投影与视图练习题(二)(及答案)
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。
九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.487.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.20.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.21.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.22.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.画出如图所示的几何体的主视图、左视图和俯视图.29.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.30.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.【参考答案】一、选择题1.C2.D3.C4.B5.C6.B7.C8.B9.D10.C11.C12.B13.B14.D二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为724.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.29.(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QD=,AC DC∴1.8 1.5=,AC10解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.30.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错.。
初三下册—投影与视图测试题(包含答案)

初三下册—投影与视图测试题(包含答案)初三数学 投影与视图 单元测试题一、选择题:(每小题3分,共60分)1.小明从正面观察下图所示的两个物体,看到的是( )2.下面是空心圆柱在指定方向上的视图,正确的是( )3.如图是某物体的三视图,则该物体形状可能是( )(A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体4.下图中几何体的主视图是( )(B )(A )(C )(D )主视图左视图(第3题)(B )(A )(C )(D )(B )(A )(C )(D )正面5.如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( )(A )Q (B )R (C )S(D )T7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( )(A )相等 (B )长的较长 (C )短的较长 (D )不能确定8.正方形在太阳光的投影下得到的几何图形一定是( )(B )(A )(C )(D )R S T P Q 图①34(第6题)(A)正方形(B)平行四边形或一条线段(C)矩形(D)菱形9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()(A)平行(B)相交(C)垂直(D)无法确定10.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()(A)16 m (B)18 m (C)20 m (D)22 m11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()(A)上午8时(B)上午9时30分(C)上午10时(D)上午12时12.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是()(A )①②③④ (B )④②③①(C )④①③② (D )④③②①13.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是( )(A )4个(B )5个 (C )6个(D )7个14.如图所示的几何体的俯视图是()15.如果用□表示1个立方体,用 表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图左视图主视图俯视图(第14题)(((C )(是 ( )(A)(B)(C)(D)16.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()(A)两根都垂直于地面(B)两根平行斜插在地上(C)两根竿子不平行(D)一根到在地上17.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长(B)小明的影长比小强的影子短(C)小明的影子和小强的影子一样长(D)无法判断谁的影子长(B )(A )(C )(D )224113(B )(A )(C )(D )18.底面与投影面垂直的圆锥体的正投影是( )(A )圆 (B )三角形 (C )矩形(D )正方形19.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )20.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()二、填空题(每小题4分,共24分)21.一个几何体的三视图如右图,那么这个几何体是 .俯视图主视图左视图(第21题)22.请写出三种视图都相同的两种几何体 、 .23.一个物体的俯视图是圆,则该物体有可能是 .(写两个即可)24.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2米,小刚比小明矮5cm ,此刻小明的影长是________米。
初中数学人教版(五四制)九年级下册第35章 投影与视图35.1 投影-章节测试习题(2)

章节测试题1.【答题】如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是()A. ①②④B. ①③④C. ②③④D. ①②③【答案】B【分析】点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化.【解答】解:当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;①成立,那么②不成立;最小值为AB与AC重合,故n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.2.【答题】如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子()A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短【答案】A【分析】由题意易得,小亮离光源是由远到近的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,选A.3.【答题】晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A. 变长B. 变短C. 先变长后变短D. 先变短后变长【答案】D【分析】由题意易得,小华离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】∵小华出去散步,在经过一盏路灯这一过程中离光源是由远到近再到远的过程,∴他在地上的影子先变短后变长.选D.4.【答题】在同一时刻的阳光下,小华的影子比小东的影子长,那么在同一路灯下,他们的影子为()A. 小华比小东长B. 小华比小东短C. 小华与小东一样长D. 无法判断谁的影子长【答案】D【分析】在同一路灯下由于位置不同,影长也不同,∴无法判断谁的影子长.【解答】在同一路灯下由于位置不同,影长也不同,∴无法判断谁的影子长.选D.5.【答题】下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A. B.C. D.【答案】C【分析】太阳从东方升起,故物体影子应在西方,∴太阳刚升起时,照射一根旗杆的影像图,应是影子在西方.【解答】太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.选C.6.【答题】学校里旗杆的影子整个白天的变化情况是()A. 不变B. 先变短后变长C. 一直在变短D. 一直在变长【答案】B【分析】早晨和晚上太阳高度角较小,影长较长;中午太阳高度角较大,影长较短.【解答】由图可知,旗杆为AE,影长从AC变为AB,变为AD,过程为先变短,后变长.选B.7.【答题】在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()A. ①②③④B. ②③④①C. ③④①②D. ④③①②【答案】B【分析】根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.【解答】西为②,西北为③,东北为④,东为①,∴将它们按时间先后顺序排列为②③④①.选B.8.【答题】如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.【答案】D【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】依题意,光线是垂直照下的,故只有D符合.选D.9.【答题】下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.【答案】A【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.选A.10.【答题】如图所示“属于物体在太阳光下形成的影子”的图形是()A. B.C. D.【答案】A【分析】根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.【解答】在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.选A.11.【答题】四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A. L、KB. CC. KD. L、K、C【答案】A【分析】利用平行投影和中心投影的特点和规律分析.【解答】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影;选A.12.【答题】某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()A. B.C. D.【答案】D【分析】可根据中心投影的特点分析求解.【解答】由图:两根木棒在同一平面内的影子长短几乎相等,分析可得:这是中心投影;且光源在中间一根附近,那么第三根木棒的影子应与其他的两根反向.选D.①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.13.【答题】把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.【答案】A【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.选A.14.【答题】小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A. 三角形B. 线段C. 矩形D. 平行四边形【答案】A【分析】根据平行投影的性质分别分析得出即可即可.【解答】将长方形硬纸板立起与地面垂直放置时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.选:A.15.【答题】在一个晴朗的上午,乐乐拿着一块长方形木板在地面上形成的投影中不可能的是()A. B.C. D.【答案】C【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可判断出长方形木板在地面上形成的投影中不可能为梯形.【解答】在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形,则长方形木板在地面上形成的投影中不可能是梯形.选C16.【答题】如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D. 不能确定【答案】A【分析】解答本题关键是要区分开平行投影和中心投影.根据题意,灯光下影子越长的物体就越高,可联系到中心投影的特点,从而得出答案.【解答】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.选:A.17.【答题】小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是()A. B. C. D.【答案】A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A不可能,即不会是梯形.选A.18.【答题】在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.【答案】A【分析】可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,∴矩形木板在地面上形成的投影不可能是梯形.【解答】将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,∵梯形两底不相等.选A.19.【答题】李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()A. B. C. D.【答案】D【分析】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故不会是一点,即答案为D.【解答】根据平行投影的特点,矩形木框在地面上行程的投影不可能是一个圆点.选D.20.【答题】一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是()A. AB=CDB. AB≤CDC. AB>CDD. AB≥CD【答案】D【分析】投影线垂直于投影底幕面时,称正投影,根据木棒的不同位置可得不同的线段长度.【解答】根据正投影的定义,当AB与投影面平行时,AB=CD,当AB与投影面不平行时,AB大于CD.选D.。
精品解析2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习试题(含详细解析)

人教版九年级数学下册第二十九章-投影与视图同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图几何体的主视图是()A.B.C.D.2、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=()A.10 B.11 C.12 D.133、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为()A.6 B.7 C.10 D.14、如图,该几何体的俯视图是()A.B.C.D.5、某几何体从三个方向看到的平面图形都相同,这个几何体可以是()A.B.C.D.6、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.12 B.16 C.18 D.24 7、如图,几何体的左视图是()A.B.C.D.8、如图,根据三视图,这个立体图形的名称是()A.三棱锥B.三棱柱C.四柱D.四锥9、下列几何体的主视图和俯视图完全相同的是()A.B.C.D.10、下面的三视图所对应的几何体是()A.B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.2、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由___个小正方体组成.3、如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为________.4、如图是一个几何体的三视图,该几何体的体积是_____.5、如图为一个圆锥的三视图,这个圆锥的侧面积为_________2mm.三、解答题(5小题,每小题10分,共计50分)1、如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形.2、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块.3、如图所示是由6个大小相同的小立方体搭成的几何体.,请你画出它的主视图与左视图.4、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______2cm;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______2cm.cm,_______25、如图所示的几何体是由几个相同的小正方体排成3行组成的.(1)填空:这个几何体由个小正方体组成;(2)画出该几何体的三个视图.(用阴影图形表示)---------参考答案-----------一、单选题1、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.2、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,∴m=4+3+2=9,n=4+2+1=7,∴2m﹣n=2×9﹣7=11.故选B.【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.3、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.4、A【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.5、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C.【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键.6、A【分析】由主视图所给的图形可得到俯视图的对角线长为的体积公式底面积乘以高即为这个长方体的体积.【详解】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为,∴a2+a2=()2,解得a2=4,∴这个长方体的体积为4×3=12.故选A.【点睛】本题主要是考查三视图的基本知识以及长方体体积计算公式.解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.7、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8、B【分析】由主视图和左视图,可以确定是柱体,再结合俯视图即可得到正确答案.【详解】解:由主视图和左视图可以确定是柱体,又因为俯视图是三角形,可以确定该柱体是三棱柱.故选:B【点睛】本题考查由三视图确定几何体,牢记相关知识点并能够灵活应用是解题关键.9、D【分析】根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.【详解】解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;D、圆的主视图和俯视图都为圆,故D选项符合题意;故选D.【点睛】本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.10、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.二、填空题1、18【解析】【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2, 因此圆锥的侧面积为:4362S rl πππ==⨯⨯= 圆柱的侧面积为:422282S rh πππ==⨯⨯= 底面圆的面积为:22442S r πππ⎛⎫==⨯= ⎪⎝⎭ 因此这个几何体的表面积为:68418ππππ++=故答案为:18π.【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.2、11【解析】【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.【详解】解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:那么共最多由55111++=个小立方块.故答案为:11.【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、3【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看,底层是两个小正方形,上层的右边是一个小正方形,因为每个小正方形的面积为1,所以则它的左视图的面积为3.故答案为:3.【点睛】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.4、4π【解析】【分析】由三视图可知。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
《第5章投影与视图》单元测试卷(2)及答案解析

九年级上册《第5章投影与视图》测试卷一、选择题(每题3分,共30分)1.如图几何体的主视图是( )A.B.C.D.2.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )A.B.C.D.3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成( )A.12个B.13个C.14个D.18个4.与如图所示的三视图对应的几何体是( )A.B.C.D.5.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )A.A⇒B⇒C⇒D B.D⇒B⇒C⇒A C.C⇒D⇒A⇒B D.A⇒C⇒B⇒D6.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.7.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( ) A.B.C.D.8.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是( )A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行D.两根都倒在地面上9.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( )A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米二、填空题(每小题4分,共20分)11.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说“广场上的大灯泡一定位于两人__________”.12.如图是某个几何体的三视图,该几何体是__________.13.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有__________个碟子.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为__________m.15.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是__________.三、解答题(共50分)16.画出下面实物的三视图.17.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.18.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米,求旗杆的高度.21.(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?22.由一些大小相同的小正方体组成的简单几何体的主视图和左视图如图所示.(1)请你画出这个简单几何体三种不同的俯视图;(2)若组成这个简单几何体的小正方体的块数为n,请你写出n的所有可能值.北师大新版九年级上册《第5章投影与视图》2015年单元测试卷一、选择题(每题3分,共30分)1.如图几何体的主视图是( )A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可【解答】解:从正面可看到从左往右三列小正方形的个数为:2,1,1,故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成( )A.12个B.13个C.14个D.18个【考点】由三视图判断几何体.【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.与如图所示的三视图对应的几何体是( )A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.5.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )A.A⇒B⇒C⇒D B.D⇒B⇒C⇒A C.C⇒D⇒A⇒B D.A⇒C⇒B⇒D【考点】平行投影.【分析】解:根据平行投影的特点和规律可知,C,D是上午,A,B是下午,根据影子的长度可知先后为C→D→A→B.【解答】解:根据平行投影的特点和规律可知,C,D是上午,A,B是下午,根据影子的长度可知先后为C→D→A→B.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.6.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.【考点】几何体的展开图.【分析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【解答】解:根据题意及图示只有A经过折叠后符合.故选:A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同7.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( ) A.B.C.D.【考点】平行投影.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A不可能,即不会是梯形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.8.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是( )A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行D.两根都倒在地面上【考点】平行投影.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:在同一时刻,两根竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等;而竿子长度不等,故两根竿子不平行.故选:C.【点评】本题考查了平行投影特点,平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.9.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( )A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短【考点】中心投影.【分析】根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.【解答】解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二、填空题(每小题4分,共20分)11.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说“广场上的大灯泡一定位于两人中上方”.【考点】中心投影.【分析】由两人的影子一个向东,一个向西,根据中心投影的特点,可得光源一定位于两人中上方.【解答】解:在点光源下不同的位置形成的影子的方向和长短不确定,当两人的影子一个向东,一个向西,则光源一定位于两人的中上方.故答案为:中上方.【点评】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.12.如图是某个几何体的三视图,该几何体是圆锥.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故答案为:圆锥.【点评】本题主要考查了根据三视图判定几何体,关键是熟练掌握三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解答此题的关键.13.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12个碟子.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为12m.【考点】相似三角形的应用.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.【解答】解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.15.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是着.【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“静”字相对的字是着.【点评】解决此类问题,要充分考虑带有各种符号的面的特点及位置.三、解答题(共50分)16.画出下面实物的三视图.【考点】作图-三视图.【分析】认真观察实物,可得主视图为三角形,左视图为长方形,俯视图为两个长方形组成的长方形.【解答】解:三视图如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来.17.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.18.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)【考点】相似三角形的应用.【专题】阅读型.【分析】如图容易知道CD⊥BD,AB⊥BE,即∠CDE=∠ABE=90°.由光的反射原理可知∠CED=∠AEB,这样可以得到△CED∽△AEB,然后利用对应边成比例就可以求出AB.【解答】解:由题意知∠CDE=∠ABE=90°,又由光的反射原理可知∠CED=∠AEB,∴△CED∽△AEB∴∴.∴AB≈5.2米.答:树高是5.2米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.20.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米,求旗杆的高度.【考点】平行投影;相似三角形的判定与性质;中心投影.【分析】旗杆的高度=CD+BD所对应的物长,把相关数值代入即可求解.【解答】解:过C作CE⊥AB于E,∵CD⊥BD,AB⊥BD,∴∠EBD=∠CDB=∠CEB=90°∴四边形CDBE为矩形,BD=CE=21,CD=BE=2设AE=xm.则1:1.5=x:21,解得:x=14故旗杆高AB=AE+BE=14+2=16米.【点评】解决本题的难点在于得到旗杆高度的组成部分.21.(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?【考点】视点、视角和盲区.【专题】应用题.【分析】(1)连接点A与M楼的顶点,则可得出能否看到后面那座高大的建筑物;(2)构造直角三角形,设AM=x,则根据=,可得出AM的长度,继而也可求出视角α的度数.【解答】解:(1)所作图形如下:所以能看见后面的大楼,因为大楼没有处在盲区.(2)由题意得,MN=20m,FM=10m,EN=30m,设AM=x,则=,即=,解得:x=10,即AM=10米.tanα===,可得α=30°.答:当你至少与M楼相距10m时,才能看到后面的N楼,此时,你的视角α=30°.【点评】此题考查了盲区、视角的知识,关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.22.由一些大小相同的小正方体组成的简单几何体的主视图和左视图如图所示.(1)请你画出这个简单几何体三种不同的俯视图;(2)若组成这个简单几何体的小正方体的块数为n,请你写出n的所有可能值.【考点】作图-三视图;由三视图判断几何体.【分析】(1)由左视图可得第一层立方体的可能个数,由主视图可以看出每一层小正方体的层数和个数,画出三种不同的俯视图即可.(2)易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:(1)三种不同的俯视图如图所示:(2)由题中所给出的主视图知物体共二列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行;于是,可确定后面一行有3个小正方体,而前面一行可能有1个或2个小正方体.所以图中的小正方体最少4块,最多5块,∴n=4或n=5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查..。
北师大版九年级上册数学第五章 投影与视图含答案

北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、将两个长方体如图放置,则所构成的几何体的左视图可能是()A. B. C. D.2、如图所示的几何体的俯视图是()A. B. C. D.3、下列几何体的主视图与其他三个不同的是()A. B. C. D.4、如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A. B. C. D.5、如图的几何体,左视图是()A. B. C. D.6、如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.7、如图是由六个棱长为1的小正方体搭成的几何体,其俯视图的面积为()A.3B.4C.5D.68、墨墨在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()A.相交B.互相垂直C.互相平行D.无法确定9、下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10、下列四幅图,表示两棵树在同一时刻阳光下的影子是()A. B. C. D.11、如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A. B. C.D.12、如图,是一个几何体的三视图,则这个几何体是()A. B. C.D.13、如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.14、如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A. B. C. D.15、如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是()A.主视图B.左视图C.俯视图D.三视图都一致二、填空题(共10题,共计30分)16、下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.17、如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).18、小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.19、某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是________cm.时间7:00 8:00 9:00 10:00 11:00 12:00影长10cm 7.5cm 5.5cm ●cm 3cm 2.5cm20、小莉身高,在阳光下的影子长为,在同一时刻站在阳光下,小林的影长比小莉长,则小林的身高为________ .21、如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进行了如下测量某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的影子BF的长为8米,而电信杆落在围墙上的影子GH的长度为米,落在地面上的银子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是________米22、两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是________.(填写“平行投影”或“中心投影”)23、太阳光形成的投影是________ ,手电筒、电灯泡所发出的光线形成的投影是________ .24、如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B、B′的坐标分别为(3,1)、(6,2)若点A的坐标为(,3),则点A′的坐标为________.25、如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?①________;②________;③________.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?28、综合实践活动课,某数学兴趣小组在学校操场上想测量汽车的速度,利用如下方法:如图,小王站在点处A(点A处)和公路(l)之间竖立着一块30m 长且平行于公路的巨型广告牌(DE).广告牌挡住了小王的视线,请在图中画出视点A的盲区,并将盲区内的那段公路记为BC.已知一辆匀速行驶的汽车经过公路BC段的时间是3s,已知小王到广告牌和公路的距离是分别是40m和80m,求该汽车的速度?29、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?30、如图,分别从正面、左面、上面观察这个立体图形,请画出你看到的平面图形.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、A5、B6、A7、B8、C9、B10、B11、C12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影与视图 练习题(二)
一、细心填一填(每题3分,共36分)
1.举两个俯视图为圆的几何体的例子 , 。
2.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 。
3.请将六棱柱的三视图名称填在相应的横线上.
4.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有__________个碟子。
5.当你走向路灯时,你的影子在你的 ,并且影子越来越 。
6.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得ED =2米,DB =4米,CD =1.5米,则电线杆AB 长=
7.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”; 8.皮影戏中的皮影是由 投影得到的. 9.下列个物体中:
(1)
(2)
(3)
(4)
是一样物体的是______________ (填相同图形的序号)
俯视图
主视图
左视图
主视图
10.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,已知房子上的监视器高3m ,广告牌高为1.5m ,广告牌距离房子5m ,则盲区的长度为________
11.一个画家由14个边长为1m 的正方形,他在地面上把他们摆成如图的形式,然后把露出表面的部分都涂上颜色,那么被涂上颜色的总面积为__________
12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由 个这样的正方体组成。
二、精心选一选(每题2分,共24分)
13.小明从正面观察下图所示的两个物体,看到的是 ( )
14.在同一时刻,阳光下,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为 ( )
A 、 16m
B 、 18m
C 、 20m
D 、 22m
B A
C D
正面
15.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )
16.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。
这是因为 ( ) A 、汽车开的很快 B 、盲区减小 C 、盲区增大 D 、无法确定 17.“圆柱与球的组合体”如右图所示,则它的三视图是
A .
B .
C .
D .
18.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )
A 、两根都垂直于地面
B 、两根平行斜插在地上
C 、两根竿子不平行
D 、一根倒在地上
19.正方形在太阳光的投影下得到的几何图形一定是( ) A 、 正方形 B 、平行四边形 C 、矩形 D 、菱形 20.同一灯光下两个物体的影子可以是( )
A 、同一方向
B 、不同方向
C 、相反方向
D 、以上都有可能 21.棱长是1㎝的小立方体组成如图所示的几何体,那么 这个几何体的表面积是( )
A 、362
cm B 、332
cm C 、302
cm D 、272
cm
22.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )
A B C
D
(第17题)
俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 .
.
23.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )
A、2
B、3
C、4
D、5
24.下面是一天中四个不同时刻两个建筑物的影子:
将它们按时间先后顺序进行排列,正确的是【】A、③④②①B、②④③①C、③④①②D、③①②④
三、耐心解一解(共40分)
25.(4分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;
26.(6分)画出下面实物的三视图:
27.(6分)我们坐公共汽车下车后,不要从车前车后猛跑,为什么?
28.(8分)已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
29、(8分)要测量旗杆高CD ,在B 处立标杆AB =2.5cm ,人在F 处。
眼睛E 、标杆顶A 、旗杆顶C 在一条直线上。
已知BD =3.6m ,FB =2.2m ,EF =1.5m 。
求旗杆的高度。
A
B F
E
C
D
30.(8分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:
根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)
A
B
太
阳 光
线 C
D
E
参考答案
1.圆柱、圆 2.圆锥 3.俯视图 主视图 左视图 4.12 5.后面 短 6.4.5米 7.中间 8.灯光 9.(1)(3) 10.5m 11.332
m 12.13 13.C 14.C 15.B 16.C 17.A 18.C 19.B 20.D 21.A 22.A 23.B 24.C 25.
灯泡
26.略
27.因为汽车司机的视线在车前车后有看不见的地方,即盲区。
汽车前进或倒退时,在车前或车后走很容易出危险。
28.作法:连结AC ,过D 作DF ∥AC 交地面于点F ,则EF 就是DE 在阳光下的投影 利用相似三角形易得DE 的长为10m 。
29.解:过E 作EH ∥FD 分别交AB 、CD 于G 、H 。
因为EF ∥AB ∥CD ,所以EF =GB =HD 。
所以AG =AB -GB =AB -EF =2.5-1.5=1m EG =FB =2.2m ,GH =BD =3.6m CH =CD -1.5m
又因为
CH EH AG EG =,所以CD 1.5 5.8
1 2.2
=
- 所以CD =3422m ,即旗杆的高3
422
m
30.由题意知 ∠CED =∠AEB ,∠CDE =∠ABE =Rt ∠, ∴△CED ∽△AEB ∴BE AB DE CD = ∴7
.87.26.1AB
= ∴AB ≈5.2米。