高等概率论的一些学习心得兼推荐一些相关书籍

合集下载

2024年概率论与数理统计 学习心得(2篇)

2024年概率论与数理统计 学习心得(2篇)

2024年概率论与数理统计学习心得____年概率论与数理统计学习心得概率论与数理统计是一门重要的数学学科,对于理工科的学生来说,它是必修的一门课程。

我在____年上学期学习了概率论与数理统计这门课程,在这里我想分享一下我的学习心得。

一、学习准备在学习概率论与数理统计之前,我提前了解了一些相关的数学知识,包括高等数学、线性代数和初等实分析等。

这些预备知识对于理解概率论与数理统计的概念和推导是非常有帮助的。

另外,我也准备了一些学习资料,包括教材、习题集和参考书籍等。

二、理论学习在概率论与数理统计的学习过程中,我首先学习了基本概念和定义,包括随机事件、样本空间、概率等。

然后学习了概率分布和随机变量的理论,包括离散型随机变量、连续型随机变量以及混合型随机变量等。

在学习过程中,我注重理论和实践的结合,通过习题的练习巩固理论知识。

三、实践应用概率论与数理统计是一门应用性很强的学科,在学习过程中,我注重将理论知识应用到实际问题中。

通过分析和解决实际问题,我更深刻地理解了概率论与数理统计的原理和方法。

比如,在分析统计数据时,我学会了如何选择合适的统计方法,如何进行数据的描述和分析等。

四、思维拓展概率论与数理统计的学习过程中,我养成了思维严谨和逻辑思考的习惯。

在解决问题时,我会先进行思维拓展,考虑不同的可能性和情况,然后再进行具体的计算和推导。

我发现,这种思维方式不仅在概率论与数理统计中有帮助,也对我在其他学科的学习中起到了积极的影响。

五、合作学习在学习概率论与数理统计的过程中,我还参加了一些小组讨论和合作学习活动。

通过与同学们的交流和讨论,我不仅加深了对概率论与数理统计的理解,还学到了一些新的解题思路和方法。

而且,合作学习也培养了我与他人合作的能力和团队合作精神。

六、总结与反思经过一个学期的学习,我对概率论与数理统计有了一定的认识和了解。

在学习过程中,我不仅掌握了基本的理论知识,还学会了如何将理论应用到实践中。

概率论的书

概率论的书

概率论的书
以下是一些经典的概率论书籍推荐:
1. 《概率论与数理统计教程》(杨乐、泸定红等著)
该书是一本非常经典的概率论教材,内容系统全面,介绍了概率论的基本概念、各种常见概率分布以及概率论的基本理论等。

2. 《概率论与数理统计》(陈希孺、张智峰等著)
这本书是概率论与数理统计的经典教材之一,内容深入浅出,方便入门。

书中介绍了概率论的基本概念和方法,以及各种概率分布等。

3. 《概率论导论》(普列谢特斯基等著)
这是一本经典的概率论导论教材,书中介绍了概率的基本概念、概率空间、随机变量和概率分布等内容,并且包含了一些常用的概率论定理和方法。

4. 《概率论与数理统计》(吴善军、李卫红等著)
该教材比较适合初学者学习,内容简洁明了,注重基本概念和方法的讲解,并包含了一些典型案例和习题,有助于学生加深对概率论的理解。

5. 《概率论基础》(巩俐著)
这是一本适合初级概率课程的教材,以实例为引导,讲解了概率论的基本概念、公式和方法,并且提供大量的练习题和习题解析,方便学生巩固所学知识。

以上是一些经典的概率论书籍推荐,适合不同程度的读者。

读者可以根据自己的需求和水平选择适合自己的教材进行学习。

概率论与数理统计教材推荐

概率论与数理统计教材推荐

概率论与数理统计教材推荐
概率论和数理统计是数学的两个重要分支,其教材也是广大数学爱好者研究的重点。

下面,我们就概率论和数理统计的教材,给大家介绍几本比较好的教材。

首先,概率论的教材有《概率论与数理统计》,这是一本由著名数学家李嘉图所著,全面系统地介绍概率论的教材,从概率论的基本概念到概率论的本质,都有详细的阐述。

其次是《概率论》,这本书由专家们编写,介绍了概率论的各个方面,包括概率空间、随机变量、概率分布、随机过程等等,可以帮助读者更好地理解概率论的基本概念。

此外,数理统计的教材也有很多种。

《数理统计》是一本由著名数学家李嘉图编写的教材,介绍了数理统计的基本概念,包括抽样调查、统计推断、贝叶斯推断、统计图形绘制等等,可以帮助读者更好地理解数理统计的基本概念。

另外,还有《数理统计分析》,这本教材由著名统计学家许达政编写,介绍了数理统计分析的基本概念,包括数理统计的概念、数据描述、抽样及抽样分析、概率论、假设检验等等,可以帮助读者更好地理解数理统计分析的基本概念。

以上,就是我们介绍的关于概率论和数理统计教材的几本比较好的教材,希望可以帮助大家更好地理解概率论和数理统计的基本概念。

概率论学习心得最新10篇

概率论学习心得最新10篇

概率论学习心得最新10篇概率论知识点总结篇一第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:1、随机事件的关系运算﹔2、求随机事件的概率﹔3、综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1、求一维随机变量的分布律、分布密度或分布函数﹔2、一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3、反求或判定分布中的参数﹔4、求一维随机变量在某一区间的概率﹔5、求一维随机变量函的分布。

第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:1、求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度﹔2、已知部分边缘分布,求联合分布律﹔3、求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度﹔4、两个或多个随机变量的独立性或相关性的判定或证明﹔5、与二维随机变量独立性相关的命题﹔6、求两个随机变量的相关系数﹔7、求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

关于概率论学习心得

关于概率论学习心得

关于概率论学习心得概率论学习心得11、概率论的很多题都是综合的,有时会用到很多章的知识。

如果你从未看过教材,请先通学一遍66个知识点(也就是只学知识点,暂不学知识点下面的练习题。

)这样对整体有一个了解后,再回头来仔细练习每一个题。

2、学习概率论时,不同于一般的记忆课程。

★★最重要的一点是,要自己动笔在纸上练习★★,如果只是看,可能你觉得看懂了,但实际做题时,还是不知道如何下笔。

3、学习精华版课程时,在看到题目后,不要先去看答案,一定要先想一想这个题自己觉得该如何解答(即使一点都不会,也一定要先想一想,只有这样,当你看了答案后才能印象深刻!),并在纸上写一下自己的解题,然后再看精华版中的答案与详细解析,看懂后再在纸上写一遍解题过程。

★★切记,一定要动笔练习!!!练习时,不能只是随便在纸上写几步,不要怕麻烦,一定要写出完整的解题过程。

写的时候一定要有自己的思考,不能像抄书一样。

(★★注意:我们的精华版课程是在总结几十套历年试题基础上,挑选出来的典型题,集中时间练习并弄懂课程中的题,是通过考试的保证。

暂时不要去练习其他任何地方的习题,包括教材后的习题也先不要练习。

学懂精华版课程后,可以做一下历年试题,来检验一下自己学的效果。

)4、个别知识点感觉太难懂的,确实搞不懂的,可以先略过。

学了后面的再回头来学那几个难的,应该就能学懂了。

这样可以在保证质量的情况下,提高一些速度。

5、对于记公式,有一种很好的方法,你可以将精华版课程中标为红色的公式集中写在一个卡片上,放在身上,随时拿出来记一下。

很多同学上下班的途中,回忆一下公式,记不起来时,就拿出卡片来看一下,效果非常好!!你一定要严格按我上面说的方法来学习,刚开始可能觉得有点麻烦。

但这是之前很多同学通过实践后的成功总结,只要你坚持使用,也一定能考过。

问老师学习精华版课程时,有不懂的,请注意看一下课程中的“详细解析”。

如果还是看不懂,请通过截图来提问(第几章第几个知识点)。

概率论及数理统计学习心得

概率论及数理统计学习心得

概率论及数理统计学习心得这个学期我们学习了概率论及数理统计这一门课。

对于我们来说,这是一门非常重要的课程,对于我们的学习,科研以及生活都有一定的指导意义。

下面我就谈一谈我对这门课的学习心得。

一概率论简史概率论的起源与赌博问题有关。

16世纪,意大利的学者吉罗拉莫•卡尔达诺开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家赢。

按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。

后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。

当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。

然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。

使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。

随后棣莫弗和p.s.拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。

拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。

高等概率论的一些学习心得兼推荐一些相关书籍

高等概率论的一些学习心得兼推荐一些相关书籍

高等概率论的一些学习心得兼推荐一些相关书籍高等概率论的一些学习心得兼推荐一些相关书籍_教育学_高等教育_教育专区学习概率已经有快 2 年了,几乎查阅了所有跟概率相关的书籍,到目前为止没有找到我认为特别好的。

有人认为Feller 的概率论及其应用是经典,我买了两本中译本,对我来说帮助不大。

看了程士宏的测度论与概率论基础,反而有所收获。

下面是我转载的一片网文,里面认为的现代型是我追求的目标,也就是说希望从测度论和实分析的角度去理解概率这门学科。

高等概率论的一些学习心得兼推荐一些相关书籍一般人们对概率论这门学科的理解可以划分为三个层次:1--古典型--未受过任何相关训练的人都属于此类,他们只能够理解一些离散的(古典的)概率模型;2--近代型,通常指学过概率论基础的非数学专业理科生,他们从微积分的角度理解各种连续分布,概率模型的数字特征;3--现代型,这类人能够抽象地从测度论和实分析高度理解这门学科,任何数学专业的本科毕业生达不到这个层次都是可耻的。

建立在测度基础上的概率论通常所谓的高等概率论。

而我的主要目的就是为希望学习高等概率的学生--选择适合自己的书籍--提供些许帮助。

选一本适合自己的好的教材对自己以后的学习是决定性的重要--这是学数学的人首先必须明白的--不仅是对概率方向,对数学的各个分支都是如此。

大一的时候齐名友老师跟我特别提到过这一点,可惜我当时不以为然,结果走了很多弯路,到研究生以后才慢慢明白这个道理。

一本山寨小学校的老师七拼八凑编写的烂书,常常对学习(特别是自学)不仅无益反而有害,因为你往往浪费了时间却只能得到这个一些支离破碎的印象,这样你会遗忘得很快,很可能到头来你还得重新学一遍;另一些时候,你选择了众人推荐的名著,但你如果当前的水平达不到一定的层次,它往往会打击你的信心让你灰心丧气,甚至会让你不再有学下去的欲望。

这两种情形显然都是人们应该尽量避免的。

需要指出的是,有的书适合作教材,有的书却只适合作参考书;就算都是教材,它定位的读者群体也可能不一样。

概率科普书籍

概率科普书籍

概率科普书籍
以下是一些关于概率的科普书籍,希望对您有所帮助:1. 《概率论与数理统计》(陈希孺著):这是一本经典的概率论教材,内容深入浅出,适合初学者学习。

2. 《概率论入门》(于allis 著):这本书用通俗易懂的语言介绍了概率论的基本概念和方法,适合没有数学背景的读者阅读。

3. 《随机漫步的傻瓜》(纳西姆·塔勒布著):这本书用生动有趣的故事和例子介绍了概率论的应用,包括金融、投资、生活等方面。

4. 《醉汉的脚步——随机性如何主宰我们的生活》(列纳德·蒙洛迪诺著):这本书用幽默风趣的语言介绍了概率论的基本概念和方法,以及它们在生活中的应用。

5. 《机会的数学原理》(约翰·黑格著):这本书介绍了概率论的基本概念和方法,以及它们在赌博、金融、决策等方面的应用。

这些书籍都可以帮助读者了解概率论的基本概念和方法,并应用到实际生活中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等概率论的一些学习心得兼推荐一些相关书籍zz
2010-10-09 15:58 星期六
学习概率已经有快2年了,几乎查阅了所有跟概率相关的书籍,到目前为止没有找到我认为特别好的。

有人认为Feller的概率论及其应用是经典,我买了两本中译本,对我来说帮助不大。

看了程士宏的测度论与概率论基础,反而有所收获。

下面是我转载的一片网文,里面认为的现代型是我追求的目标,也就是说希望从测度论和实分析的角度去理解概率这门学科。

高等概率论的一些学习心得兼推荐一些相关书籍
一般人们对概率论这门学科的理解可以划分为三个层次:1,古典型--未受过任何相关训练的人都属于此类,他们只能够理解一些离散的(古典的)概率模型;2--近代型,通常指学过概率论基础的非数学专业理科生,他们从微积分的角度理解各种连续分布,概率模型的数字特征;3--现代型,这类人能够抽象地从测度论和实分析高度理解这门学科,任何数学专业的本科毕业生达不到这个层次都是可耻的。

建立在测度基础上的概率论通常所谓的高等概率论。

而我的主要目的就是为希望学习高等概率的学生--选择适合自己的书籍--提供些许帮助。

选一本适合自己的好的教材对自己以后的学习是决定性的重要--这是学数学的人首先必须明白的--不仅是对概率方向,对数学的各个分支都是如此。

大一的时候齐名友老师跟我特别提到过这一点,可惜我当时不以为然,结果走了很多弯路,到研究生以后才慢慢明白这个道理。

一本山寨小学校的老师七拼八凑编写的烂书,常常对学习(特别是自学)不仅无益反而有害,因为你往往浪费了时间却只能得到这个一些支离破碎的印象,这样你会遗忘得很快,很可能到头来你还得重新学一遍;另一些时候,你选择了众人推荐的名著,但你如果当前的水平达不到一定的层次,它往往会打击你的信心让你灰心丧气,甚至会让你不再有学下去的欲望。

这两种情形显然都是人们应该尽量避免的。

需要指出的是,有的书适合作教材,有的书却只适合作参考书;就算都是教材,它定位的读者群体也可能不一样。

每个人都应该根据自己的实际情况做出选择。

一般好书大多都是国外的,所以如果有可能最好去看国外的原版书,就算没有这个能力也应该去锻炼这个能力。

读原版书其实没看起来的那么难,你不需要懂得任何高深的语法,记熟100个单词/词组就能轻易上手,记熟300个你就能在大多数情况下不需要字典了。

我记得我法语学了不到一年就来到法国读书,老师上课基本听不懂,只能自己找书看,而图书馆里绝大多数参考书都是法语的(当时不知道在网上找书)。

按说我当时法语应该比大多数中国大学生英语要远差,但我抱着一本法语的拓扑书回家一边查字典一边看,两三天就完全适应了。

真正看外文原版书,要克服的首要困难永远都是数学本身,而不是生词或者语法。

我推荐的学习方法是这样的:读一本简单而直观的入门书,这样能比较容易地把握一个领域的主干,明白它要达到哪些目的,通过什么样的方法,关键性的定理有哪些;等掌握大体框架之后再找一本详尽而严密的教材慢慢推敲其细节。

中文的书我没什么好推荐的--在国内的时候看的书质量都不高(当时抱着一本书就看,对好书和烂书也没有概念)而出国之后就没再看过中文书了。

我依稀记得汪嘉冈的《现代概率基础》还不错,其它的我就不知道
了。

对于外文书,我倒是有很多可以推荐。

这样我首先要推荐的是David Williams写的Probability with martingales。

书写得很薄,严格意义上说它不是一本教材,但完全可以把它当做现代概率论和鞅理论的入门书来看。

我觉得很少有书能够写得象它那样把严密性,直观性以及趣味性完美的融合到一起,并且自成体系(即所谓self-contained,就是说你不需要一边看这本书一边在别的书里寻找相关定理,定义或者其它背景知识)。

它只引入对主题有帮助的概念,因此这样读者就可以不必顾及细枝末节从而能够快速领悟其精髓。

等你入门之后,可以看的进阶级书就很多了,比如Chung Kai Lai的A course in probability theory。

测度论的基础对于高等概率以及随机过程的学习无疑是很重要的,尽管刚开始的时候你完全可以跳过许多内容(单调类定理,测度的扩张定理,radon-nikodym定理等),但真正想把这个方向学好的人最后一定还是得回头啃这些相对枯燥的基础知识。

我看过严加安的《测度论讲义》和halmos的测度论,个人感觉后者更友善些,并且更适合自学。

严的书里,开篇就罗列一大串定义:什么是pi类,半环,半代数,sigma代数,单调类,lamda类,再罗列它们的一些性质,诸如a推b,b推c,c推d,d推a之类,我以为这样不容易让人抓住重点。

测度论理真正重要的集类首先是sigma代数和pi类,然后是单调类和代数,其它的集类不知道也罢。

看书除了看教材,当然还得找几本参考书以备不时之需。

剑桥出的Grimmett和Stirzaker 合著的probability and random process,其特点是例子和习题详尽而丰富,从经典的概率论逐步过度到现代的测度空间。

它虽然名为本科生教材,但我觉得其内容之丰富使其作为阶段性的参考资料已经绰绰有余了。

然后是大名鼎鼎的Feller的两本An introduction to probability theory,公认的经典。

其特点是通过大量的实例讲叙了许多概率论和随机过程在现实中的应用,以及各种概率模型的由来及其推导,据说适合从本科生到博士生的一切人群。

但feller 的书写成已经有半个世纪之久,因此一些内容还是显得太陈旧了。

想看更现代一点的参考书的话,我推荐Kallenberg的Foundations of modern probability。

这是一本很新的书,也是一本名副其实的参考书--因为它只能作参考书--仅600页竟然就讲完了概率论各个大大小小分支的主要内容,书里你可以找到几乎所有的重要定理,命题,及其证明。

如果你能把书基本看懂,那你已经可以算差不多入门了;如果你能闭着眼睛说出任何一个定理的证明思路,那么恭喜你,你已经学有小成。

但是仅仅看书显然是不够的,想要学得好,学得牢,无论如何你还得做一定量的相应的习题--计算题为辅,证明题为主,并且要勤于思考养成习惯。

为了一道题如果你的思考时间还不到一个甚至半个就放弃而去翻答案,那么根本就不算你曾为这个问题花费过努力--事实上如果你不认真思考,那么你会觉得所有的答案,所有的证明都只不过是理所当然的,trivial的,从而你也不会领悟到真谛。

其它没啥了。

哪天有心情再说说随机分析吧。

相关文档
最新文档