概率论学习心得总结

合集下载

概率论学习心得(精选6篇)

概率论学习心得(精选6篇)

概率论学习心得概率论学习心得(精选6篇)概率论学习心得篇1不少人特别是初学者总感到概率统计难学,不知怎么才能学好,摸不着头绪,比较着急。

有人还问:学概率统计有什么窍门?总之,都渴望得到一种好的学习方法,从而学好概率统计。

概率论是研究随机现象的统计规律性的数学学科。

由于问题的随机性,从这个意义上讲,也可以说有点难学。

这正是不少人害怕概率的原因。

但随机现象是有规律可循的,概率论正是研究它的这种规律性的,只要抓住它的规律,概率论也就不难学了。

学习概率统计要抓三个基本:基本概念,基本方法,基本技巧。

基本概念包括基本定义,基本原理和定理。

特别要注意如何将实际问题转化成概率模型。

这就要求对实际问题的性质,特点和概率论的概率都有充分的了解和认识,这样才能将两者互相联系起来,建立实际问题的数学模型,然后用概率论的方法解决问题。

基本方法包括基本的分析问题的方法,基本公式和基本的计算方法,这是解决问题必不可少的。

它建立在对基本概率充分理解的掌握和基础上,什么样的模型用什么样的方法,这是必须搞清的。

基本技巧,实际上就是灵活巧妙地解决问题的某些方法,基本方法运用掌握的好,也能总结出一些基本技巧。

基本技巧对提高学习效率是有好处的。

学习概率统计的方法要注意三多:多思,多练,多比。

多思,就是多想,多动脑筋,包括从多方面想。

问题多是比较复杂的,只有多思多想,从多方面想,正着想,反着想,反复地想,才能悟出问题的实质。

多练:多练的直接意思就是多做题,做足够数量的题目,特别是不同类型的题目。

必须有足够的数量,才能达到对问题的方法,熟能生巧,但多练时也要多思多想,光练不想是不行的。

这里要特别提出一题多解的方法,就是一个题目要尽量多想出一些不同的方法来解决。

这是一种效率高,效果好的学习方法,对提高能力,开放智力大有好处。

多练时还要多总结,及时总结。

多比:多比就是多比较。

同类型的问题的比较,不同类型问题的比较,自己的方法和书上的比较,和老师比较,和同学比较,等等,总之,可多方面比较,有比较才有鉴别,有比较才能有提高。

概率论学习心得总结

概率论学习心得总结

概率论学习心得总结概率论是一门研究随机现象的学科,它在现代科学和工程中起着重要的作用。

在这门课程中,我学习了概率论的基本概念和方法,并通过大量的练习和实例加深了对概率论的理解。

以下是我在学习概率论过程中的一些心得总结。

1. 概率的基本概念概率是描述随机现象发生的可能性的数值。

在概率论中,我们用事件、样本空间和概率空间来描述随机现象。

•事件是指样本空间中的一个子集,表示某个特定的结果或一组结果。

•样本空间是指所有可能结果的集合。

•概率空间是指对于每个事件,都有一个非负实数与之对应,满足一定的概率公理。

2. 概率的计算方法概率的计算方法包括经典概型、条件概率、乘法原理和全概率公式等。

•经典概型是指所有可能结果等概率出现的情况,通过计算事件包含的基本结果数量与样本空间的基本结果数量之比来计算概率。

•条件概率是指在已知某些条件下,某个事件发生的概率。

条件概率的计算公式为P(B|A) = P(A∩B) / P(A),其中 A 和 B 是两个事件。

•乘法原理是指计算多个事件同时发生的概率,乘法原理的计算公式为P(A∩B) = P(A) * P(B|A)。

•全概率公式是指当事件可以划分为多个互斥事件时,通过计算每个互斥事件发生的概率乘以其条件概率之和来计算事件的概率。

全概率公式的计算公式为P(B) = Σ P(A_i) * P(B|A_i),其中 A_i 是样本空间的一个划分。

3. 随机变量和概率分布随机变量是指对随机现象结果的数值描述。

在概率论中,随机变量分为离散随机变量和连续随机变量。

•离散随机变量是指取有限或可数个数值的随机变量。

离散随机变量的概率分布可以通过概率分布列或概率质量函数来描述。

•连续随机变量是指在一定范围内可以取无限个数值的随机变量。

连续随机变量的概率分布可以通过概率密度函数来描述。

在学习中,我通过解决各种问题和练习,掌握了离散随机变量和连续随机变量的概率计算方法,如求期望、方差和概率密度等。

概率论学习感受及总结

概率论学习感受及总结

通信H15041510920830概率论学习感受吴亦欣概率问题是研究随机现象统计规律性的学科, 是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,因此掌握基本的概率论与数理统计知识并加以灵活运用是非常必要的。

下面是我通过半个学期的课程的学习对概率论的一些总结。

一、概率论的发展史概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。

都是接近生活实践的概率应用实例。

概率论是一门研究随机现象规律的数学分支。

其起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。

数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局[a < s],而赌徒B赢b局[b < s]时,赌博中止,那赌本应怎样分才合理呢?”于是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年后,即1657年,荷兰的另一数学家惠根斯[1629-1695]亦用自己的方法解决了这一问题,更写成了《论赌博中的计算》一书,这就是概率论最早的论着,他们三人提出的解法中,都首先涉及了数学期望[mathematical expectation]这一概念,并由此奠定了古典概率论的基础。

使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布-伯努利[1654-1705]。

他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有越趋稳定的趋势”。

这一定理更在他死后,即1713年,发表在他的遗著《猜度术》中。

到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗—拉普拉斯定理”。

这就是概率论中第二个基本极限定理的原始初形。

概率论与数理统计学习心得标准(3篇)

概率论与数理统计学习心得标准(3篇)

概率论与数理统计学习心得标准概率论与数理统计是一门非常重要且广泛应用于各个学科领域的数学课程。

在学习过程中,我深刻体会到了概率论与数理统计的理论知识对于实际问题的解决以及决策的帮助是非常大的。

下面我将结合自己的学习经验,总结出概率论与数理统计学习的心得体会。

首先,概率论与数理统计的学习需要具备坚实的数学基础。

概率论与数理统计的内容涉及到概率、随机变量、概率分布、数理统计、估计与检验等多个方面的知识,这些内容的掌握需要对数学有一定的基础和思维能力。

在学习概率论与数理统计之前,我提前巩固了概率论、高等数学和线性代数等相关的数学知识,确保自己可以更好地理解和应用概率论与数理统计的知识。

其次,概率论与数理统计的学习需要注重理论与实践的结合。

概率论与数理统计的学习不仅仅是掌握理论知识,更需要通过实际问题的分析与解决来加深对概率论与数理统计的理解。

在学习过程中,我注重将理论知识与实际问题相结合,通过做习题和实际案例分析来巩固和应用所学知识。

通过实践,我深刻体会到了概率论与数理统计的实际应用价值,也提高了自己的问题分析和解决能力。

第三,概率论与数理统计的学习需要注重逻辑思维的训练。

在概率论与数理统计的学习过程中,逻辑思维是非常重要的。

概率论与数理统计的知识体系较为复杂,需要运用逻辑思维进行推理和证明。

在学习过程中,我注重培养自己的逻辑思维能力,通过大量的例题和练习题来提高自己的逻辑思维能力和解题能力。

同时,我也注重与同学之间的讨论和交流,通过互相分享想法和思路,进一步提高自己的逻辑思维和解题能力。

第四,概率论与数理统计的学习需要注重实践应用能力的培养。

概率论与数理统计的知识是为了解决实际问题而存在的,只有将所学的知识应用到实际中才能发挥其真正的价值。

在学习过程中,我注重通过实际案例的分析和解决来培养自己的实践应用能力。

我参与了一些数理统计建模和数据分析的项目,在实践中学习和应用概率论与数理统计的方法和技巧,进一步提高自己的实践应用能力。

概率论学习心得

概率论学习心得

概率论学习心得概率论是数学中的一个重要分支,它涉及随机现象及其统计规律的探究。

在学习概率论的过程中,我不仅掌握了一些基本的概率计算和统计分析方法,还深化了对随机现象的理解,有一些心得和体会,在此与大家分享。

首先,概率论的基础概念是理解整个学科体系的关键。

在学习概率论初期,我花费了大量时间在理解和掌握基础概念上,如事件、独立性、条件概率、贝叶斯公式等。

这些概念是构建概率论大厦的基石,只有充分理解和掌握了这些概念,才能更好地理解和应用概率论。

其次,概率论中有一个重要的思想,那就是“随机性”。

概率论所研究的现象往往具有不确定性,这种不确定性有时会带来无法预测的结果。

但是,通过概率论的学习,我了解到虽然单个事件的结果可能无法预测,但只要我们掌握了大量事件的统计规律,就可以利用这些规律对未来事件进行预测。

这种“随机性”的思想对于我理解和接受生活中的不确定性和变化有很大的帮助。

再者,概率论中的许多知识是与我们的日常生活息息相关的。

比如,概率论中的大数定律、中心极限定理等在保险、金融等领域有着广泛的应用。

通过对这些知识的学习,我深刻体会到了概率论在解决实际问题中的重要性。

同时,通过对这些实际问题的了解和学习,也让我更好地理解了概率论中的理论知识。

然后,概率论是一种严谨的数学科学。

在学习概率论的过程中,我深刻体会到了数学的严谨性和逻辑性。

每一个概念都有其精确定义,每一个定理都有其严格的证明过程。

这种严谨性不仅让我在学习概率论时避免了许多错误,也让我在对待生活中的问题时更加谨慎和理性。

最后,我认为学习概率论最大的收获是培养了一种理性的思维方式。

在面对生活中的问题时,我们不能只看到表面现象,而应该深入分析其本质和规律。

概率论就是一种帮助我们理解和分析随机现象的思维方式。

通过概率论的学习,我学会了如何从繁杂的信息中提炼出关键要素,如何设计实验和分析数据,以及如何根据已有的经验对未来进行预测。

这种理性的思维方式不仅在学术上有用,在日常生活中也同样重要。

概率论心得体会

概率论心得体会

概率论心得体会概率论是一门研究随机现象的数学学科,它具有广泛的应用。

在学习和实践过程中,我对概率论有了一些深刻的体会和心得,总结如下。

首先,概率论教会了我如何量化不确定性。

在现实生活中,有很多事情是随机发生的,我们无法准确预测它们的结果。

通过概率论的学习,我了解到可以用概率来描述和度量不确定性。

概率越高,表示事件发生的可能性越大,反之亦然。

在决策和风险管理中,准确评估不确定性是非常重要的,因为它可以帮助我们权衡利益和风险。

其次,概率论让我明白了大数定律的意义。

大数定律告诉我们,当重复进行一个随机实验时,随着实验次数的增加,实验结果会逐渐接近其理论概率。

也就是说,虽然单次实验的结果是随机的,但当我们进行足够多的实验时,结果的平均值会趋向于某个期望值。

这个观点对于依靠统计学方法进行决策和推断的方法至关重要,因为它确保了我们的实验结果是可靠的。

概率论还教会了我如何计算复杂问题的概率。

在概率论中,有很多计算方法和技巧可以帮助我们解决不同类型的问题,比如排列组合、条件概率、贝叶斯定理等。

通过学习这些方法,我可以更加灵活地运用概率论来解决现实生活中的问题,比如在赌场中计算赢的概率,或者在生产过程中预测产品的质量。

此外,概率论的学习还增强了我的逻辑思维能力。

在概率论中,我们需要用符号和公式来描述问题,并通过逻辑推理来分析和解决问题。

这样的学习让我更加注重细节和逻辑的思考,提高了我在解决问题时的准确性和效率。

最后,概率论还开阔了我的思维,让我看到了事物的多样性和复杂性。

在现实生活中,有很多事件的发生涉及到多个因素的影响,这就需要我们将这些因素加入到概率模型中进行计算。

通过学习概率论,我可以更好地理解和分析这些复杂现象,并找到合适的数学模型来描述它们。

这样的思维方式使我能够从更宏观的角度来看待问题,并提供更全面和准确的解决方案。

总的来说,概率论是一门非常重要和实用的数学学科,它不仅为我们提供了量化不确定性的工具,还培养了我们的逻辑思维能力和问题解决能力。

概率论心得体会

概率论心得体会概率论是一门研究随机现象和随机事件发生规律的学科。

在学习概率论的过程中,我收获颇多,获得了许多体会和感悟。

首先,概率论教会了我如何正确地去认识和描述随机现象。

在日常生活中,我们常常会遇到一些带有随机性的事件,比如掷硬币、抛骰子等等。

通过学习概率论,我明白了这些事件背后的规律性和可预测性,并学会了如何用概率来描述和量化这些事件的发生概率。

概率论的基本概念,如样本空间、事件、概率等,可以帮助我更加准确地分析和理解随机现象,提高我对未知事物的认识和预测能力。

其次,概率论教会了我如何正确地利用概率统计的方法去解决实际问题。

在现实生活中,我们常常会遇到一些复杂的问题,而概率统计的方法可以帮助我们更好地解决这些问题。

通过学习概率论,我掌握了一些常见的概率分布,比如二项分布、正态分布等,以及相应的概率计算方法。

这些概率统计的方法可以帮助我们预测和估计未知事件的发生概率,并且可以用于数据分析和决策制定等方面。

再次,概率论教会了我如何正确地进行概率推理和推断。

概率论告诉我,人类对于随机事件的理解和判断往往是有偏差的,很容易被主观感觉和经验所左右。

因此,在进行概率推理和推断的时候,我们需要遵循一些基本的概率原理和方法,以避免错误的判断和决策。

通过学习概率论,我学会了如何正确地利用贝叶斯定理、最大似然估计等概率推理的方法,提高了我的推理和判断能力。

最后,概率论教会了我如何正确地评估和管理风险。

在现实生活中,风险是无处不在的,有时我们需要面对各种不确定性的风险。

概率论告诉我,我们可以通过概率统计的方法来评估和管理这些风险,以减少可能的损失和负面影响。

通过学习概率论,我学会了如何通过风险评估和概率计算的方法,对各种不确定性因素进行量化和分析,从而制定出更加合理和科学的风险管理策略。

综上所述,学习概率论让我更好地认识和理解随机现象,掌握了概率统计的方法,提高了概率推理和推断的能力,以及评估和管理风险的能力。

这些收获和体会不仅在学术理论上有所帮助,也在实际生活中具有重要的意义和价值。

概率论教学实践心得体会(3篇)

第1篇一、引言概率论作为数学的一个重要分支,广泛应用于自然科学、工程技术、社会科学等领域。

在我国高等教育中,概率论是数学专业和部分非数学专业的基础课程。

作为一名概率论教师,我深知概率论教学的重要性。

在教学实践中,我不断总结经验,现将心得体会分享如下。

二、概率论教学目标1. 培养学生的数学思维能力:通过概率论的学习,使学生掌握概率论的基本概念、基本理论和基本方法,提高学生的数学思维能力。

2. 培养学生的实际应用能力:概率论在实际生活中有着广泛的应用,通过教学,使学生能够将概率论知识应用于实际问题,提高学生的实际应用能力。

3. 培养学生的创新能力:概率论是一门具有挑战性的学科,通过教学,激发学生的创新意识,培养学生的创新能力。

三、概率论教学策略1. 注重基础知识的讲解:在概率论教学中,首先要注重基础知识的讲解,使学生掌握概率论的基本概念、基本理论和基本方法。

例如,在讲解概率的定义时,要引导学生理解概率的客观性和随机性,以及概率与频率之间的关系。

2. 强化数学思维的训练:概率论教学过程中,要注重数学思维的训练,培养学生的逻辑推理、归纳总结、演绎证明等能力。

例如,在讲解条件概率时,引导学生运用条件概率的定义进行证明,提高学生的逻辑思维能力。

3. 结合实际案例,提高学生的应用能力:概率论在实际生活中有着广泛的应用,教师在教学中要结合实际案例,引导学生将概率论知识应用于实际问题。

例如,在讲解随机变量及其分布时,可以引用天气预报、彩票中奖等实例,使学生了解概率论在现实生活中的应用。

4. 创设问题情境,激发学生的创新意识:在概率论教学中,要创设问题情境,激发学生的创新意识。

例如,在讲解大数定律和中心极限定理时,可以引导学生思考如何将这些定理应用于实际问题,培养学生的创新能力。

5. 运用多种教学方法,提高教学效果:在概率论教学中,要运用多种教学方法,如讲授法、讨论法、案例分析法等,提高教学效果。

例如,在讲解随机变量的期望和方差时,可以采用讲授法介绍基本概念和性质,然后通过讨论法引导学生运用期望和方差解决实际问题。

概率论与数理统计 学习心得(4篇)

概率论与数理统计学习心得概率论与数理统计是一门非常重要的数学课程,通过学习这门课程,我对概率论和统计学有了更深入的理解。

在学习的过程中,我遇到了不少困难和挑战,但是通过努力和坚持,我逐渐克服了这些困难,取得了一些进步。

首先,在学习概率论的时候,我发现最困难的是理解概率的概念和计算方法。

概率是描述随机事件发生可能性大小的数值,通过学习概率分布、事件独立性和条件概率等概念,我对概率的理解逐渐深入。

但是,计算概率的方法和公式很多,有时候很难确定使用哪种方法,这给我造成了一定的困扰。

为了克服这个困难,我重点学习了概率计算的常用方法,如排列组合、二项分布、泊松分布等,并且通过大量的练习加强了对这些方法的掌握。

其次,在学习数理统计的时候,我觉得最困难的是理解和应用抽样分布的概念。

抽样分布是指从总体中抽取一定数量的样本,然后对样本进行统计推断。

对于不同的总体和样本容量,抽样分布的形式和性质都不一样。

我通过学习正态分布、t分布和卡方分布等抽样分布的性质和应用,逐渐掌握了如何通过样本对总体进行推断的方法。

同时,我也通过实例分析和模拟实验等方法,加深了对抽样分布的理解和掌握。

此外,在学习数理统计的过程中,我还遇到了处理实际问题的困难。

数理统计是将概率论的方法应用到实际问题中,通过收集和分析数据,对总体进行推断和决策。

在实际问题中,要根据实际情况选择合适的方法和模型,并进行假设检验和置信区间估计。

这需要我对问题进行合理的抽象和建模,并运用数学方法进行计算和分析。

在实际问题中,往往还需要考虑数据的质量和可靠性,对数据进行清洗和处理。

通过不断的实践和探索,我逐渐提高了解决实际问题的能力。

总的来说,通过学习概率论与数理统计,我不仅掌握了其中的概念和方法,还培养了分析问题和解决问题的能力。

概率论与数理统计是一门与生活密切相关的学科,它在风险管理、市场预测、医学诊断等领域都有广泛的应用。

我相信通过将所学知识运用到实际问题中,并不断学习和实践,我可以不断提升自己在这个领域的能力,并为社会做出积极的贡献。

概率论学习心得

概率论学习心得概率论是我们在学生时代经常遇到的数学知识,但是,随着人们越来越注重统计数据和分析,概率论已经成为了很多行业和领域必不可少的工具。

在本文中,我将分享我的概率论学习心得,并提供一些有用的方法来帮助学生更好地掌握这个领域的知识。

首先,我想强调的是,概率论是一门需要理性思考的学科。

这意味着你必须掌握一些基本的数学概念,例如:统计学、线性代数、微积分等。

如果您不太了解这些基本概念,那么在学习概率论时您可能会遇到一些困难。

所以,我建议学生掌握一些基本的数学知识之后再开始学习概率论。

其次,我们需要了解的是概率论的概念和定义。

概率论的主要研究对象是随机现象,也即是在一定条件下,可能出现多种结果的现象。

例如,掷硬币的结果可能是正面或背面,扔骰子的结果可能是1、2、3、4、5或6。

我们使用概率来描述可能发生的各种结果的相对可能性。

因此,学生应该清楚理解概率和概率分布、概率密度函数等基本概念,并能举几个例子帮助加深理解。

其次,我们需要了解的是一些基本的统计分布和实践技巧。

在实际的问题中,概率论的常用工具包括各种分布、假设检验、置信区间、回归模型等。

学生应该知道如何使用这些工具来分析和解决实际问题。

最后,我想提供一些学习和应用概率论的技巧。

首先,尽可能地多做一些例题来加深对概率论的理解。

其次,关注实际问题,并尝试使用概率论解决问题。

最后,重要的是要保持耐心,因为概率论是一门需要长期持续学习的学科。

总之,对于学习概率论的学生,了解基本概念和定义、掌握基本数学知识、学会使用相应的工具、多增加实践经验是至关重要的。

我们应该坚持在日常学习和实践中应用这些技巧,来加深我们对于概率学的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除概率论学习心得总结篇一:《概率论与数理统计》课程学习心得《概率论与数理统计》课程学习心得1004012033陈孝婕10计本3班有人说:“数学来源于生活,应用于生活。

数学是有信息的,信息是可以提取的,而信息又是为人们服务的。

”那么概率肯定是其中最为重要的一部分。

巴特勒主教说,对我们未来说,可能性就是我们生活最好的指南,而概率即可能。

概率论与数理统计是现代数学的一个重要分支。

近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。

主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。

极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。

概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。

应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。

本研究方向在学习概率论、统计学、随机过程论等基本理论的基础上,致力于概率统计理论和方法同其它学科交叉领域的研究,以及统计学同计算机科学相结合而产生的数据挖掘的研究。

此外,金融数学也是本专业的一个主要研究方向。

它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。

生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。

第一个人去抽,他的中奖概率是25%,结果没抽到。

第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。

第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。

由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。

但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。

同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。

但这概率的大小却很能影响人做事的心态。

如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。

把地球给撬起来,这在大多数人眼里是绝对不可能的。

但在牛人亚里士多德眼里,他觉得成功做这事的概率那是100%——绝对没问题,只要你给他一个支点和足够长的杠杆。

就像前面提到的抽奖一样,25%、33%和50%这些概率只不过是外界针对这个群体给出的。

25%的机率同样能中奖,50%的机率也会不中奖,对于抽奖者个人而言,没有概率大小之分,只有中与不中之分。

别人说做这件事相当容易,切莫掉以轻心,也许你做这件事会相当困难。

大家都说做这件事相当困难,切莫心灰意冷,也许你做这件事能如鱼得水。

成功与否,不在概率大小,而在于自己能否清楚地认识自己:容易的事自己是否具有做这件事必备的素质,困难的事自己是否有克服这个困难的潜质。

人们常说:“希望越大,失望越大”,此话并不无道理。

希望越大,成功的概率就越大,由此而麻痹了人的心态——以为如此大的概率也是自己能够成功的筹码,这样在思想和行为上就会有所懈怠。

自以为十拿九稳的事,到头来却把事情弄砸了。

这并不奇怪,因为所谓的“概率大”已逐渐由“希望”转移到“失望”上面了。

一说到把这件事做好的概率微乎其微,做事的人难免心灰意冷,因为觉得机会渺茫。

因此而丧失了克服困难的意志,觉得事情做不好那是理所当然。

学好《概率论与数理统计》这门课程,其实有很大的作用,它会对你日常生活中一些涉及概率方面的问题有更加深刻的体会,其他方面也有很多应用,比如现实生活中的彩票问题,可以利用概率的知识来建立数学模型,通过现在电脑的仿真来模拟实际的抽奖,当然这方面需要更加专业的知识了,如果要想得到更加精确的结果,建立的模型就会更加复杂!篇二:概率论与数理统计学习的感想概率论与数理统计学习的感想概率问题是研究随机现象统计规律性的学科,是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,科学家对实验统计的数据的分析,企业对产品质量检查,产品的市场分析,人口普查,有奖债券,国家彩票等等都用到了概率与统计学的基本知识;许多政治选举的结果,医疗上的决定也取决于统计的数据,因此掌握基本的概率论与数理统计知识并加以灵活运用非常必要。

由于高中学过排列组合、概率统计的一些基本知识,并且生物课程中遗传学中也接触到了概率的一些知识,所以开始上概率课时并没有太大压力,基本上是在高中的基础上更深入地学习概率的有关知识。

高中学习的是古典概型,等概事件,离散型随机变量,是最基础的,而大学学到的是更一般的概率统计知识,适用范围也更广。

高中的一些思维模式必须转变才能适应大学的学习:在高中某一事件概率为0等价于该事件不可能事件,某一事件的概率为1就等价与该事件是必然事件,而大学中学过几何概率后才知道高中学的不全对,几何概率中边界上概率为0但也可能发生。

学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。

因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。

随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。

比如大赛前选拔选手才赛,对某产品的质量估计等。

当一些随机变量的分布不易求出或不需要知道随机变量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。

随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了随机变量离开其平均值的平均偏离大小,反映了随机变量的稳定性。

比如灯泡的寿命这一随机变量的数学期望越大,方差越小其品质也越好,一名学生的成绩的数学期望越大,方差越小说明其成绩越好越稳定。

当然并非所有的变量数学期望越大,方差越小越好,一个参赛选手的平时成绩方差越大说明其爆发力越好,比赛时他极有可能爆发,当然也有一定的风险,但这可以作为选拔选手的参考因素之一。

数理统计部分介绍了简单随即抽样等概念以及一些常用的分布喝一些参数估计方法,这些知识在生活中有许多应用,如灯具厂生产灯泡的寿命是一个随机变量,有实际生产经验可知其服从均值为μ标准差为σ的正态分布,要了解该厂的产品质量就要对参数μ和σ进行估计。

人们可以通过对一些参量的估计大概了解随机变量的分布情况。

现实生活中概率问题随处可见,学好概率论和数理统计知识十分必要,正如老师所讲,我们学到的概率统计知识仅仅是一点点皮毛,如有必要我们还需深入学习它,达到学以致用的目的,在今后的学习生活中顺利解决遇到的此类问题。

对本门课程教学的一些建议:老师可以让同学们对某一问题进行研究、调查等,试着运用所学知识解决问题;习题可以加一些定理与结论证明,让同学们真正理解定理、结论的本质。

篇三:概率论学习感受及总结概率论学习感受通信h15041510920830吴亦欣概率问题是研究随机现象统计规律性的学科,是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,因此掌握基本的概率论与数理统计知识并加以灵活运用是非常必要的。

下面是我通过半个学期的课程的学习对概率论的一些总结。

一、概率论的发展史概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。

都是接近生活实践的概率应用实例。

概率论是一门研究随机现象规律的数学分支。

其起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。

数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局[a 使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布-伯努利[1654-1705]。

他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有越趋稳定的趋势”。

这一定理更在他死后,即1713年,发表在他的遗著《猜度术》中。

到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗—拉普拉斯定理”。

这就是概率论中第二个基本极限定理的原始初形。

而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。

另外,他又和数个数学家建立了关于“正态分布”及“最小二乘法”的理论。

另一在概率论发展史上的代表人物是法国的泊松。

他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。

概率论继他们之后,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。

概率论发展到1901年,中心极限定理终于被严格的证明了,及后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。

到了20世纪的30年代,人们开始研究随机过程,而著名的马尔可夫过程的理论在1931年才被奠定其地位。

而苏联数学家柯尔莫哥洛夫在概率论发展史上亦作出了重大贡献,到了近代,出现了理论概率及应用概率的分支,及将概率论应用到不同范畴,从而开展了不同学科。

因此,现代概率论已经成为一个非常庞大的数学分支。

二、概率论定理及公式总结第一章随机事件与概率2.运算规则(1)A?b?b?AAb?bA(2)(A?b)?c?A?(b?c)(Ab)c?A(bc)。

相关文档
最新文档