2020年高考理科数学《概率与统计》题型归纳与训练

合集下载

2020年高考——概率与统计函数主题的典型考题分析与考前复习方略

2020年高考——概率与统计函数主题的典型考题分析与考前复习方略

概率模型
古典概型
随机
(必修)
几何概型
现象
离散型随机变
二项式分布
概 率
量(选择性必修)
超几何分布
随机抽样

收集数据
分层抽样

统计的
整理数据 统计图表
全过程
分析数据 均值,方差,分布
数据处理 的能力
从数据中提取信息
统计 案例
回归分析 独立性检验
用样本反映总体的规律体现了归纳的思维方式,这是 数据分析的关键。
➢选择合适的模型进行分析
(2010年长春市高中毕业班第二次调研测试)从某高中入校新生中随机抽取 100名学生,测得他们的身高情况如下表所示.
(1)请在频率分布表中的①、②位置填上相应的数据,并在所给的坐标系中补 全频率分布直方图(如上图),再根据频率分布直方图估计众数的值; (2)按身高分层抽样,现已抽取20人参加某项活动,其中有3名学生担任迎宾工 作,记这3名学生中“身高低于170 cm”的人数为ξ,求ξ的分布列及期望.
概率与统计主题 典型考题分析与考前复习方略
目录
01 02 03
核心素养与基本框架 典型题目分析 新高考方案带来的变化
01 核心素养与基本框架
➢ 数据分析
均匀抽样 随机思想
作出统计 推断和解释
选择合适的模型 进行分析
对数据的分析处理 样本估计总体
➢数学运算
统计量 的计算
统计量 的估计
概率计算
计数原理 的应用
➢选择恰当的模型进行分析
(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型
第一类
第二类
第三类
第四类

2020年高考理科数学总复习:专题12概率与统计

2020年高考理科数学总复习:专题12概率与统计

(3)概率是一个确定值,它从数量上反映了随机事件发生的可能性的大小.
(1)概率是一个确定的数,是客观存在的,与每次试验无关, 它度量该事件发生的可能性. (2)频率本身是随机的,在试验前不能确定,做同样次数的重 复试验得到的事件的频率不一定相同. (3)频率是概率的估计值,在实际问题中,仅当试验次数足够 多时,频率可近似地看作概率.
P A

A包含的基本事件的个数 基本事件的总数
.
考点一 随机事件的概率、古典概型和几何概型
6.几何概型
几何概型是基本事件的个数是无限的,每个基本事件发生的可能性相等的一个 概率模型,这个概率模型的显著特点是每个事件发生的概率只与构成该事件区 域的长度(面积或体积)有关. (1)几何概型的特点 ①在一次试验中,基本事件的个数是无限的. ②每个基本事件发生的可能性相等. (2)几何概型的概率计算公式
(1(1)概率加法公式的应用前提是“事件A与事件B互斥”,否则不 能使用.(2)概率公式P(A)=1-P(B)的应用前提是“事件A与事件B 互为对立事件”,否则不能使用.
8
考点一 随机事件的概率、古典概型和几何概型
5.古典概型
(1)基本事件 一次试验中可能出现的每一个基本结果称为基本事件.所有基本事件构成的集合 称为基本事件空间.基本事件空间通常用大写希腊字母Ω表示. (2)基本事件的特点 ①一次试验中只能出现一个基本事件. ②一次试验中的任意两个基本事件都是互斥的. ③任何事件(除不可能事件)都可以表示成基本事件的和. (3)古典概型的概念及特点 具有以下两个特点的随机试验的概率模型称为古典概型. ①:试验中所有可能出现的基本事件只有有限个. ②:每个基本事件发生的可能性相等.
②必然事件的概率为1,不可能的事件概率为0,随机事件的概率在(0,1)范围内. ③当事件A与事件B互斥时,A∪B发生的频数等于A发生的频数与B发生的频数之和,

人教A版2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

人教A版2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

概率与统计一、考纲解读1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性。

2.理解超几何分布及其推导过程,并能进行简单的应用。

3.了解条件概率和两个事件相互独立的概念,理解n 次独立重复实验的模型及二项分布,并能解决一些简单的实际问题。

4.理解取有限个值的离散型变量均值,方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

5.利用实际问题的频率分布直方图,了解正态分布密度曲线的特点及曲线所表示的意义二、命题趋势探究1.高考命题中,该部分命题形式有选择题、填空题,但更多的是解答题。

2.主要以离散型随机变量分布列为主体命题,计算离散型随机变量的期望和方差,其中二项分布与超几何分布为重要考点,难度中等以下。

3.有关正态分布的考题多为一道小题。

三、知识点精讲(一).条件概率与独立事件(1)在事件A 发生的条件下,时间B 发生的概率叫做A 发生时B 发生的条件概率,记作()P B A ,条件概率公式为()=P B A ()()P AB P A 。

(2)若()=P BA P B (),即()=()()P A B PAPB ,称A 与B 为相互独立事件。

A 与B相互独立,即A 发生与否对B 的发生与否无影响,反之亦然。

即,A B 相互独立,则有公式()=()()P AB P A P B 。

(3)在n 次独立重复实验中,事件A 发生k ()0k n ≤≤次的概率记作()n P k ,记A在其中一次实验中发生的概率为()P A p = ,则()()1n k k k n n P k C p p -=- .(二).离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列(如表13-1所示).表13-1①()11,i p i n i N θ*≤≤≤≤∈ ;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++,反映随机变量ξ取值的波动性。

2020年高考理科数学《概率与统计》题型归纳与训练

2020年高考理科数学《概率与统计》题型归纳与训练
例 1、某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽 取了100 名学生,记录他们的分数,将数据分成 7 组:[20,30),[30,40),,[80,90], 并整理得到如下频率分
布直方图:
(Ⅰ)从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率; (Ⅱ)已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间[40,50) 内的人数; (Ⅲ)已知样本中有一半男生的分数不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体
100 (Ⅲ)由题意可知,样本中分数不小于 70 的学生人数为 (0.02 0.04) 10 100 60 ,所以样本中分数不 小于 70 的男生人数为 60 1 30 .所以样本中的男生人数为 30 2 60 ,女生人数为100 60 40 ,男生
2 和女生人数的比例为 60 : 40 3 : 2 ,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为 3: 2 .
【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应
注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1 ,当小矩形等高时,说明
频率相等,计算时不要漏掉其中一个. 【思维点拨】 1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少. 2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数 较多. 3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数 利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中 点的横坐标之和. 5.求回归直线方程的关键

高考数学概率统计题型归纳

高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。

为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。

一、古典概型古典概型是概率统计中最基本的题型之一。

其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。

在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。

然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。

二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。

通常会涉及到长度、面积、体积等几何度量。

比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。

解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。

三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。

例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。

条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。

比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。

对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。

四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。

常见的离散型随机变量有二项分布、超几何分布等。

二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。

2020高考数学(理)专项复习《概率统计》含答案解析

2020高考数学(理)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=)()(A P B A P I 为在事件A 发生的条件下,事件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=)()(A n B A n I .事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与A 、A 与B 、A 与B 也都相互独立.若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ).【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题.【例题分析】例1(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P(Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率;(3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有29A 种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率6112291==A P (或6184931=⨯=P ). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又31)(=A P ,P (A ∩B )61=,所以或⋅==213161)|(A B P (或2184)|(==A B P ). (3)第一次摸出红球的概率为1912A A ,第二次摸出红球的概率为291217A A A ,第三次摸出红球的概率为391227A A A ,则摸球次数不超过3次的概率为⋅=++=12739122729121719122A A A A A A A A P 【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.(2)元件B 、C 至少有一个正常工作的概率为1-P (B ·C )=1-P (B )·P (C )=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (B ·C ))=0.80×0.99=0.792.【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6).(1)连续抛掷3次,求向上的点数之和为3的倍数的概率;(2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为21,连续抛掷6次是独立重复试验. 解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以⋅=⨯⨯+++++=3166611025251012P(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =21, 根据独立重复试验概率公式有⋅==⋅⋅6415)21()21(24463C P 【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是53,左转行驶的概率是52,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口).【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转.解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则⋅=⨯=625216)52()53()(2224C A P (2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.=+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( )A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.6.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮.7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______.三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率;(2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率;(2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到i i ii 12+…+p n =1.离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和.其中0<p <1,q =1-,则称离散型随机变量服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A 恰好发生k 次的概率为==)(k X P k n k k n q p C -(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n次独立重复试验中事件A 发生的次数设为X ,则X 的分布列为超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为m C C C m X P n Nm n M N m M ≤==--0()(≤l ,其中l 为n 和M中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布1122i i n n 了离散型随机变量的平均取值水平.称i i n i p X E xX D ⋅-=∑=21))(()(为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根)(X D 为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X )若X 服从两点分布,则E (X )=p ,D (X )=pq ;若X ~B (n ,p ),则E (X )=np ,D (X )=npq . 正态曲线:函数),((21)(222)(+∞∝-∈=--x e x x σμσπϕ,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值σ2π1;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足=≤<)(b X a P dx x ba )(ϕ⎰,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%.【复习要求】①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. ④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义.【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==,212010)6(3625====C C X P ,所求X 的分布列为(2)==+==>)6()5()4(X P X P X P ⋅54 (3).25.5216103520342013)(=⨯+⨯+⨯+⨯=X E 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,)0(=X P =,42121054104505==⋅C C C )1(=X P =215210504103515==⋅C C C ,)2(=X P 21102101004102525===⋅C C C ,===⋅4101535)3(C C C X P 21050 215=,4212105)4(4100545==⋅==C C C X P , 分布列为2424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4.例3 某人练习射击,每次击中目标的概率为31. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望;②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列.【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布⋅=31)(X E ②X 服从二项分布)6,,1,0()2()1()(),1,6(~66Λ===-k C k X P B k k k ,分布列为.236)(=⨯=X E (2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=)5,,1,0(31)32(.Λ=k k ,ξ=6表示射击6次都未击中目标,==)6(ξP6)2(.ξ的分布列为(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,==)(k P η 6;1)2(.1=-ηk 表示前5次都没有击中目标,5)2()6(==ξP .η 的分布列为“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为计算X 和Y 【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析. 解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率;(3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率⋅=+=+=36193617362)()(C B B P P (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得D P D P (,3611)(=∩367)=E ,∴⋅==117)()()|(D P E D P D E P I (Ⅱ)由题意ξ的可能取值为0,1,2,则,3617}2{,181}1{,3617}0{======&ξξξP P P 故ξ的分布列为:所以.18173617·)12(181·)11(3617·(0-0-,136172181136170222=-+-+==⨯+⨯+⨯=ξξD E 9342)12(,312)12(2==+==+=+=ξξξξηηD D D E E E 【评析】本题是一道概率的综合题,由07山东卷改编而得.在古典概型中解决条件概率问题时,概率公式是=)|(A B P )()()()(A n B A n A P B A P I I =.具有线性关系的两个随机变量的期望和方差之间的关系是b X aE b aX E +=+)()(,)()(2X D a b aX D =+.例6 (1)设两个正态分布N (μ 1,21σ)(σ 1>0)和N (μ 2,22σ)(σ 2>0)的密度函数图象如图所示.则有( )。

高考理数真题训练15 概率与统计(解答题)(原卷版)

高考理数真题训练15 概率与统计(解答题)(原卷版)

专题15 概率与统计(解答题)1.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)8(0ii x x =-=∑,2021)9000(i i y y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)()(iinx y r x y --=∑1.414≈.3.【2020年高考全国III 卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K 24.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,5.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)6.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).7.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.8.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.9.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.10.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.11.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?12.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.13.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,14.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.15.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.。

高中数学概率与统计常考题型归纳

高中数学概率与统计常考题型归纳

高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为E(X)=2×59+3×29+4×1081+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5××40=12.第4组的人数为5××40=8.第5组的人数为5××40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值. 解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24,由此得b^=lxylxx=2480=,a^=y-b^x=2-×8=-,故所求线性回归方程为y^=-.(2)由于变量y的值随x值的增加而增加(b^=>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=×7-=(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K2=10060×40×55×45≈>,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[ 并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,. 发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini ii,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。

相关文档
最新文档