催化裂化的概述
催化裂化工艺流程及主要设备

2023催化裂化工艺流程及主要设备pptcontents •概述•催化裂化工艺流程•催化裂化主要设备•工艺特点和操作规程•安全与环保•常见故障及排除方法•发展方向和新技术应用目录01概述催化裂化是一种将重质烃类转化为轻质烃类和液化气的过程,是石油化工中重要的二次加工手段之一。
催化裂化工艺主要采用流化床反应器,催化剂作为床层中的介质,在适宜的温度、压力和空速条件下进行反应。
催化裂化基本概念1催化裂化主要设备23流化床反应器是催化裂化的主要设备之一,分为单器、双器和多器系统。
反应器再生器是催化裂化中的重要设备,用于烧去催化剂表面的积炭,恢复催化剂活性。
再生器旋风分离器用于将反应和再生两个工艺流程分开,同时将催化剂从反应器物料中分离出来。
旋风分离器催化裂化工艺流程简介原料油进入反应器,在适宜的温度、压力和空速条件下进行反应。
分离出的催化剂进入再生器,烧去积炭恢复活性。
反应后的物料进入旋风分离器,将催化剂从物料中分离出来。
再生后的催化剂回到反应器物料中,继续参与反应。
02催化裂化工艺流程原料油缓冲在催化裂化工艺中,原料油首先需要进入缓冲罐,进行初步的脱水和脱盐处理。
原料油加热原料油通过加热炉加热到一定温度,以便能够进行催化裂化反应。
原料预处理催化裂化主要流程加热后的原料油被送到催化裂化反应器中,同时加入催化剂。
进料在催化裂化反应器中,原料油在催化剂的作用下发生裂化反应,生成轻质油品和小分子烃类。
裂化反应裂化反应后的油气和催化剂分离,油气进入分馏塔进行分离。
催化剂分离分离后的催化剂进入再生器烧焦再生,循环使用。
催化剂循环油气在分馏塔中根据沸点不同,分离成不同沸点的油品,如汽油、柴油和重油。
油品分馏分离出的油品通过一系列精制过程,如脱硫、脱氮、脱氧等处理,提高油品质量。
油品精制催化裂化过程中产生的气体,通过压缩、冷却和分离等步骤,得到液态烃和干气。
气体分离经过处理的油品和气体分别进入相应的储罐或装置进行储存或进一步加工。
催化裂化

胜利
0.23 0.29 <0.02 0.2~0.4 4.7 8.5 4.8 39.2
2.以重油为裂化原料时会遇到以下技术困难: ①焦炭产率高 原因是:
重油的H/C比较低,含稠环芳烃多,胶质沥青质含量高;
重金属污染催化剂 引起一系列的问题,主要有: 再生器烧焦负荷大 焦炭产率过高,会大大破坏装置的热平衡 装置能耗增大
5~10
6~8
二:催化裂化的发展过程
分解等反应生成气体、汽油等小分子产物
催化裂化反应
缩合反应生成焦炭
反应:吸热过程
催化裂化 再生:放热过程
催化裂化的发展可以分成以下几个阶段:
1.天然白土和固定床催化裂化 2.合成硅铝催化剂和移动床催化裂化
①移动床催化裂化
②流化床催化裂化
3.分子筛催化剂和提升管催化裂化
次反应
二次反应并非对我 们的生产都有利,应 适当加以控制
为了获得较高轻质油收率,不追求反应深度过大,而是在
适当反应深度的基础上对未反应原料进行回炼 “未反应原料”是指反应产物中沸点范围与原料相当的那 一部分,称回炼油或循环油 目前我国的催化裂化装置采用的反应温度一般比国外低
三:渣油催化裂化
芳香基原料油、催化裂化循环油或油浆(其中含有较多的稠
环芳烃)较难裂化,要选择合适的反应条件或者先通过预处理
来减少其中的稠环芳烃而使其成为优质的裂化原料,如循环 油可作如下处理: 加氢→含环烷烃较多→优质裂化原料 溶剂抽提分理出芳烃(化工原料)→裂化
2.复杂的平行—顺序反应
重质石油馏分
中间馏分
烷烃
烯烃
①反应速度比烷烃快得多; ②氢转移显著,产物中烯烃、尤其 是二烯烃较少。
①反应速度与异构烷烃相似; ②氢转移显著,同时生成芳烃。 ①反应速度比烷烃快得多; ②在烷基侧链与苯环连接的键上断 裂。
催化裂化技术.

①.散式流化态: 颗粒均匀地分布在整个流化床内且随着 流速的增加床层均匀膨胀,床内孔隙率均匀 增加,床层上界面平稳,压降稳定、波动很 小。因此,散式流化态是较理想的流化状态。 一般流-固两相密度差较小的体系呈现散式流 态化特征,如液-固流化床。 ②.聚式流化态: 颗粒在床层的分布不均匀,床层呈现两 相结构:一相是颗粒浓度与空隙率分布较为 均匀且接近初始流态化状态的连续相,称为 乳化相;另一相则是以气泡形式夹带少量颗 粒穿过床层向上运动的不连续的气泡相,因 此又称为鼓泡流态化。
四、催化裂化的方法 1、固定床: 反应和再生过程是在同一设备中交替进行, 属于间歇式操作。为了使整个装置能连续生产, 就要用几个反应器轮流的进行反应和再生。因 此这种装置的设备结构复杂,生产能力小,钢 材耗量大,操作麻烦,工业上早已被淘汰。 2、移动床: 移动床催化裂化,使用直径约3mm的小 球催化剂,起初是用机械提升的方法在两器间 运送催化剂,后来改为空气提升,生产能力较 固定床大为提高,产品质量也得到改善。由于 催化剂在反应器和再生器内靠重力向下移动, 速度缓慢,所以对设备磨损较小,不过移动床 的设备结构仍比较复杂,钢材耗量比较大。
催化裂化技术
第一章 概述
一、催化裂化技术 二、催化裂化技术发展状况 三、催化裂化反应类型 四、催化裂化的方法 五、催化裂化的目的及意义
第二章 工艺叙述
一、反应-再生系统 二、分馏系统
三、吸收—稳定系统
四、余热锅炉系统 五、反应系统主要设备
第一章
概述
一、催化裂化技术 催化裂化(Fluid Catalytic Cracking)是石油炼制 过程之一,是在热和催化剂的作用下使重质油发生裂 化反应,转变为裂化气、汽油和柴油等的过程。催化 裂化原料是原油通过原油蒸馏(或其他石油炼制过程) 分馏所得的重质馏分油;或在重质馏分油中掺入少量渣 油,或经溶剂脱沥青后的脱沥青渣油;或全部用常压渣 油或减压渣油。在反应过程中由于不挥发的类碳物质 沉积在催化剂上,缩合为焦炭,使催化剂活性下降, 需要用空气烧去(见催化剂再生),以恢复催化活性, 并提供裂化反应所需热量。催化裂化是石油炼厂从重 质油生产汽油的主要过程之一。所产汽油辛烷值高 (马达法80左右),裂化气(一种炼厂气)含丙烯、 丁烯、异构烃多。
催化裂化工艺流程与设备

气体分离
将反应生成的气体进行分离,得到高纯度的氢气、一氧化碳等。
液体产品分馏
将液体产品进行分馏,得到不同沸点的汽油、柴油等。
催化剂再生
对失活的催化剂进行再生处理,恢复其活性,实现催化剂的循环 利用。
05
催化裂化设备
反应器种类与结构
固定床反应器
固定床反应器中催化剂固定在反应器内,原料油自下而上通过催化剂床层进行 反应。其结构简单,操作方便,但催化剂不易更换,适用于低中压、低转化率 的情况。
压缩机
压缩机是催化裂化工艺流程中的重要设备之一,用于提供 高压气体或循环气体。根据用途不同,压缩机可分为离心 式和往复式两种。
过滤器
过滤器用于过滤原料油和催化剂中的杂质,防止杂质对设 备和催化剂造成损害。根据用途不同,过滤器可分为粗滤 器和精滤器两种。
06
操作条件与优化
温度控制
温度是催化裂化工艺中的重要 参数,它影响反应速度和产品 分布。
燃料油
催化裂化过程中产生的燃料油主要包括重质燃料油和轻质燃料油,可用 于船舶、工业窑炉等作为燃料。
03
石油焦
石油焦是催化裂化过程中产生的固体副产品,主要由碳组成,具有高比
表面积和高导电性等特点。石油焦可应用于冶金、化工等领域。
03
催化裂化反应原理
裂化反应机理
链引发
在高温和催化剂的作用下 ,长链烷烃开始断裂,产 生自由基。
THANKS
谢谢您的观看
Hale Waihona Puke 如泵、压缩机、换热器等,用于实现物料 输送、热量交换等功能。
02
原料与产品
原料种类与性质
原油
作为催化裂化工艺的主要原料,原油的种类和性质对工艺流程和产品质量有着重要影响。 不同地区的原油在化学组成、物理性质等方面存在差异,因此需要针对不同原油的特点进 行相应的工艺调整。
石油加工中的催化裂化工艺技术

石油加工中的催化裂化工艺技术石油加工是将原油转化为各种石油产品的过程,其中催化裂化是一种重要的加工工艺技术。
本文将对石油加工中的催化裂化工艺技术进行介绍,旨在帮助读者更好地了解该过程的原理和应用。
一、催化裂化的概述催化裂化是将长链烃分子在催化剂的作用下裂解为短链烃分子的过程。
它通过破坏长链分子的结构,使原油中的重质烃分子转化为轻质烃分子,从而提高汽油产量。
催化裂化工艺技术在炼油行业中有着广泛的应用,并成为提高汽油产量和改善燃料质量的重要手段。
二、催化裂化的原理催化裂化过程中,催化剂起到了关键的作用。
一般采用酸性固体催化剂,如二氧化硅、氧化铝和硼砂等。
这些催化剂表面具有一定的酸性,能够吸附原油中的长链分子并发生脱氢和脱碳反应,从而裂解为短链烃分子。
此外,催化剂还能够催化裂解产物的再重组反应,生成较高辛烷值的汽油。
三、催化裂化过程催化裂化过程主要包括以下几个步骤:料油预热、加热和蒸汽气化;进料油在催化剂床层中与催化剂接触发生裂化反应;裂解产物经过分离和处理,得到目标产品;再生催化剂,使其恢复活性。
整个过程需要严格控制反应温度、压力和催化剂的质量和活性。
四、催化裂化的应用催化裂化工艺技术在炼油工业中有着广泛的应用。
通过调整反应条件和催化剂的配方,可以实现不同的生产目标,如提高汽油产量、改善燃料质量、减少环境污染等。
此外,催化裂化还可以生产出其他石化产品,如乙烯和丙烯等。
五、催化裂化的发展趋势催化裂化工艺技术在过去几十年取得了较大的进展,但仍存在一些问题和挑战。
例如,催化剂的寿命较短,需要经常更换和再生;催化裂化过程中产生的废热和废气对环境造成污染。
为了解决这些问题,近年来研发了一系列新型催化剂和工艺技术,如热解裂化和催化裂解结合等,以提高催化裂化的效率和环境友好性。
六、结论石油加工中的催化裂化工艺技术是一项重要的炼油工艺,能够将原油转化为汽油等石化产品。
催化裂化过程中,催化剂起到了关键的作用,通过裂解和重组反应实现原油的转化。
催化裂化

置里,由于催化剂老化减活及重金
属污染,催化剂活性下降,为了维 持系统内平衡催化剂活性,需要补
充新催化剂。在置换催化剂及停工
时要从系统内卸出催化剂。
反应器作用:进行催化裂化反应的场所,为反 应提供一定反应温度、反应时间和空间,是催
化裂化装置的核心设备。
沉降器作用:使来自提升管的反应油气和催化
剂分离,回收催化剂。
化剂,烟 气经集气室和双动滑阀排入烟囱。再生
烟气温度很高而且含有约5%~10% CO,为了利 用其热量,不少装置设有CO 锅炉,利用再生烟 气产生水蒸汽。对于操作压力较高的装置,常设 有烟气能量回收系统,利用再生烟气的热能和压
力作功,驱动主风机以节约电能。
装置内设有催化剂储罐的原因:
在生产中催化剂会损失,为 了维持反应再生系统内催化剂藏量, 需要定期地或经常补充新鲜催化剂。 在一些催化剂损耗很低的装
分子筛催化剂不能在床层反再系统应用的原因
分子筛催化剂活性很高,如果在流化床层中进行裂化反应,则 由于油气在床层中停留时间过长、反混严重、必然会引起过 多二次反应,结果使轻质油产率降低,焦炭产率增大。使用 分子筛催化剂时裂化反应时间只需1~4秒。采用提升管反应 器可以严格控制反应时间,而且气固混合物在提升管中高速 流动,减少反混,也减少了二次反应,充分发挥分子筛催化 剂高活性和高选择性的优点。 分子筛催化剂的提升管裂化的优越性 使用分子筛催化剂的提升管裂化比无定形硅酸铝的床层裂 化反应有明显优越性:轻质油收率高、焦炭产率低,柴油十
旋风分离器:使气固分离并回收催化剂
再生器作用:是烧去结焦催化剂上的焦炭以恢
复催化剂的活性,同时也提供裂化所需的热量。
②分馏系统 分馏系统的作用:是将反应再生系统的产物进 行分离,得到部分产品和半成品。
催化裂化工艺流程ppt

再生器是催化裂化工艺中不可或缺的部分。通过改进再生器设计,可以提高催化剂的活性 恢复效果和减少能源消耗。例如,采用高效的再生器结构和控制策略可以提高再生效果和 降低能耗。
反应-再生系统匹配
反应器和再生器的匹配程度对整个系统的效果有着重要影响。过度的再生会消耗过多的能 量,而不足的再生则会导致催化剂活性下降。因此,需要选择适宜的反应器和再生器匹配 关系,以达到最佳的工艺效果。
改进催化剂性能
01
选择高效催化剂
使用高效催化剂可以显著提高产品的产率和质量。例如,采用具有高
活性和选择性的催化剂,可以增加所需产品的产率,同时减少副产品
的生成。
02
催化剂再生
定期对催化剂进行再生处理,可以恢复其活性,延长其使用寿命。通
过改进催化剂再生工艺,可以提高催化剂的再生效率,延长其使用寿
命。
催化裂化工艺流程ppt
xx年xx月xx日
目 录
• 催化裂化概述 • 催化裂化工艺流程 • 催化裂化主要设备 • 催化裂化工艺优化建议 • 催化裂化工艺的发展趋势和展望
01
催化裂化概述
催化裂化定义
催化裂化是一种将重质烃类转化为轻质烃类和石油焦的石油 加工过程。
催化裂化是在催化剂的作用下,利用热力使重质烃类发生裂 解反应,生成轻质烃类和石油焦的过程。
03
催化剂活性评价
定期对催化剂的活性进行评价,以便及时发现催化剂的问题并采取相
应的措施进行解决。通过建立催化剂活性评价系统,可以更好地了解
催化剂的状况,为优化工艺提供参考。
优化反应-再生系统
优化反应器设计
改进反应器设计可以提高产品的转化率和选择性。例如,采用新型的反应器结构或材料, 可以增强反应效果和提高产品质量。
催化裂化培训讲义1反应机理

3)环烷烃:分解反应、异构化反应、氢转 移反应
4)芳香烃:脱烷基反应、侧链异构化(3 个C以上)、多环缩合反应
2021/9/27
26
3.2 化学反应的特点
1)烷烃断键在正构中间,异构在叔C原 子的ß键。
2)烯烃很活波,反应速率快,催化主要 反应。
(1)经过半个多世纪的发展,工艺技术已非常 成熟 (2)能最大量生产高RON汽油组分与低碳烯烃 (3)原料适应性较广(从VGO、CGO、DAO到AR、 VR)
2021/9/27
7
(4) 反应转化深度较高,轻油及LPG收率较高 (5)装置压力等级不高,操作条件相对缓和, 投资较省 (相对加氢裂化)
(6)LPG中含有大量低分子烯烃,利用价值非 常高,能生产出高附加值产品
3 )焦炭 焦炭产率5-10%。 焦炭分为:催化碳、附加焦碳、可汽提焦、污染
焦
2021/9/27
18
2.2.2 催化裂化原料和产品特点
原料
products dry gas LPG gasoline LCO
LCO
m% H%
C1~C2 Light cycle
oil
轻<5循环油19,~2即3 催化柴油
C3~C4
分解反应速率2倍烷烃,规律与烷烃相 似,
2021/9/27
27
异构有骨架异构、双键位移异构、几何 异构三种。
氢转移造成汽油饱和和催化剂失活。氢 转移反应比分解反应慢的多。低温高活 性有利于氢转移反应,高温相对抑止氢 转移,生产高辛烷值汽油。
芳构化主要是脱氢形成。
2021/9/27
28
3)环烷烃断键成烯烃和断侧链叔C原子的ß键, 速率较快。氢转移生成大环和芳烃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化裂化的概述主讲人:齐旭东装置概况装置简介一套催化裂化装置建成投产于1971年,原设计为200万吨/年蒸馏-催化装置(一顶二装置),两器部分公称能力为60•万吨•/•年Ⅳ型的催化裂解装置。
1985年改为80•万吨•/•年后置烧焦罐提升管催化裂化装置。
1999年6月改造为30•万吨•/•年的催化裂解装置,目的是多产丙烯等产品。
2002年4月恢复为40-50万吨/年催化裂化装置。
2004年反再系统扩能至60万吨/年,分离系统扩能至80万吨/年。
2006年仪表改为DCS控制,进料喷嘴改为CS-II 型,增上德尔塔余热锅炉等。
1.1.1.2 历年来重大技术改造情况a 1976年8月,由“一顶二”改造为催化裂化和常减压两套装置。
b 1978年9月份,将再生器稀相段加高4.8米。
c 1980年将吸收、解吸流程由单塔改为双塔流程,吸收稳定系统扩能至80万吨/年。
d 1981年,新上三级旋风分离器及余热锅炉。
e 1983年,新上烟气轮机─主风机─电动机组。
f 1984年9月,将反应器内三组杜康型旋风分离器改为二组布埃尔型旋风分离器,再生器内五组杜康旋风分离器全部更换。
g 1985年,•将两器系统由Ⅳ型催化裂化装置改为后置烧焦罐提升管催化裂化装置。
h1987年, 将再生器分布板改为分布管,再生器内集气室改为外集气室,旋风分离器由杜康型改为PV型。
i 1988年,对换热流程进行调整,将分馏系统各段回流及产品余热与一套减压原油及初馏塔底换热改为与本装置原料油进行换热。
j 1992年,对气压机凝结水回收系统进行改造,每年可回收凝结水6.4万吨。
沉降器内两级布埃尔型旋风分离器更换。
k 1999年将80万吨/年后置烧焦罐提升管催化裂化装置改造为30万吨/年催化裂解装置。
具体改造内容如下:●反应-再生系统⏹提升管/沉降器/汽提段全部更换汽提段由Φ2060×6000改为Φ3400×11700,汽提段挡板更换为11•层盘型挡板。
提升管全部更换为Φ900/Φ1300。
⏹沉降器内旋风分离器改造为三组两级。
⏹再生部分:取消原有烧焦罐,缓冲罐。
新增空气提升管Φ内900×3200/Φ内600×9048。
取消原再生、半再生U型管,更换为待生、再生斜管,尺寸为Φ内600。
⏹改造原半再生滑阀为再生滑阀,新增待生滑阀,双动滑阀利旧。
⏹原再生器辅助燃烧室取消,更换热负荷为93MJ/h辅助燃烧室。
⏹新增一台热负荷为45×104KCal/h原料油加热炉。
●主风机系统⏹K-101北台主风机:将原D1000-31 1000Nm3/min叶轮更换为D1000-31,其余部分利旧。
⏹K-102中台主风机D800-33 800Nm3/min利旧。
⏹新增2台增压机,流量200Nm3/min,入口压力0.24Mpa,•出口压力0.34Mpa。
●分馏部分⏹分馏塔塔盘开孔数进行调整,增加二中回流系统。
⏹新增分馏塔顶回流罐D-107A(Φ2800×7000)。
●吸收稳定部分⏹吸收塔、解吸塔塔盘开孔数进行调整。
⏹再吸收塔更换,新尺寸为Φ1800×26668。
⏹气压机利用原库存一台富气压缩机,型号DA250-72,250Nm•3/min,入口压力0.16Mpa,出口压力1.6Mpa,•原有气压机•DA220-72,220Nm3/min做为备用。
●换热器部分新增5台,调整7台,利旧36台。
●机泵新增11台,调整、更换机泵叶轮6台,利旧16台。
l 2002年由30万吨/年催化裂解装置改造为40~60万吨/年催化裂化装置。
具体改造内容如下:●反应增设切断进料自保。
●恢复顶循环回流系统,轻柴换热系统改造,增加两台轻柴与蜡油换热器,轻柴去再吸收塔吸收剂增加单向阀。
●解吸塔,再吸收塔,稳定塔塔盘开孔数进行调整。
气压机利用原库存一台富气压缩机,型号DA220-72,220Nm3/min,入口压力0.015Mpa,出口压力0.85Mpa,原有气压机DA250-72,250Nm•3/min做为备用。
m 2004年装置进行大修,具体改造内容如下:●反应系统⏹提升管底部原预提升蒸汽分布环改为预提升蒸汽分布板。
⏹在原提升管进料喷嘴位置改为2个喉管式汽油回炼喷嘴。
⏹原料油、回炼油进料喷嘴位置上移,并改为BWJ-II型高效旋流式喷嘴。
⏹将原提升管急冷油喷嘴改为2个喉管式油浆回炼喷嘴,原油浆回炼喷嘴取消。
⏹提升管约30米标高部位增加终止剂及急冷油注入口。
⏹去掉原提升管出口分布板,出口增设两组粗旋快分器,并将提升管延长约13米。
⏹将反应器内旋风分离器由三组二级更换为二组单级BY高效旋风分离器。
⏹增加一个40m3催化剂罐。
⏹烟机入口风动蝶阀改为电液蝶阀。
●分馏部分⏹恢复低温热回收系统,增加3台冷却器。
⏹D-111罐液界面仪表及液面计由北侧移至南侧,并增设界面指示报警。
●吸收稳定部分⏹将稳定塔底釜式重沸器改型为浮头式重沸器,稳定塔底增设液面控制系统。
n2006年装置进行大修,具体改造内容如下:⏹一催装置DCS仪表系统改造。
⏹提升管进料系统改造。
⏹新上德尔塔余热锅炉⏹更换部分反应控制阀及自保阀系统改造。
⏹反应事故旁通集合管系统改造。
⏹蜡油水箱蛇管扫线工艺改造。
⏹净化风及非净化风系统管线整理。
⏹操作室西北角地面阀组移位。
⏹油浆重柴油水箱管线和平台整理⏹增设分馏塔底补油集合管⏹装置循环水管线整体更换⏹更换部分控制阀和部分仪表测量孔板更换⏹分馏塔、吸收塔返塔各侧线增设阀门⏹分馏塔、吸收塔增设新的测压开口⏹装置开工收汽油线整体更换o规模DCC:30万吨/年。
FCC:反-再部分60万吨/年;分馏-稳定系统70~80万吨/年。
2 工艺原理1.1.2.1反应原理催化裂化所加工的原料是重质馏分油和残渣油,该石油馏分中有烷烃、烯烃、环烷烃、芳香烃、胶质、沥青质,同时含有硫、氮及重金属。
催化裂化反应是石油馏分在催化剂作用下发生的反应;同时,还伴有非催化裂化反应。
非催化反应是在裂化条件下,热力学上可能进行的反应。
非催化反应与催化裂化反应相比是较少的。
催化反应主要有:裂化、异构化、烷基转移、氢转移、环化、缩合、叠合等。
a催化裂化反应过程的7个步骤a)反应物由主气流中扩散到催化剂表面.b)反应物沿催化剂微孔向催化剂的内部扩散.c)反应物被催化剂内表面吸附.d)被吸附的反应物在催化剂内表面上发生化学反应.e)反应产物自催化剂内表面脱附.f)反应产物沿催化剂微孔向外扩散.g)反应产物扩散到主气流中去.催化反应的速度取决于这7个步骤进行的速度, 而速度最慢的步骤对整个反应速度起决定性的作用而成为控制因素。
裂化反应主要是C-C键的断裂。
在碳原子数相同时反应能力按烯烃>烷基烯烃(烷基取代基C3或更高时)环烷烃>烷烃>芳烃。
芳烃是很难裂化的。
芳核油气稳定。
b单体烃的催化裂化反应种类:a)烷烃:主要发生分解反应,分解成较小分子的烷烃和烯烃。
例如:C16H34 C6 H16+C8 H18生成的烷烃又可继续分解成更小的分子。
烷烃分解时,都从中间的C一C键处断裂,而且分子越大也越易断裂。
异构烷烃的反应速度比正构烷烃的快。
b)烯烃:(a)分解反应:分解为两个较小分子的的烯烃。
烯烃的分解反应速度比烷烃的快得多。
大分子烯烃的分解速度比小分子的快;异构烯烃的分解速度比正构烯烃的快。
(b)异构化反应:烯烃的异构化反应有两种:一种是分子骨架结构改变,正构烯烃变成异构烯烃;另一种是分子中的双键向中间位置转移。
(c)氢转移反应:一方面某些烯烃转化为烷烃;另一方面,给出氢的化合物则转化为芳烃或缩合程度更高的分子,甚至缩合至焦炭。
(d)芳构化反应:烯烃环化并脱氢生成芳烃。
c)环烷烃:环烷烃的环可断裂生成烯烃,烯烃再继续进行上述各项反应。
环烷烃也能通过氢转移反应转化成芳烃。
带侧链的五元环烷烃也可以异构化成六元环烷烃,再进一步脱氢生成芳烃。
d)芳烃:芳烃核在催化裂化条件下十分稳定。
但连接在苯核上的烷基侧链则很容易断裂生成较小分子烯烃,而且断裂的位置主要是发生在侧链同苯核连接的键上。
多环芳烃的裂化反应速度很低,它们的主要反应是缩合成稠环芳烃,最后生成焦炭,同时放出氢使烯烃饱和。
c石油馏分的催化裂化反应的特征:a)催化裂化反应是个气-固非均相反应。
催化反应是在催化剂表面上进行的。
原料进入反应器后先吸热气化成气体,然后经过扩散→吸附→反应→脱附→扩散等步骤后导出反应器。
从反应过程来看,原料分子间首先是具备催化剂活性中心吸附,才能进行化学反应,因此原料中各类烃分反应结果不仅取决于自身的反应速度,更重要的是取决于吸附能力。
对于碳原子数相同的烃类分子,被吸附的难易程度大致如下:稠环芳烃〉稠环环烷烃〉烯烃〉单烷基侧链的单环芳烃〉环烷烃〉烷烃对于同类烃,则分子量越大,越易被吸附。
按化学反应速度的高低顺序排列,大致如下:烯烃〉大分子单烷基侧链的单环芳烃〉异构烷烃及环烷烃〉小分子单烷基侧链的单环芳烃〉正构烷烃〉稠环芳烃。
显然,烃类的吸附能力与化学反应速度的排列顺序并不一致。
吸附在催化剂表面上的各类烃分子的多少,除与吸附能力有关外,还与原料中含各类烃多少有关。
如果原料中含芳烃较多,它们吸附能力最强而化学反应速度却最低,长时间停留在催化剂上,不易脱附,甚至缩合成焦碳,使催化剂失去活性。
b)催化裂化反应是个平行-顺序反应。
催化反应可同时向几个方向进行,而且中间反应的产物还可继续进行反应,这样的反应是平行-顺序反应3 工艺流程说明1.1.3.1 反应-再生系统a进料预热及加热部分进料泵(P-802/A、B)将原料蜡油自中间罐区蜡油罐(421、422)抽出,经蜡油—顶循换热器(E-804/AB)、蜡油—轻柴换热器(E-801/DE)、蜡油—油浆换热器(E-818/AB、E-817/AB)换热,升温至220℃左右后,进入提升管进料环管,然后分四路进入提升管进料喷嘴。
来自分馏塔的回炼油,经回炼油泵(P-803/A、B)抽出后,进入提升管进料集合管。
来自分馏塔的回炼油浆,经分馏塔底油浆泵(P-114/A、B、C)抽出后,一路进入提升管进料集合管,另一路进入提升管中部。
b反应系统c经进料喷嘴进入提升管内的混合原料油与来自再生器(F-102)的约700℃高温再生催化剂接触,立即汽化并反应,反应油气携带催化剂经过两组粗旋快分器对油气和催化剂进行分离,反应油气再进入两组单级BY高效型旋风分离器,进一步分离催化剂,分离出来的油气去分馏塔,积有焦炭的少量催化剂经BY高效型旋风分离器料腿流入沉降器床层。
经过两组粗旋快分器分离出的待生催化剂向下经料腿流入沉降器床层。
待生催化剂向下进入汽提段,汽提段上、中、下通入四路过热水蒸汽进行汽提,将待生催化剂中夹带的反应油气汽提出来进入BY高效型旋风分离器。
汽提后的待生催化剂经待生斜管进入空气提升管。