变载荷是指大小、方向或大小和
方向都随时间作周期性变化或非周期性变化的 一类载荷.
交变应 力是单位面
积上的平均 载荷.
1
一、 交变载荷及其描述
2
一、 交变载荷及其描述
3
一、 交变载荷及其描述
2、交变载荷的描述方法 (1)最大循环应力 σmax 最小循环应力 σmin (2)平均应力 σm=(σmax+σmin)/2 (3)应力半幅 σa=(σmax-σmin)/2 (4)应力循环比 r=σmin/σmax A对称循环: σm =0 ,r=-1 B不对称循环: σm ≠ 0 ,-1<r<1; σa >
两种定义: A.按循环次数 B.到破坏所需
的时间
(2)疲劳曲线(S-N曲线)
A.底循环疲劳区:高应力,明显塑变,应力 超出弹性极限,循环次数低于105
B.高循环疲劳区:低应力,无明显塑变,应力 未超出弹性极限, 循环次数高于105
C.无限寿命区(安全区):应力低于材料的 疲劳强度.
7
二、疲劳破坏的概念和特点
33
一、疲劳曲线 1、 疲劳曲线
在交变载荷下,金属所承受的最大交变应 力(σmax或S)与断裂循环周次(N)之间的关 系曲线称为疲劳曲线,如下图所示。
3.疲劳破坏的特点
疲劳破坏与静载或一次性冲击加载破坏比较具 有以下特点:
(1)该破坏是一种潜藏的突发性破坏
在静载下显示韧性或脆性破坏的材料,在疲劳 破坏前均不会发生明显的塑性变形,呈脆性断裂, 易引起安全事故和造成经济损失.
(2) 疲劳破坏属低应力循环延时断裂
对于疲劳寿命的预测就显得十分重要和必要
金属材料失效分析案例PPT

04
案例四:金属材料脆性断裂 失效
失效现象描述
金属材料在无明显塑性变形的情况下 突然断裂,断口平齐,呈脆性断裂特 征。
断裂发生时,材料内部存在大量微裂 纹和空洞。
断裂前材料未出现明显的塑性变形, 无明显屈服现象。
失效原因分析
材料内部存在缺陷,如微裂纹、夹杂物等,降低 了材料的韧性。
金属材料在加工过程中受到较大的应力集中,如 切割、打孔等操作,导致材料内部产生微裂纹。
失效机理探讨
电化学腐蚀
金属材料与腐蚀介质发生 电化学反应,导致表面氧 化或溶解。
应力腐蚀
金属材料在应力和腐蚀介 质的共同作用下发生脆性 断裂。
疲劳腐蚀
金属材料在交变应力和腐 蚀介质的共同作用下发生 疲劳断裂。
03
案例三:金属材料热疲劳失 效
失效现象描述
金属材料表面出现裂 纹
疲劳断裂,即在交变 应力的作用下发生的 断裂
02
疲劳断裂通常发生在应力集中的 部位,如缺口、裂纹或表面损伤 处。
失效原因分析
金属材料在循环应力作用下,微观结 构中产生微裂纹并逐渐扩展,最终导 致断裂。
应力集中、材料内部缺陷或表面损伤 等因素可加速疲劳裂纹的萌生和扩展 。
失效机理探讨
金属疲劳断裂是一个复杂的过程,涉及微观结构、应力分布、材料缺陷等多个因素。
应力腐蚀开裂
在腐蚀介质和应力的共同作用下,焊接接头 处发生应力腐蚀开裂,裂纹扩展导致断裂。
感谢您的观看
THANKS
金属材料在低温环境下工作,材料的韧性下降, 容易发生脆性断裂。
失效机理探讨
金属材料的脆性断裂通常是由 于材料内部存在缺陷或应力集 中导致的微裂纹扩展。
在低温环境下,金属材料的韧 性下降,容易发生脆性断裂。
疲劳破坏机理

疲劳破坏机理1、定义材料或构件受到多次重复变化的载荷作用后,即使最大的重复交变应力低于材料的屈服极限,经过一段时间的工作后,最后也会导致破坏,材料或结构的这种破坏就叫做疲劳破坏。
材料科学揭示,由于制造过程中存在不可避免的缺陷,材料中的微裂纹总是存在的,特别是在焊缝处。
这些微裂纹在交变应力作用下扩展和聚合,形成宏观裂纹,宏观裂纹的进一步扩展导致最后的破坏。
疲劳破坏的微观过程是个极其复杂的过程,在宏观上一般来说可分为三个阶段:裂纹的萌生、裂纹的稳定扩展及裂纹的失稳扩展问。
2、疲劳裂纹萌生机理金属材料如果含有缺陷,夹杂物,切口或者其它应力集中源,疲劳裂纹就可能起源于这些地方。
通常将疲劳裂纹的萌生过程称为疲劳裂纹成核。
如果金属材料没有上述各种应力集中源,则裂纹成核往往在构件表面。
因为构件表面应力水平一般比较高,且难免有加工痕迹影响;同时表面区域处于平面应力状态,有利于塑性滑移的进行。
构件在循环载荷作用下经过一定次数应力循环之后,先在部分晶粒的局部出现短而细的滑移线,并呈现相继错动的滑移台阶,又由于往复滑移在表面上形成缺口或突起而产生应力集中。
随着循环次数增加,在原滑移线时近又会出现新滑移线逐渐形成较宽的滑移带,进一步增加应力循环次数,滑移带尺寸及数量均明显增加,疲劳裂纹就在这此滑移量大的滑移中产生。
这些滑移带称为驻留滑移带,标志裂纹在表面形成。
在大量滑移带中,由于原滑移所引起在表面有挤出和侵入槽的出现。
从而在表面下留下相应的空洞成为裂纹源。
随着循环次数提高和应力集中的加剧,会使空洞扩连形成新的较大空洞。
3、疲劳裂纹扩展机理疲劳裂纹在表面处成核,是由最大剪应力控制的,这些微裂纹在最大剪应力方向上。
在单轴加载条件下,微裂纹与加载方向大致呈45 度方向。
在循环载荷的继续作用下,这些微裂纹进一步扩展或互相连接。
其中大多数微裂纹很快就停止扩展,只有少数几条微裂纹能达到几十微米的长度。
此后逐渐偏离原来的方向,形成一条主裂纹而趋向于转变到垂直于加载方向的平面(最大拉应力面)内扩展。
金属疲劳试验

KI KIC (KC )
Y a KIC (KC )
裂纹体受力时,只有满足上述条件就会发生脆性断裂。反之,即使存 在裂纹,也不会断裂。此称为破损安全。
条件: - 小尺度塑性变形 - 平面应变
高强度马氏体时效钢不同试样厚度的KC变化
2
a, B,
W
-a
2.5
实验三、金属疲劳试验
一、实验目的:
1.了解金属轴向疲劳测试方法、断裂韧性Kic 测试方法及裂纹扩展速率DA/DN测试方法 。
2.了解疲劳试验机工作原理
1988年4月28日阿罗哈航空波音737-200型客机243号班机在飞行途中发生 爆裂性失压的事故,约头等舱部位的上半部外壳完全破损,机头与机身随时 有分离解体的危险,但10多分钟后奇迹地安全迫降。事件当时,一名机组人 员不幸被吸出机舱外死亡,而其余65名机组人员和乘客则分别受到轻重伤。
并形成循环滑移带。随着加载循环次数的增加,循环滑移带不断地加宽,由 于位错的塞积和交割作用,会在滑移带处形成微裂纹。
循环滑移带生成和一个纯铜试样的裂纹 Sm=0,Sa=77.5MPa N=2×106
在裂纹的萌生期,疲劳是一种发生在材料表面的现象。
2.2 相界面开裂产生裂纹 在大量的疲劳失效分析中发现很
式中 KI 值的大小直接影响应力场的大小,KI 可以表示应力场的强弱程度故称为 应力场强度因子
当θ= 0 r→0 时 由上式可得:
KI
lim r 0
2r y 0
裂纹I型应力场强度系数的一般表达式:
KI Y a
Y——裂纹形状系数
-半无限边缘缺口试样 -有限宽度的中心开裂纹试样 -有限宽度的边缘缺口试样
事故原因是由裂缝氧化导致金属疲劳引起
金属断口机理及分析

名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形〔变形量大于解理断裂、小于延性断裂〕是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流把戏:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体构造。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口外表,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料外表、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理〔及准解理〕、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕切断:断面取向与最大切应力相一致,与最大应力成45º交角〔平面应力条件下的撕裂〕根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型〔正向滑开型〕、侧向滑开型〔撒开型〕裂纹尺寸与断裂强度的关系Kic:材料的断裂韧性,反映材料抗脆性断裂的物理常量〔不同于应力强度因子,与K准则相似〕:断裂应力〔剩余强度〕 a :裂纹深度〔长度〕Y:形状系数〔与试样几何形状、载荷条件、裂纹位置有关〕脆性材料K准则:KI是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量;KIC是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法〔脆断判别主裂纹〕,分差法〔脆断判别主裂纹〕,变形法〔韧断判别主裂纹〕,氧化法〔环境断裂判别主裂纹〕,贝纹线法〔适用于疲劳断裂判别主裂纹〕。
综述-铝合金疲劳及断口分析报告

文献综述(2011级)设计题目铝合金疲劳及断口分析学生姓名胡伟学号*********专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
4.疲劳与疲劳断裂解析

3 疲惫断口形貌及其特征
2
25
5 影响疲惫缘由及措施
4、装配与联接效应 装配与联接效应对构件的疲惫寿命有很大的影响。
正确的拧紧力矩可使其疲惫寿命提高5倍以上。简洁消失的问题是,认 为越大的拧紧力对提高联接的牢靠性越有利,使用实践和疲惫试验说明,这 种看法具有很大的片面性。
5.使用环境 环境因素〔低温、高温及腐蚀介质等〕的变化,使材料的疲惫强度显 著降低,往往引起零件过早的发生断裂失效。例如镍铬钢〔0.28%C,11.5 % Ni,0.73%Cr〕,淬火并回火状态下在海水中的条件下疲惫强度大约只是 在大气中的疲惫极限的20%。
2
14
1、疲惫裂纹源区 疲惫裂纹源区是疲惫裂纹萌生的策源地,是疲惫破坏的起点, 多处于机件的外表,源区的断口形貌多数状况下比较平坦、光 亮,且呈半圆形或半椭圆形。
由于裂纹在源区内的扩展速率缓慢,裂纹外表受反复挤压、摩 擦次数多,所以其断口较其他两个区更为平坦,比较光亮。在 整个断口上与其他两个区相比,疲惫裂纹源区所占的面积最小 。
相垂直。
大多数的工程金属构件的疲惫失效都是以此种形式进 展的。特殊是体心立方金属及其合金以这种形式破坏的所占 比例更大;上述力学条件在试件的内部裂纹处简洁得到满足 ,但当外表加工比较粗糙或具有较深的缺口、刀痕、蚀坑、 微裂纹等应力集中现象时,正断疲惫裂纹也易在外表产生。
高强度、低塑性的材料、大截面零件、小应力振幅、 低的加载频率及腐蚀、低温条件2均有利于正断疲惫裂纹的萌 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4、静拉伸和交变载荷下的滑移带 (a)静拉伸(σ> σ0.2) (b)交变应力( σ= σ-1,N=105次)
从图4可以看出,静拉伸试样表面上到处布满细密 的滑移带。交变载荷下,经过应力循环之后,只有 部分晶粒的局部地方出现细滑移带,表现为滑移的 不均匀性。这种滑移的不均匀性通常集中在金属表 面、金属的晶界及金属夹杂物等处,并在该处形成 疲劳裂纹核心。 图5低碳钢经过不同循环次数后形成的滑移带。
图12 疲劳第一阶 图13 滑移线的发 图14 平行二面上 段形成的细滑移 展 两列异号位错相 线 消形成空洞 用位错理论解释疲劳裂纹的形成: 第一阶段,在交变载荷作用下,金属表面上发现有均匀分布的细滑移线,如图 12所示。 第二阶段主要表现为滑移带交宽,以致形成“驻留滑移带”。如图13位错模型 来解释。 在交变应力作用下,当两条细滑移线上螺位错滑移时,便使滑移面上堆积的位错 相消,则在这些面上的位错源S1、S2、S3等将继续产生位错,滑移线便发展增 长,许多滑移线发展,就表现为滑移带的变宽和加深,以致形成“驻留滑移带”。
图16 疲劳塑性辉纹形成过 程示意图
图16(a)表示交变应力为零时, 裂纹闭合。 图16(b)表示裂纹受拉时裂纹张 开,裂纹尖端尖角处由于应力集中 而沿45°方向产生滑移。 图16(c)表示当拉应力达到最大 时,滑移区扩大,使裂纹尖端变成 了近似半圆形。裂纹尖端由锐变钝, 应力集中减小,最后滑移停止,裂 纹停止扩展。----“塑性钝化”。 图16(d)表示反号应力作用时, 滑移沿相反方向进行,原裂纹表面 和新产生的裂纹表面被压近,在裂 纹顶端处被弯折成一个耳状切口。 图16(e)表示当反号应力最大时, 裂纹表面被压合,裂纹尖端又由钝 变锐,形成一个尖角,裂纹前沿向 前扩展一个裂纹。下一次应力循环 又重复以上过程。
河流花样的走向可以判断裂纹源的位置和裂纹扩展 的方向,河流上游(即支流发源处)是裂纹发源处, 而河流的下游是裂纹扩展的方向。 解理断裂的另一断口学特征是存在“舌状花样”, 因为其形状确实象躺在解理面上的“舌头”而得名, 其断口形貌如图33、34所示。
片图 复 型铁 的 舌 状 花 样 相 配 观 察 照 34
图23 两种疲劳辉纹示意图 (a)塑性辉纹; (b)脆性辉纹
特别注意:宏观断口上看到的贝纹线和电子 显微镜看到的疲劳辉纹不是一回事。 贝纹线是因交变应力幅度变化和载荷停歇等 原因形成的宏观特征。 疲劳辉纹是一次交变应力循环裂纹尖端塑性 钝化形成的微观特征。 疲劳辉纹是用来判断疲劳断裂的重要微观依 据之一。
图31 三种应力状态下形成显 微空洞及断口韧窝形态示意图
2、脆性解理断裂的微观机制 脆性断裂以前没有明显宏观塑性变形,是一 种极危险的断裂。如高强度钢存在原始裂纹 产生的低应力脆断,结构钢在低温下的冷脆 断,交变应力的疲劳断裂等。 (1)断口的微观形貌 解理断裂是在拉伸应力作用下引起的一种脆 性穿晶断裂,通常总是沿着一定的结晶面分 离,这种晶面称为解理面。 解理面----一般都是低指数面,表面能低,理 论断裂强度最低。
三、疲劳裂纹的扩展
疲劳裂纹是咋样扩展的呢?裂纹扩展有什么特征呢? 在没有应力集中的情况下,疲劳裂纹扩展可以分为 两个阶段,如图15所示。
疲劳裂纹扩展的第Ⅰ阶段,通常是从金属 表面上的驻留滑移带、挤入沟或非金属夹杂物 等处开始,沿最大切应力(和主应力方向近似 成45°)的晶面向内扩展,由于各晶粒的位向 不同以及晶界的阻碍作用,随着裂纹向内扩展, 裂纹的方向逐渐转向和主应力垂直。这一阶段 的扩展速率很慢,每一应力循环大约只有10À 数量级,扩展的深度约有几个晶粒。在有应力 集中的情况下,则不出现第Ⅰ阶段,而直接进 入第Ⅱ阶段。
图29 影响韧窝形貌的各种因素
韧窝的形状主要取决于应力状态,或决定于 拉应力与断面的相对取向,如图30所示。
图(a)正应力垂直于微孔的平面, 使微孔在垂直于正应力的平面上 各方向长大的倾向相同,就形成 等轴韧窝。 图(b)在切应力作用下的断裂, 韧窝的形态是拉长的抛物线形状, 在对应的断面上抛物线方向相反。 图(c)由拉应力引起的撕裂,也 可以造成拉长的抛物线韧窝,其 抛物线的方向都指向裂纹的起源 处。
箭图 头 表 示 裂 纹铝 扩合 展金 方疲 向劳 辉 纹 , 19 7178
图18 疲劳裂纹不对称扩展
前部
中部
后部
图20 Q345桥梁钢在最大应力340Mp下,扩展区相貌
图21 脆性辉纹形成过程示意图
(2)脆性辉纹(解理辉纹) 图a表示裂纹不受力时的形状 图b表示在拉应力下疲劳尖端产 生解理断裂,裂纹向前扩展。 图c表示在切应力作用下沿点线 的方向在很窄的范围内产生切变, 不过塑性变形只在裂纹尖端局部 地区进行。 图d表示在最大拉应力下发生塑 性钝化,这种钝化使裂纹扩展停 止。 图e表示在最大压应力下裂纹闭 合。下一次应力循环,解理断裂 将在和解理面方位最适宜的裂纹 分叉处产生。
图25 裂纹在夹杂物边界上形成与长大的
图(d e)导致微孔扩大。图(f)位错 沿不同方向滑移到粒子边界。
图26 15钢裂纹在夹杂物界面形成、扩展至断裂的全过程 2000×透射 受力方向
综上所述:韧窝的形成是由于塑性变形使夹 杂物界面上首先形成裂纹,并不断扩大,最 后夹杂物之间的基体金属产生“内缩颈”, 当缩颈达到一定程度被撕裂或剪切断裂,使 空洞连接,从而形成了所看到的韧窝断口形 貌。如图27所示。
3800×
图33铁的舌状花样,箭头表示裂纹 扩展方向,复型4400×
2 解理台阶及河流花样形成原因 (1)解理裂纹与螺型位错交截形成台阶。
图35解理裂纹与螺型位错交截而形 成一个b高低的台阶
图36台阶形成过程的简化图
(2)河流花样 当裂纹扩展时,同号台阶汇合成较大的台阶, 而较大的台阶又汇合成更大的台阶,其结果 就形成河流花样。
图24 韧窝形貌 (a)撕裂韧窝(碳素钢760×);(b)铜 (复型2600×)
(2)韧窝形成过程 对韧窝内部进行仔细观察,在钢中多数情况 下能够看到非金属夹杂物存在,因此,便想 到韧窝形成与第二相粒子存在有关。 韧窝形成模型:如图25所示。
图(a)当塑性变形时,在夹杂物周围 塞积着位错环。 图(b)随着变形增大,位错会受到两 方面力的作用。最终两个力达到平衡, 使位错停止放出位错。 图(c)当外力足够大,或者是由于某 些粒子周围存在应力集中时,有可能将 位错推向基体与第二相粒子的界面, AB面分开形成空洞。
第三章 金属疲劳破坏机理及 断口分析
一、疲劳宏观断口
1、疲劳断口的特征 疲劳断口宏观来看由两个区域组成:疲劳 裂纹产生及扩展区和最后断裂区。
图1、疲劳断裂宏观断口 (a)旋转弯曲试样疲劳断口 (b)疲劳断口示意图
(1)疲劳裂纹产生及扩展区 由于材料的质量、加工缺陷或结构设计不当等原因, 在零件或试样的局部区域造成应力集中,这些区域 便是疲劳裂纹核心产生的策源地。 疲劳裂纹产生后,在交变应力作用下继续扩展长大。 常常留下一条条的同心弧线,叫做前沿线(疲劳 线),这些弧线形成了象“贝壳”一样的花样,也 称为贝纹区。断口表面因反复挤压、摩擦,有时光 亮得象细瓷断口一样。 (2)最后断裂区 疲劳裂纹不断扩展,使得零件或试样有效断面逐渐 减少,应力不断增加,当应力超过材料的断裂强度 时,则发生断裂,形成最后断裂区。 对于塑性材料,断口为纤维状,呈暗灰色。 对于脆性材料则是结晶状。
2、影响疲劳断口的因素
(1)试样或零件所受载荷类型。 (2)试样或零件所受应力的大小。 (3)应力集中因素。
图2、平板试样拉压疲劳断口形态示意图 (a)平板试样;(b)带缺口的平板试样
图3、各类疲劳断口形态的示意图
二、金属疲劳破坏机理
疲劳裂纹的产生 金属所受交变应力的最大值低于材料的屈服强度, 为什么会产生疲劳断裂呢?为了搞清楚金属疲劳断 裂的本质,通常是在消除外界应力集中的情况下, 研究金属疲劳的微观变化,从而提高疲劳抗力的途 径。
用透射、扫描电子显微镜观察每一个小平面,发现 小平面并不是一个单一的解理面,而是由一组平行 的解理面所组成。两个平行解理面之间相差一定高 度,交接处形成台阶。从垂直断面方向观察可见, 台阶汇合形成一种类似河流的花样,称为“河流花 样”。河流花样本身就是台阶存在的标志。
图32 河流花样 (a)扫描 ×1500;(b)复型透射
因此,疲劳裂纹的扩展是在裂纹尖端塑性钝 化(钝锐交替变化)过程中不断向前推进的。 在电子显微镜下看到疲劳断口的辉纹就是每 次交变应力下裂纹扩展留下的痕迹。 在一定条件下,可以根据疲劳辉纹之间的宽 度近似地估计疲劳纹
许多工业金属材料,由于内部存在晶界及非 金属夹杂物等障碍,疲劳裂纹尖端塑性变形 的对称性常常被破坏,所以就出现裂纹两侧 不对称的现象,如图18所示。 一般铝合金疲劳断口上的疲劳辉纹较明显, 而钢的则不明显甚至看不到疲劳辉纹。
图27 断口的相配观察
2000×扫描
图28 Q345桥梁钢最后断裂区形貌
(3)影响韧窝形貌的因素 韧窝的形成位置、形状、大小、深浅是很不 同的,它们受很多因素影响,大致归纳三个 方面:①成核粒子的大小及分布;②基体材 料的塑性能力,尤其是形变强化能力;③外 界因素,包括应力大小、应力状态‘温度和 形变速度,如图29所示。
四、最后断裂区形貌分析
1、韧性断裂的微观机制 (1)断口的微观形貌 韧性断裂有两种类型:纯剪切型断裂和微孔聚集型断裂 微孔聚集型断裂的断口特征在高倍电子显微镜下观察,可见 大量微坑覆盖断面,这些微坑称为韧窝。形貌如图24所示。 韧窝有抛物型的剪切韧窝、撕裂韧窝和等轴韧窝三种。抛物 型的剪切韧窝只有在高纯金属中才易出现。
图8、疲劳裂纹经过滑移集中区
产生疲劳裂纹核心的地方还有晶界,孪晶界 以及非金属夹杂物等处,如图9、10、11所 示。
图9 晶界处形成的疲劳裂纹核心(铁—钴—钒合金) (a)晶界处应力集中;(b)晶界处产生裂纹