金属断口机理及分析资料报告
金属材料的裂纹与断口分析资料

out
基本原则→用尽可能简单的仪器 得到满意的结果!
16
断口形貌观察工具的特性比较
out
17
第二节 裂纹分析
工艺裂纹
金属零件在各种加工过程中产生的裂 纹(如:铸造裂纹、焊接裂纹、白点、热处 理裂纹等), 往往是零件的断裂源。
金属零件在使用过程中产生的裂纹 ,如:应力腐蚀裂纹(包括氢脆裂纹) 、 疲劳裂纹和蠕变裂纹。
① 韧性断裂与断口特征
(屈服强度)
机 理
out
7
(微观)
out
(宏观)
8
② 脆性断裂与断口特征
(宏观)
out
Q:何种晶体结构材料易出现脆性断裂?
9
薄板表面
薄板侧面-断口
out
10
b. 按裂纹扩展路径分类
沿 晶
混 晶
穿 晶
out
11
c. 按裂纹机制分类
out
12
out
13
d.按受力状态不同分类
河海大学力学与材料学院硕士课程
金属材料失效分析
(Failure analysis of metallic materials)
第2 讲 裂纹与断口分析
out
第2讲 裂纹与断口分析
第一节 裂纹与断口 第二节 裂纹分析
第三节 断口分析
out
2
第一节 裂纹与断口
1.1 裂纹与断口的本质
裂纹(裂缝)
完整金属在应力作用下, 某些薄弱部位发生局部破裂而 形成的一种不稳定缺陷。 • 直接破坏材料的连续性 • 应力集中(多数裂纹尾端较尖锐) → 金属发生低应力下破坏
e. 按环境介质不同分类
out
14
f. 按服役条件分类
金属拉伸试样的断口分析

金属拉伸试样的断口分析金属拉伸试样是材料科学和工程领域中常用的实验方法之一,用于研究材料的力学性能和物理性质。
在拉伸过程中,试样会发生变形、裂纹和断裂等行为,而断口分析对于理解这些行为具有重要意义。
本文将从断口形态分析和特征分析两个方面,阐述金属拉伸试样断口的形态变化规律及其对材料性能的影响,同时探讨断口的预测与分析方法。
断口形态分析金属拉伸试样的断口形态通常可以分为韧性断裂和脆性断裂两种。
韧性断裂是指材料在拉伸过程中,首先发生均匀变形,随后在局部区域逐渐出现微裂纹,最终形成较大裂纹并导致断裂。
脆性断裂则是指在拉伸过程中,材料突然脆断,无明显的塑性变形和裂纹。
影响断口形态的因素包括拉伸率、应力和位错运动等。
在韧性断裂中,断口的形态通常为杯锥状断口,其形成与材料的韧性有关。
韧性好的材料在拉伸过程中能够承受较大的变形量,因此断口呈现出更为平整的形态。
脆性断裂的断口则通常为无杯锥状断口,呈现出较为尖锐的形态特征。
断口特征分析金属拉伸试样断口的特征可以通过观察和分析断口的形貌、结构和组成等方面来确定。
常见的断口特征包括尖角、波状、鱼脊等。
这些特征的形成与材料的力学性能和物理性质密切相关。
尖角断口通常出现在试样拉伸的起点处,主要是由于应力集中和局部变形导致的。
波状断口则通常出现在试样拉伸的中段,其形成与材料的韧性有关,往往是因微裂纹扩展和合并的结果。
鱼脊断口则出现在试样断裂的终点处,通常是因局部区域材料失稳和颈缩导致的。
断口预测与分析基于金属拉伸试样断口的形态、特征和原因,我们可以预测和分析材料的力学性能和物理性质。
例如,通过观察断口的形貌和组成,可以了解材料的断裂方式和机制,进而对其强度、韧性和耐腐蚀性等性能进行评估。
同时,通过对断口特征的分析,可以为材料的成分、结构和工艺等方面优化提供依据。
断口分析在金属拉伸试样中具有重要意义,通过对断口形态和特征的观察和分析,可以深入了解材料的力学性能和物理性质。
在实际应用中,断口分析可以为材料的研发、生产和应用提供重要参考依据,对于提高材料的综合性能和拓展其应用领域具有重要作用。
金属材料断口机理及分析

精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。
正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
金属的断裂条件及断口

金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。
断裂是裂纹发生和发展的过程。
1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。
韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。
脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。
韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。
韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。
2. 断裂的方式根据断裂面的取向可分为正断和切断。
正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。
切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。
3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。
穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。
晶间断裂:裂纹穿越晶粒本身,脆断。
机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。
断裂是机器零件最危险的失效形式。
按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。
脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。
宏观脆性断裂是一种危险的突然事故。
脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。
因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。
. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。
温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。
(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。
金属断裂断口分析

断裂特征及断口特征 金属材料断裂前产生明显 宏观塑性变形的断裂,是 一种缓慢撕裂的过程,在 裂纹扩展过程中不断地消 耗能量。韧性断裂的断裂 面一般平行于最大切应力 并与主应力呈 45 度角。用 肉眼或放大镜观察时,断 口呈纤维状,灰暗色。纤 维状是塑性变形过程中微 裂纹不断扩展和相互连接 造成的,而灰暗色则使纤 维断口表面对光反射能力 很柔弱致。
断口形貌
1
韧性断裂
2
脆性断裂
脆性断裂是突然发生的断 裂,断裂前基本上不发生 塑性变形,没有任何征兆, 因而危险性很大。脆性断 裂的断裂面一般与正应力 垂直,断口平齐而光亮, 常呈放射状或结晶状。
3
穿晶断裂
多晶体金属断裂时,裂纹 扩展的路径可能是不同 的。穿晶断裂的裂纹穿过 晶内。穿晶断裂可以是韧 性断裂(如韧脆转变温度 以上的穿晶断裂) ,也可以 是脆性断裂(低温下的穿 晶解理断裂)
4
沿晶断裂
沿晶断裂的裂纹沿晶界扩 展,大多数是脆性断裂, 由晶界上的一薄层连续或 不连续脆性第二相、杂质 物,破坏了晶界的连续性 所造成,也可能时杂质元 素向晶界偏聚引起的。 应力腐蚀、氢脆、回火脆 性、淬火脆性、磨削裂纹 等大都是沿晶断裂。
5
解理断裂
金属材料在一定的条件下 (如低温) ,当外加正应力 达到一定数值后,以极快 速率沿一定晶体学平面产 生的穿晶断裂,因与大理 石断裂类似,古城此种晶 体学平面为解理面。家里 面一般是低指数晶面或表 面能最低的晶面。 例如: 晶体结构为 bcc: Fe、 解理面为{001}hcp 的主 要解理面为{0001} 金属材料在切应力作用下 沿滑移面分离断裂,其中 又分滑断(纯剪切断裂) 和微孔聚集性断裂。纯金 属尤其是单晶体金属常产 生纯剪切断裂,其断口呈 锋利的楔形(单晶体金属) 或刀尖形(多晶体金属的 完全韧性断裂) 。这是纯粹 由滑移流变所造成的断 裂。微孔聚集性断裂是通 过微孔形核、长大聚合而 导致材料分离的。由于实 际材料中常同时形成微 孔,通过微孔长大互相连 接而最终导致断裂。
金属断口分析

延性断裂为金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。延性断裂分两种,一种是韧窝-微孔聚集型断裂;另一种是滑移分类断裂。一些高强度材料其裂缝扩展阻力较小,对裂纹十分敏感,较小的裂纹
即可使其产生宏观脆性的低应力断裂,其断口为韧窝状,断裂机制是微孔聚
集型。
第一节韧窝断口的宏观形貌特征
从宏观上看,断裂分为脆性断裂和延性断裂
脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。
此外,高强度马氏体钢纤维区还有环状花样特征。
第二节韧窝断口的微观形貌特征
韧窝断口的微观特征是一些大小不等的圆形或是椭圆形的凹坑(即韧窝)
在韧窝内经常看到夹杂物或是第二相粒子。
凹坑形状有等轴韧窝、剪切韧窝和撕裂韧窝三种,其形状与应力状态。
等轴韧窝是圆形微坑,在拉伸正应力作用下形成的。应力在整个断口表面分布均匀。
2.分叉法
样品断裂中,产生许多分叉,裂纹分叉的方向为裂纹扩展方向,扩展的反方向为裂源位置。
【注】T型法和分叉法是判别脆性断裂的主裂纹和裂纹源
3.变形法
延性断裂的样品,在断裂过程中发生变形后碎成几块,将碎片拼合后变形量大的部位为主裂纹,裂纹源在主裂纹所在的断口上
4.因环境因素引起的断裂的样品,如应力腐蚀、氢脆。裂纹源位于腐蚀或是
延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。
金属疲劳破坏机理及断口分析[借鉴材料]
![金属疲劳破坏机理及断口分析[借鉴材料]](https://img.taocdn.com/s3/m/fa8603a15901020207409ccd.png)
图17 疲劳裂纹和疲劳断口上的辉纹
特选材料
15
▪ 许多工业金属材料,由于内部存在晶界及非 金属夹杂物等障碍,疲劳裂纹尖端塑性变形 的对称性常常被破坏,所以就出现裂纹两侧 不对称的现象,如图18所示。
▪ 一般铝合金疲劳断口上的疲劳辉纹较明显, 而钢的则不明显甚至看不到疲劳辉纹。
的解理面所组成。两个平行解理面之间相差一定高
度,交接处形成台阶。从垂直断面方向观察可见,
台阶汇合形成一种类似河流的花样,称为“河流花 样”。河流花样本身就是台阶存在的标志。
图32 河流花样 (a)扫描 ×1500;(b)复型透射
特选材料
30
▪ 河流花样的走向可以判断裂纹源的位置和裂纹扩展 的方向,河流上游(即支流发源处)是裂纹发源处, 而河流的下游是裂纹扩展的方向。
裂纹的方向逐渐转向和主应力垂直。这一阶段 的扩展速率很慢,每一应力循环大约只有10À 数量级,扩展的深度约有几个晶粒。在有应力 集中的情况下,则不出现第Ⅰ阶段,而直接进 入第Ⅱ阶段。
特选材料
12
▪ 第二阶段---裂纹扩展方向和主应力垂直。
▪ 这一阶段裂纹扩展的途径是穿晶的,其扩展 速率较快,每一应力循环大约为微米数量级。 电子显微镜断口分析中能看到一些疲劳辉纹 (疲劳条纹)。这种疲劳辉纹是判断零件是 否疲劳断裂的有力依据。
在零件或试样的局部区域造成应力集中,这些区域 便是疲劳裂纹核心产生的策源地。
▪ 疲劳裂纹产生后,在交变应力作用下继续扩展长大。 常常留下一条条的同心弧线,叫做前沿线(疲劳 线),这些弧线形成了象“贝壳”一样的花样,也 称为贝纹区。断口表面因反复挤压、摩擦,有时光 亮得象细瓷断口一样。
金属断裂机理完整版

金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒部、可能为脆性断裂也可 能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关)脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:1.特点:材料断裂前发生明显的塑性变形,也可以说塑性变形是韧断的前奏,而韧断是大量塑性变形的结果。
2. 过程:显微空洞形成,扩展,连接,断裂。
3.类型:韧窝-微孔聚集型断裂、滑移分离断裂。
韧窝断口的宏观和微观形貌特征:1宏观形貌特征(1)纤维区:a.表面颜色灰暗,无金属光泽b.粗糙不平c.无数纤维状小峰组成,小峰的小斜面和拉伸轴线大约成45度角(2)放射区(3)剪切唇:和拉伸轴线大约成45度角注意:塑性较高材料的冲击断口一般具有两个纤维区2微观形貌特征:大小不等的圆形或椭圆形的凹坑(即韧窝)。
韧窝一般可看到夹杂物或者第二相粒子。
注意:并非每个韧窝都包含一个夹杂物或粒子韧窝的形状等轴韧窝(拉伸正应力,圆形微坑,均匀分布于断口表面)剪切韧窝(剪切应力,抛物线形状,通常出现的位置:拉伸、冲击断口的剪切唇部位) 撕裂韧窝(撕裂应力,抛物线形状)卵形韧窝(卵形)剪切韧窝与撕裂韧窝微观形状无区别,怎么区分?对材料断口的两个表面进行作对比研究:韧窝凸向一致为撕裂韧窝;反之为剪切韧窝 韧窝裂纹的萌生与扩展(以拉伸正应力为例)1.韧窝裂纹的萌生应力超过材料的屈服强度→发生塑性变形→变形部位产生三向应力状态→在沉淀相、夹杂IC c K a K =⋅=I πσ物与金属界面处分离产生微孔,或夹杂物本身破碎形成裂纹,或滑移位错塞积产生孔洞2.韧窝裂纹的扩展(1)颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
第四章解理断口宏观和微观形貌特征:1.宏观形貌特征:放射状条纹,人字纹,小刻面(发亮的小晶面)2.微观形貌特征:河流花样、舌状花样、扇形花样、鱼骨状花样、瓦纳线、解理台阶 解理台阶的形成:(1)解理裂纹与螺位错交截形成台阶(2)二次解理或撕裂相互连接形成台阶解理台阶的性质:1. 台阶扩展过程中会发生合并或消失(台阶高度减小)2. 相同方向的台阶合并后高度增加3. 相反方向的台阶合并后高度减少或消失4. 台阶高度与柏氏矢量大小、位错密度之间有一定关系河流花样:1.形成机理:河流花样实际上是解理台阶的一种标志。
当裂纹扩展时,同号台阶汇合成较大的台阶,而较大的台阶又汇合成更大的台阶,其结果就形成河流花样。
2.起源:(1)晶界、亚晶界、孪晶界(2)夹杂物或析出相(3)晶粒部(解理面与螺形位错交截的地方)。
3.影响因素:(1)小角度晶界:倾斜晶界(影响不大,延伸至相邻晶界)扭转晶界(在亚晶界处产生新的裂纹,河流激增)(2)大角度晶界(河流不能通过,在晶界处产生新的裂纹,向外扩展,形成扇形。
) 解理断裂的萌生和扩展1.裂纹萌生机制:(1)位错塞积极制位错运动→运动受阻(晶界、孪晶界、第二相夹杂物)→位错堆积→(理论断裂强度)→产生微裂纹(2)位错反应机制:位错运动→位错相遇→产生新位错(不动位错)→阻碍随后的位错运动→位错堆积→产生微裂纹(3)滑移解理机制位错运动→排列成小角度晶界→部分晶界被阻碍→产生拉应力→微裂纹2.裂纹的扩展:根据格里菲斯表达式来解释 CE c πγσ2=解理断裂的影响因素1.试验温度T↓,裂纹尖端塑性变形区↓→裂纹扩展阻力↓→解理断裂发生的容易程度上升;2.应变速率↑→解理断裂发生的容易程度↑;3.hcp、bcc类型金属、合金易发生解理断裂,fcc类型金属、合金不易发生解理断裂(滑移系);4.晶粒尺寸↑发生解理断裂的可能性↑;5.显微组织不同,解理断裂路径不同。
断口形貌不同;6.第二相粒子越粗大越容易发生解理断裂。
准解理断裂宏观特征:宏观断口较平整,少或无宏观塑性变形,结晶状小刻面,亮但不发光,较明显的放射状花样第五章疲劳断裂:1.定义:由于交变应力或循环载荷作用下的脆断。
2.分类:(1)按负载和环境条件分类:高周疲劳,低周疲劳,接触疲劳,热疲劳,腐蚀疲劳。
(2)依载荷类型特点分类:弯曲疲劳,轴向疲劳,扭转疲劳。
疲劳断裂的一般特征:(1)断裂应力比静载下的抗拉强度,屈服强度低,断裂前无明显塑性变形,是低应力脆断破坏现象。
(2)疲劳断裂是损伤积累过程的结果,是与时间相关的破坏方式。
它包括裂纹萌生、扩展和失稳断裂三个阶段。
(3)工程构件对疲劳抗力比对静载荷要敏感得多。
(4)微观上一般是穿晶断裂,也属一种脆性穿晶。
疲劳裂纹的萌生和扩展:1.萌生:表面(次表面,部)2.扩展:第一阶段裂纹起源于材料表面,向部扩展,扩展速度慢。
第二阶段断面与拉伸轴垂直,凹凸不平。
扩展途径为穿晶,扩展速度快。
(显微特征:疲劳辉纹)疲劳断口形貌特征:1疲劳源:光滑、细洁扇形小区域。
位于材料表面、次表面或者部。
2裂纹扩展区形状:一条条同心的圆弧颜色:因为氧化或者腐蚀,成黑色或褐色变化规律:年轮间距小,表示裂纹扩展慢,材料韧性好3瞬断区形貌:具有断口三要素(放射区、剪切唇)的特征对于塑性材料,断口为纤维状,暗灰色对于脆性材料,断口为结晶状瞬断区面积越大,越靠近中心部位,工件过载程度越大;反之越小。
疲劳辉纹与疲劳条纹(贝纹线)的区别:贝纹线:宏观特征因交变应力幅度变化或载荷停歇造成的。
辉纹:微观特征,是一次交变应力循环裂纹尖端钝化形成的。
辉纹四要素:1.辉纹相互平行且垂直于裂纹局部扩展方向。
2.辉纹间距随应力强度因子振幅而变化。
3.辉纹个数等于负载循环次数4.通常断面上的一组辉纹是连续的,相邻断面上的辉纹不连续。
疲劳辉纹:1.形成机理:裂纹扩展的连续模型和不连续模型。
2.类型:韧性辉纹,脆性辉纹3.产生的必要条件:(1)开型平面应变,即正断时才出现(2)延性材料比较容易出现(3)真空中不出现辉纹影响疲劳断口形貌的因素:1载荷类型与应力大小2材质3晶界4夹杂物或第二相5环境介质。
腐蚀疲劳:1定义:材料在循环应力和腐蚀介质共同作用下产生的断裂。
2裂源:材料的腐蚀坑或表面缺陷部位。
3特征:(1)多起源于腐蚀坑处或表面缺陷部位,为多源疲劳(2)断口上具有较模糊的疲劳辉纹(3)断口上具有沿晶断裂形貌,也可能有穿晶断口形貌(4)断口中二次裂纹较多第七章环境应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断引起表面膜局部断裂的原因:环境因素,冶金因素,力学因素,机械破损。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
(蠕变断裂为沿晶断裂)第六章环境断裂:金属材料在腐蚀介质和温度环境等条件影响下产生的沿晶或穿晶低应力脆断现象应力腐蚀断裂断裂过程:裂纹的形成、裂纹的扩展氧化膜破坏-腐蚀坑形成-应力腐蚀裂纹萌生和亚临界扩展-机械失稳破坏引起表面氧化膜局部破裂的因素:环境因素、冶金因素、力学因素、机械破损SCC断口形貌特征:1.宏观:(1)呈现脆性特征(2)多源,裂纹形成区成暗色或灰黑色(3)最终断裂区具有金属光泽,常有放射性花样或人字纹。
2.微观:沿晶断口,晶面有撕裂脊等SCC影响因素和预防措施:1.影响因素:应力、环境介质、成分、热处理工艺2.预防措施:降低应力、表面处理、改变腐蚀介质、选材、电化学保护氢脆的分类及其宏微观形貌特征:分为部氢脆和环境氢脆部氢脆形貌特征:1宏观:白点(发裂白点、鱼眼型白点)2微观:穿晶解理断口或准解理断口环境氢脆形貌特征:1宏观:与脆性断口相似2微观:沿晶断口和准解理断口SCC与氢脆的关系1联系:通常共同存在,形貌也相似2区别:(1)电化学反应:SCC为阳极溶解控制过程,氢脆为阴极反应控制过程(2)裂源:SCC从表面开始,裂纹分叉;氢脆从次表面或部开始,裂纹基本不分叉影响氢脆外部因素:温度、氢浓度、置放时间蠕变可由蠕变曲线描述,一般分为三个阶段:1初始蠕变阶段(蠕变速率随时间不断降低)2稳态蠕变阶段(蠕变速率保持不变)3加速蠕变阶段(蠕变速率随时间加快直至断裂)材料蠕变变形机理主要有位错滑移、原子扩散、晶界滑动按照断裂时塑性变形量大小的顺序,可将蠕变断裂分为如下三个类型:沿晶蠕变断裂(高温、低应力)、穿晶蠕变断裂(高应力)、延缩性断裂(高温)沿晶断裂:类型:韧性沿晶断裂、脆性沿晶断裂产生的原因:1脆性沉淀相沿晶界析出2晶界弱化3环境4热应力5晶体粗大断口宏观形貌特征:结晶状、冰糖快状、灰色石状第七章断裂形式:1按裂纹产生部位:表面开裂、部开裂2按塑性加工方式:轧制开裂、挤压开裂、锻造开裂断裂原因:1塑性变形不均匀2铸锭质量差3加工工艺不合理失效分析的一般程序:外部观察—试验检查—综合分析1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。