2013年中考数学模拟试题13(含答案)

合集下载

2013年中考数学模拟试题(优质)及答案

2013年中考数学模拟试题(优质)及答案

2 013年中考数学模拟试题(二)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.一个数的相反数是3,则这个数是( )A .-13 B.13C .-3D .32.下列命题中真命题是( ) A .任意两个等边三角形必相似; B .对角线相等的四边形是矩形; C .以40°角为内角的两个等腰三角形必相似;D .一组对边平行,另一组对边相等的四边形是平行四边形3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.58D.385.抛物线y =-(a -8)2+2的顶点坐标是( ) A .(2,8) B .(8,2)C .(-8,2)D .(-8,-2)6.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( )A .m >3B .m ≥3C .m ≤3D .m <37.在平面内有线段AB 和直线l ,点A ,B 到直线l 的距离分别是4 cm,6 cm.则线段AB 的中点C 到直线l 的距离是( )A .1或5B .3或5C .4D .58.正八边形的每个内角为( ) A .12° B .135° C .140° D .144°9.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有( )A .1条B .2条C .3条D .4条 10.如图M2-1,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )图M2-1A .1 B.54 C.127 D.94二、填空题(本大题共6个小题,每小题4分,共24分) 11.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是____________.12.实数范围内分解因式:x 3-2x =______________.13.已知抛物线y =ax 2+bx +c (a ≠0)经过点(1,2)与(-1,4),则a +c 的值是________. 14.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2 3,那么AP 的长为________.15.已知BD ,CE 是△ABC 的高,直线BD ,CE 相交所成的角中有一个角为50°,则∠BAC 等于________度.16.函数y =12x -4中,自变量x 的取值范围是________.三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:(-2 011)0+-122⎛⎫ ⎪ ⎪⎝⎭+22--2cos60°.18.先化简,再求值:2212442a a a a a a -+⎛⎫- ⎪-+-⎝⎭÷41a ⎛⎫- ⎪⎝⎭,其中a =2- 3.19.已知某开发区有一块四边形的空地ABCD ,如图M2-2所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3 m ,BC =12 m ,CD =13 m ,DA =4 m .若每平方米草皮需要200元,问需要多少投入?图M2-2四、解答题(二)(本大题共3小题,每小题8分,共24分)20.列方程解应用题:A,B两地的距离是80千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.21.在图M2-3的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C =90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2,B2,C2三点的坐标.22.如图M2-4,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案.图M2-5中折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140(2)小明家某月用电120度,需交电费________元;(3)求第二档每月电费y(单位:元)与用电量x(单位:度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,缴纳电费153元,求m的值.图M2-524.已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A,B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.(1)求实数k的取值范围;(2)设OA,OB的长分别为a,b,且a∶b=1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.25.已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB,CD,AD,BC于点M,N,E,F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图M2-6,请判断a与b的大小关系,并说明理由.(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图M2-7,(1)中的结论是否成立?并说明理由.(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.图M2-6图M2-72013年中考数学模拟试题(二)1.C 2.A 3.B 4.C 5.B 6.C 7.A 8.B 9.D 10.A 11.11 12.x (x +2)(x -2) 13.3 14.2 3或4 3 15.50°或130° 16.x ≠2 17.解:原式=1+2+2-2-1=218.解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2)÷4-a a=a (a -1)-(a -2)(a +2)a (a -2)2·a 4-a =1(a -2)2. 当a =2-3时,原式=13.19.解:如图D100,连接BD .图D100∵∠A =90°,AB =3 m ,DA =4 m ,∴BD =5 m. ∵BC =12 m ,CD =13 m ,∴∠DBC =90°.∴S ABCD =12×3×4+12×5×12=36(m 2).∴36×200=7 200(元).20.解:设公共汽车的速度为x 千米/小时,则小汽车的速度是3x 千米/小时.依题意,得80x =803x +3-13. 解得x =20千米/小时,经检验x =20是原方程的解,故符合题意. ∴小汽车的速度=3x =60(千米/小时). 21.(1)作图如图D101:图D101(2)坐标轴如图所示,A (-1,-1),C (-4,-1). (3)A 2(1,1),B 2(4,-5),C 2(4,1). 22.证明:DE ⊥AG ,DE ∥BF , ∴BF ⊥AG .又∵ABCD 是正方形,∴AD =AB ,∠ABF =∠EAD .在△ABF 和△AED 中,∵AD =AB ,∠ABF =∠EAD ,∠AED =∠AFB , ∴△AED ≌△ABF (AAS). ∴BF =AE .∴AF =BF +EF 得证. 23.解:(1)如下表:档次 第一档 第二档 第三档每月用电量x 度 140<x ≤230x >230 (2)54元(3)设y 与x 的关系式为y =kx +b .∵点(140,63)和(230,108)在y =kx +b 上, ∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b . 解得⎩⎪⎨⎪⎧k =0.5,b =-7.∴y 与x 的关系式为y =0.5x -7.(4)第三档中1度电交电费=(153-108)÷(290-230)=0.75(元), 第二档中1度电交电费=(108-63)÷(230-140)=0.5(元), ∴m =0.75-0.5=0.25.24.解:(1)设点A (x 1,0),B (x 2,0)且满足x 1<0<x 2. 由题意可知x 1·x 2=-(k +2)<0,即k >-2.(2)∵a ∶b =1∶5,设OA =a ,即-x 1=a ,则OB =5a ,即x 2=5a ,a >0. ∴⎩⎪⎨⎪⎧ x 1+x 2=-a +5a =4a ,x 1·x 2=-a ·5a =-5a 2.即⎩⎪⎨⎪⎧2(k -1)=4a ,-(k +2)=-5a 2. ∴k =2a +1,即5a 2-2a -3=0,解得a 1=1,a 2=-35(舍去).∴k =3.∴抛物线的解析式为y =-x 2+4x +5.(3)由(2)可知,当-x 2+4x +5=0时,可得x 1=-1,x 2=5. 即A (-1,0),B (5,0).∴AB =6,则点D 的坐标为(2,0). 当PE 是⊙D 的切线时,PE ⊥PD .由Rt △DPO ∽Rt △DEP 可得PD 2=OD ·DE ,即32=2×DE .∴DE =92,故点E 的坐标为⎝⎛⎭⎫-92,0. 25.解:(1)如图D102,∵ABCD 是矩形,MN ∥AD ,EF ∥CD , ∴四边形PEAM .PNCF 也均为矩形. ∴a =PM ·PE =S 矩形PEAM ,b =PN ·PF =S 矩形PNCF . 又∵BD 是对角线,∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBC .∵S 矩形PEAM =S △BDA -S △PMB -S △PDE ,S 矩形PNCF =S △DBC -S △BFP -S △DPN , ∴S 矩形PEAM =S 矩形PNCF .∴a =b . (2)成立.理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD , ∴四边形PEAM ,PNCF 也均为平行四边形. 模仿(1)可证S 平行四边形PEAM =S 平行四边形PNCF .图D102(3)由(2)可知,S 平行四边形PEAM =AE ·AM sin A , S 平行四边形ABCD =AD ·AB sin A∴S 平行四边形PEAM S △ABD =2S 平行四边形PEAM 2S △ABD =2S 平行四边形PEAM S 平行四边形ABCD=2AE ·AM sin A AD ·AB sin A =2·AE AD ·AM AB . 又∵BP PD =k ,即BP BD =k k +1,PD BD =1k +1,而AE AD =BP BD =k k +1,AM AB =PD BD =1k +1, ∴2×k k +1×1k +1=49,即2k 2-5k +2=0.∴解得k 1=2,k 2=12.故存在实数k =2或12,使得S 平行四边形PEAM S △ABD=49.。

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(含答案)

2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。

重庆2013中考数学模拟试题及答案解析概要

重庆市2013年初中毕业暨高中招生模拟考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,ab ac 442),对称轴公式为x =—a b 2.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内. 1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( ) A .—x 6y 2B .x 5y 2C .x 6y 2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对“天宫一号”飞船的零部件进行检查 B .对我市中小学生视力情况进行调查 C .对一天内离开我市的人流量进行调查 D .对我市市民塑料制品使用情况进行调查5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定 6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20° B .25° C .30°D .35°8.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,ABCD3题图7题图则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这个多位数第2012位数字是( ) A .3B .9C .7D .19.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )10.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0) 的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12,则该抛物线的对称轴是直线( )A .x =21B .x =1C .x =23D .x =2二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上. 11.地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为 平方千米. 12.如图,直线AB 、CD 相交于点O ,AC ∥BD .若BO =2AO ,AC =5,则BD 的长度为 .13.分解因式:x 2+2xy +y 2—4= .14.如图,点A 、B 在⊙O 上,且AB =BO .∠ABO 的平分线与AO 相交于点C ,若AC =3,则⊙O 的周长为 .(结果保留π) 15.有六张正面分别标有数字—2,—1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a , 将该卡片上的数字加1记为b ,则函数y =ax 2+bx +2的图象过点(2,3)的概率为 .16.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,且纯净水、果汁、蔬菜汁的成本价格比为1:2:2.由于市场原因,果汁、蔬菜汁的成本价格上涨15%,而纯净水的成本价格下降20%,但该饮料的总A .B .C .D .ACDBO12题图14题图 10题图成本仍与从前一样,那么该饮料中果汁和蔬菜汁的总质量与纯净水的质量之比为 .三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:9+(—1)2012—(31)-1+(π—4)0+tan45°.18.解不等式组:⎪⎩⎪⎨⎧->-<-183347215x x x19.如图,△ADE 的顶点D 在△ABC 的BC 边上,且∠ABD =∠ADB ,∠BAD =∠CAE ,AC =AE .求证:BC =DE .20.如图,AD 是△ABC 中BC 边上的高,且∠B =30°,∠C =45°,CD =2.求BC 的长.ABCE19题图ABC20题图①②四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.22.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =xm(m ≠0)的图象 相交于第一、三象限内的A 、B 两点,与x 轴相交于点C ,连结AO ,过点A 作AD ⊥x 轴于点D ,且OA =OC =5,cos ∠AOD =53.(1)求该反比例函数和一次函数的解析式; (2)若点E 在x 轴上(异于点O ),且S △BCO =S △BCE ,求点E 的坐标.23.香港的“公屋制度”解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正大规模尝试.重庆市建设公共租赁住房,意在重点解决“夹心层”的住房问题,力争城市保障性住房的“全覆盖”.某班对学生以“公租房知识知多少”为主题进行了调查,该班的数学兴趣小组将本组的调查情况绘制成如下两幅不完整的统计图:(其中“A ”表示“非常了解”,“B ”表示“了解”,“C ”表示“比较了解”,“D ”表示“不了解”)22题图(1)根据上图,计算出该组的总人数,并将该条形统计图补充完整; (2)若该班共有50人,试估计该班对公租房非常了解的人数;(3)该数学兴趣小组决定从本组“非常了解”的同学中人选两名代表本班参加学校的公租房知识抢答竞赛.若该组“非常了解”的同学中有1名女生,请用画树状图的方法,求出所选两名同学恰好是一男一女的概率.24.如图,正方形ABCD 的对角线相交于点O .点E 是线段DO 上一点,连结CE .点F 是∠OCE 的平分线上一点,且BF ⊥CF 与CO 相交于点M .点G 是线段CE 上一点,且CO =CG . (1)若OF =4,求FG 的长; (2)求证:BF =OG +CF .人数“公租房知识知多少”调查结果扇形统计图“公租房知识知多少”调查结果条形统计图23题图D24题图五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.“相约红色重庆,共享绿色园博”,位于重庆市北部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;(2)求前十周哪一周的销售利润最大,并求出此最大利润;(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.(参考数据:222=484,232=529,242=576,252=625)26.如图,在Rt△ABC中,AB=AC=24.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图重庆市2013年初中毕业暨高中招生模拟考试数学试卷参考答案及评分意见一、选择题:二、填空题: 11.3.57×108; 12.10; 13.(x +y +2)(x +y —2);14.12π;15.61;16.2:3.三、解答题:17.解:原式=3+1—3+1+1.………………………………………………………………………………(5分) =3.……………………………………………………………………………………………(6分) 18.解:由①:3(5x —1)<2(7x —4).…………………………………………………………………(1分) 15x —3<14x —8.………………………………………………………………………(2分)x <—5.…………………………………………………………………………(4分)由②:x >—6.……………………………………………………………………………………(5分) ∴原不等式组的解集为—6<x <—5.……………………………………………………………(6分)19.证明:∵∠ABD =∠ADB ,∴AB =AD .………………………………………………………………………………………(1分) ∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE .……………………………………(3分) 又∵AC =AE ,∴△ABC ≌△ADE .……………………………………………………………………………(5分) ∴BC =DE .………………………………………………………………………………………(6分)20.解:∵AD 是△ABC 中BC 边上的高,∴AD ⊥BC ,∴∠ADB =∠ADC =90°.…………………………………………………………………………(1分)在R t △ACD 中:∵tan C =CD AD =2AD=tan45°=1, ∴AD =2.……………………………………………………………………………………………(3分) 在Rt △ABD 中:∵tan B =BD AD =BD 2=tan30°=33, ∴BD =32.………………………………………………………………………………………(5分) ∴BC =BD +CD =32+2,即BC 的长为32+2.……………………………………………………………………………(6分)四、解答题:21.解:原式=(1412++-++x x x x x )÷1)2(2+-x x .…………………………………………………………(2分) =22)2(114-+⋅+-x x x x .…………………………………………………………………………(5分)=2)2()2)(2(--+x x x .……………………………………………………………………………(7分) =22-+x x .………………………………………………………………………………………(8分) 当x =—1时,原式=2121--+-.……………………………………………………………………(9分)=31-.…………………………………………………………………………(10分)22.解:(1)∵AD ⊥x 轴,∴∠ADO =90°.在Rt △AOD 中,∵cos ∠AOD =AO DO =5DO =53∴DO =3.………………………………(2分)∴AD =22DO AO -=4. ∵点A 在第一象限内,∴点A 的坐标是(3,4). …………(3分)将点A (3,4)代入y =x m (m ≠0),3m=4,m =12.∴该反比例函数的解析式为y =x 12.………………………………………………………(4分)∵OC =5,且点C 在x 轴负半轴上,∴点C 的坐标是(—5,0).………………………………………………………………(5分)22题答图将点A (3,4)和点C (—5,0)代入y =kx +b (k ≠0),⎩⎨⎧=+-=+0543b k b k 解得⎪⎪⎩⎪⎪⎨⎧==2521b k ∴该一次函数的解析式为y =21x +25.………………………………………………………(7分) (2)过点B 作BH ⊥x 轴于点H .∵S △BCO =S △BCE , ∴21×OC ×BH =21×CE ×BH , ∴OC =CE =5.…………………………………………………………………………………(8分) ∴OE =OC +CE =5+5=10.……………………………………………………………………(9分) 又∵点E 在x 轴负半轴上,∴点E 的坐标是(—10,0).……………………………………………………………(10分)23.解:(1)该组的总人数=2÷20%=10(人).…………………………………………………………(1分)补图如下:…………………………………………………………………………………………………(3分) (2)50×30%=15(人).…………………………………………………………………………(4分)∴估计该班对公租房非常了解的人数约为15人.…………………………………………(5分) (3)将这一名女生用A 表示,另两名男生用B 1,B 2表示,由题意得树状图:23题答图“公租房知识知多少”调查结果条形统计图开始A B 1 B 2第一位…………………………………………………………………………………………………(8分) 共有6种情况,每种情况可能性相等,所选两名同学恰好是一男一女有4种情况.…(9分) ∴P (所选两名同学恰好是一男一女)=64=32.…………………………………………(10分) 24.(1)解:∵CF 平分∠OCE ,∴∠OCF =∠ECF .……………………………………………………………………………(1分) 又∵OC =CG ,CF =CF ,∴△OCF ≌△GCF .…………………………………………………………………………(3分) ∴FG =OF =4,即FG 的长为4.……………………………………………………………………………(4分)(2)证明:在BF 上截取BH =CF ,连结OH .………………………………………………………(5分)∵正方形ABCD 已知, ∴AC ⊥BD ,∠DBC =45°, ∴∠BOC =90°,∴∠OCB =180°—∠BOC —∠DBC =45°. ∴∠OCB =∠DBC .∴OB =OC .…………………………………………………………………………………(6分) ∵BF ⊥CF , ∴∠BFC =90°.∵∠OBH =180°—∠BOC —∠OMB =90°—∠OMB , ∠OCF =180°—∠BFC —∠FMC =90°—∠FMC , 且∠OMB =∠FMC ,∴∠OBH =∠OCF .………………………………………………………………………(7分)D24题答图∴△OBH ≌△OCF .∴OH =OF ,∠BOH =∠COF .……………………………………………………………(8分) ∵∠BOH +∠HOM =∠BOC =90°, ∴∠COF +∠HOM =90°,即∠HOF =90°. ∴∠OHF =∠OFH =21(180°—∠HOF )=45°. ∴∠OFC =∠OFH +∠BFC =135°. ∵△OCF ≌△GCF , ∴∠GFC =∠OFC =135°,∴∠OFG =360°—∠GFC —∠OFC =90°. ∴∠FGO =∠FOG =21(180°—∠OFG )=45°. ∴∠GOF =∠OFH ,∠HOF =∠OFG . ∴OG ∥FH ,OH ∥FG , ∴四边形OHFG 是平行四边形.∴OG =FH .…………………………………………………………………………………(9分) ∵BF =FH +BH ,∴BF =OG +CF .…………………………………………………………………………(10分)五、解答题:25.解:(1)y =10x +100(1≤x ≤10,且x 取整数).………………………………………………………(1分)z =—2x +70(1≤x ≤10,且x 取整数).………………………………………………………(2分) (2)设前十周内第x 周的销售利润为W (元),由题意知:W =y (z —30).………………………………………………………………………………(3分) =(10x +100)(—2x +70—30).=—20x 2+200x +4000.………………………………………………………………………(4分) =—20(x —5)2+4500.……………………………………………………………………(5分) ∵—20<0,∴抛物线开口向下,有最大值.∴当x =5时,W 取得最大值4500.∴前十周内第五周的销售利润最大,为4500元.…………………………………………(6分) (3)十周的销售量由表知为200件.十周的销售单价=—2×10+70=50(元).十周的销售利润=200×(50—30)=4000(元).…………………………………………(7分) 由题意,得200(1—a %)[50(1+1.4a %)—30]—200=4000.………………………(8分) 设t =a %,原方程可整理为:70t 2—50t +1=0.………………………………………………(9分) 解得t =7055525±. ∵232=529,242=576,而555更接近576,∴t ≈702425±, ∴t 1≈0.7或t 2≈0.014,∴a 1≈70或a 2≈1. ∵0<a <10,∴a 1≈70舍去.∴a =1.∴a 的整数值为1.…………………………………………………………………………(10分)26.解:(1)当0<t ≤4时,S =41t 2.………………………………………………………………………(1分) 当4<t ≤316时,S =—43t 2+8t —16.…………………………………………………………(2分)当316<t <8时,S =43t 2—12t +48.…………………………………………………………(3分) (2)存在,理由如下:当点D 在线段AB 上时, ∵AB =AC , ∴∠B =∠C =21(180°—∠BAC )=45°. ∵PD ⊥BC , ∴∠BPD =90°, ∴∠BDP =45°. ∴PD =BP =t , ∴QD =PD =t , ∴PQ =QD +PD =2t .CPH26题答图①过点A 作AH ⊥BC 于点H . ∵AB =AC , ∴BH =CH =21BC =4,AH =BH =4. ∴PH =BH —BP =4—t .在R t △APH 中,AP =328222+-=+t t PH AH .……………………………………(4分) (ⅰ)若AP =PQ ,则有3282+-t t =2t .解得:t 1=3474-,t 2=3474--(不合题意,舍去).…………………………(5分)(ⅱ)若AQ =PQ ,过点Q 作QG ⊥AP 于点G .∵∠BPQ =∠BHA =90°, ∴PQ ∥AH . ∴∠APQ =∠P AH . ∵QG ⊥AP , ∴∠PGQ =90°, ∴∠PGQ =∠AHP =90°, ∴△PGQ ∽△AHP . ∴AP PQ AH PG =,即328242+-=t t t PG , ∴PG =32882+-t t t .若AQ =PQ ,由于QG ⊥AP ,则有AG =PG ,即PG =21AP , 即32882+-t t t =213282+-t t .解得:t 1=12—74,t 2=12+74(不合题意,舍去).……………………………(6分) (ⅲ)若AP =AQ ,过点A 作AT ⊥PQ 于点T .易知四边形AHPT 是矩形,故PT =AH =4. 若AP =AQ ,由于AT ⊥PQ ,则有QT =PT ,即PT =21PQ , 即4=21×2t .解得t =4.当t =4时,A 、P 、Q 三点共线,△APQ 不存在,故t =4舍去.综上所述,存在这样的t ,使得△APQ 成为等腰三角形,即t 1=3474 秒或t 2=(12—74)秒.………………………………………………………………………………………………(7分)(3)四边形PMAN 的面积不发生变化.…………………………………………………………(8分)理由如下:∵等腰直角三角形PQE 已知, ∴∠EPQ =45°.∵等腰直角三角形PQF 已知, ∴∠FPQ =45°.∴∠EPF =∠EPQ +∠FPQ =45°+45°=90°. ……………………………………(9分) 连结AP . ∵此时t =4秒, ∴BP =4×1=4=21BC , ∴点P 为BC 的中点. ∵△ABC 是等腰直角三角形, ∴AP ⊥BC ,AP =21BC =CP =BP =4,∠BAP =∠CAP =21∠BAC =45°. ∴∠APC =90°,∠C =45°. ∴∠C =∠BAP =45°.∵∠APC =∠CPN +∠APN =90°, ∠EPF =∠APM +∠APN =90°,∴∠CPN =∠APM .…………………………………………………………………………(10分) ∴△CPN ≌△APM .∴S △CPN =S △APM .………………………………………………………………………………(11分) ∴S 四边形PMAN =S △APM +S △APN =S △CPN +S △APN =S △ACP =21×CP ×AP =21×4×4=8. ∴四边形PMAN 的面积不发生变化,此定值为8.………………………………………(12分)ABC PFQEMN26题答图②。

2013年中考模拟数学试卷数学答案

(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年中考数学模拟试卷及答案

2013年中考模拟考试数学试卷一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)2 6.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( ) A .B .C .D .10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个二.填空题(共8小题,每题4分,共32分) 11.在函数21-=x y 中,自变量x 的取值范围是 . 12.如图,∠C=900,∠A=300,BD 平分∠ABC ,若AD=8, 则CD=_________.13.已知x+y=﹣5,xy=6,则x 2+y 2= _________ .14.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 _________ °.15.如图,直线y=﹣x+3与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 旋转90°后得到△AO′B′,则点B′的坐标是 _________ .第14题图 第15题图 16.已知(a ﹣)<0,若b=2﹣a ,则b 的取值范围是 _________ .BCDA(第12题)17.如果关于x 的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有 _________ 个.18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .三、解答题(本题有8小题,共78分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(6分)解方程:解方程:22121=--+-xxx . 20.(8分)如图,A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P 的位置,并求出它的坐标. 21.(8分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ________ ;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解). 22.(10分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A ,在点A 的对岸选取一个参照点C ,测得∠CAD=30°;小丽沿岸向前走30m 选取点B ,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.BA(第18题: 图1 图2 图3)23.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.24.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.25.(12分)我州某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.26.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?2013年中考模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B二.填空题(共8小题,每题4分,共32分)题号11 12 13 14 15 16 17 18 答案x≠2 4 13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6 √2+1三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)19. 解:原方程可化为:1-(1-x)=2(x-2) 2分去括号得:1-1+x=2x-4移项并项得:-x=4系数化为1得:x=4 4分经检验:x=4是原方程的根所以:原方程的解是x=4 6分20. 解:(1)存在满足条件的点C;作出图形,如图所示.(4分)(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.(6分)设A′B所在直线的解析式为:y=kx+b,把(2,2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).(8分)21. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)22. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.23.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)24.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.25(1)填写如下:每空1分C D 总计A x吨(200﹣x)吨200吨B (240﹣x)吨(60+x)吨300吨总计240吨260吨500吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)26.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。

2013年中考数学模拟试卷及答案 .doc

沪教版语文二年级上册知识点梳理一、教材概貌本册教材分七个部分:一、读课文识字,两个单元11篇课文。

二、读课文了解内容,两个单元11篇课文。

三、读课文圈划词句,两个单元12篇课文。

四、读课文边读边想,两个单元11篇课文。

五、古诗诵读,每单元安排一次,共8首古诗。

六、语文快乐宫,每单元安排一次,共8次。

七、听说活动,集中编排,共6次。

四、加部首,再组词。

且(姐)(姐姐)见(观)(观看)佥(捡)(捡起)采(菜)(卷心菜)(组)(小组)(现)(现在) (脸)(小脸)(彩)(理睬)(助)(帮助)(视)(电视)(险)(危险)(踩)(踩气球)————————————————————————————————京(凉)(凉风)者(暑)(暑假)犬(突)(突然)亥(该)(应该)(晾)(晾衣服)(著)(著名)(臭)(臭味)(刻)(立刻)(景)(风景)————————————————————————————————至(屋)(屋顶)争(净)(干净)舌(刮)(刮风)尧(绕)(围绕)(到)(到达)(睁)(睁开)(话)(说话)(晓)(春晓)————————————————————————————————匋(掏)(掏出)分(粉)(粉笔)吾(悟)(觉悟)勺(约)(大约)(萄)(葡萄)(盆)(花盆)(语)(语文)(钓)(钓鱼)五、形近字总结摸(摸鱼)彼(彼此)加(加法)仗(仰仗)洋(太平洋)豪(富豪)漠(沙漠)坡(山坡)如(如果)杖(拐杖)样(样子)毫(毫米)————————————————————————————————注(注意)级(年级)炼(锻炼)悔(后悔)捡(捡起)困(困难)住(居住)极(极大)练(练习)诲(教诲)俭(俭朴)因(原因)————————————————————————————————晴(晴朗)难(难题)苹(苹果)疲(疲惫)续(连续)麻(麻木)睛(眼睛)摊(摊开)萍(浮萍)坡(斜坡)读(读书)床(床头)————————————————————————————————壮(健壮)迹(奇迹)烂(灿烂)串(一串)峰(山峰)周(周末)状(状元)迸(迸发)炫(炫目)吊(吊起)锋(锋利)同(相同)————————————————————————————————佳(佳节)痛(痛快)第(第一)最(最好)研(研究)报(报告)鞋(鞋子)通(通过)弟(弟弟)趣(有趣)形(形状)服(衣服)————————————————————————————————幅(一幅画)晴(晴朗)漂(漂亮)板(甲板)练(练习)梅(梅花)副(一副眼镜)情(心情)飘(飘动)饭(吃饭)炼(锻炼)悔(后悔)————————————————————————————————鸟(小鸟)续(陆续)苍(苍白)称(称赞)泄(泄气)取(取下)壮(壮丽)岛(小岛)读(读书)创(创造)你(你们)世(世界)趣(有趣)状(形状)————————————————————————————————淘(淘气)论(无论)街(街道)及(以及)著(著名)仙(仙女)桃 (桃子)萄(葡萄)轮(车轮)行(行人)级(年级)者(作者)灿(灿烂)挑(挑水)————————————————————————————————孤(孤单)骗(受骗)洁(洁白)冷(冰冷)影(影子)讨(讨厌)辩(争辩)狐(狐狸)遍(一遍)结(结果)怜(可怜)景(风景)守(守卫)辨(分辨)————————————————————————————————刻(立刻)义(义气)但(但是)始(开始)轮(车轮)粉(粉笔)汤(菜汤)该(应该)议(议论)担(担心)治(治病)论(议论)纷(纷纷)荡(荡秋千)————————————————————————————————忽(忽然)郁(郁郁葱葱)挂(挂满)盛(茂盛)扒(扒开)摘(摘果子)葱(郁郁葱葱)随(随手)娃(娃娃)城(长城)趴(趴下)滴(一滴水)————————————————————————————————员(员工)勇(勇气)诵(朗诵)要(要好)贴(贴住)凶(凶恶)羽(羽毛)圆(圆形)涌(汹涌)通(通过)耍(玩耍)站(站立)汹(汹涌)翔(飞翔)————————————————————————————————低(低头)绕(围绕)烧(烧饭)异(奇异)计(巧计)防(防备)坑(土坑)底(底下)晓(春晓)浇(浇水)导(教导)记(记住)放(放学)抗(违抗)————————————————————————————————轮(轮船)援(救援)遇(遇见)摇(摇头)险(危险)讯(喜讯)速(速度)论(议论)暖(暖和)寓(寓言)遥(遥远)脸(脸蛋)迅(迅速)束(一束花)————————————————————————————————熊(小熊)原(原来)破(破坏)棉(棉花)传(传热)烂(灿烂)持(保持)能(能够)愿(心愿)被(被子)绵(海绵)转(转圈)拦(拦住)诗(古诗)————————————————————————————————内(体内)住(住下)修(修理)务(任务)流(流血)场(操场)缺(缺口)肉(吃肉)注(注意)休(休息)物(动物)留(留下)厂(工厂)决(决定)————————————————————————————————历(历史)偷(小偷)秘(神秘)绝(灭绝)谜(谜语)候(气候)其(其他)厉(严厉)愉(愉快)密(秘密)觉(觉得)迷(迷人)猴(猴子)期(日期)————————————————————————————————通(通过)凉(凉快)摇(摇头)痛(痛快)晾(晾干)遥(遥远)五、多音字总结扇shān (扇风)好hǎo(好事)行xíng(行人)教jiāo(教书)shàn (扇子) hào(好奇)háng(银行)jiào(教导)————————————————————————————————乐lě(快乐)干gān(干渴)空kōng(空气)切qiè(关切)yuè(音乐) gàn(树干)kòng(空白)qiē(切菜)————————————————————————————————为wéi (为人)曲 qū(弯曲)澄chéng(澄清)wèi (因为) qǔ(歌曲)dèng(澄沙)————————————————————————————————好 hǎo(好人)扇 shàn(扇子)漂 piào(漂亮)模mò(模仿)hào(好奇) shān(扇风) piāo(漂浮) mú(模样)————————————————————————————————曲 qū(曲折)行 hánɡ(一行字)都 dōu(都是)卷 juǎn(卷起)qǔ(乐曲) xínɡ(行动) dū(首都) juàn(试卷)————————————————————————————————着 zháo(着急)背 bēi(背书包)假 jiǎ(真假)藏 cánɡ(藏起来)zhe(看着) bèi(背地里) jià(放假) zànɡ(宝藏)———————————————————————————————间 jiān(房间)转zhuǎn(转身)吐 tǔ(吐出)重 zhònɡ(很重)jiàn(红白相间) zhuàn(转圈) tù(呕吐) chónɡ(重新)————————————————————————————————朝 cháo(朝天)背 bēi(背包)弹 tán(弹琴)降 jiànɡ(降落伞)zhāo(朝阳) bèi(背后) dàn(子弹) xiánɡ(投降)————————————————————————————————难 nán(难过)参 cān(参加)长 chánɡ(很长)舍 shě(舍不得)nàn(遇难) shēn(人参) zhǎnɡ(长大) shè(宿舍)————————————————————————————————血 xiě(流血)少 shǎo(多少)挨āi(挨着)结 jiē(结结实实)xuè(鲜血) shào(少年)ái(挨打) jié(成群结队)六、量词总结一(群)孩子一(把)折扇一(张)桌子一(个)愿望一(筐)葡萄一(份)报告一(条)蓝鲸一(辆)汽车一(个)早晨一(位)先生一(个)水洼一(条)小鱼一(只)燕子一(则)寓言一(只)小獾一(把)椅子一(幅)景象一(片)柿林一(块)巨石一(只)公鸡一(种)动物一(群)小虾一(个)研究一(行)小字一(幅)插图一(本)新书一(副)样子一(位)作家一(则)寓言一(次)教训一(个)故事一(个)日子一(把)椅子一(张)船票一(群)燕子一(艘)轮船一(块)甲板一(个)板凳一(张)桌子一(条)通道一(艘)破冰船一(股)寒流一(个)船员一(段)音乐一(架)飞机一(家)旅馆一(架)钢琴一(首)乐曲一(盆)冷水一(根/个)手指一(声)赞叹一(阵)清风一(架)飞机一(个)宇宙一(粒)米饭一(颗)水珠一(个)梦一(条)尾巴一(间)屋子一(把)扫帚一(对)翅膀一(群)鱼虾一(片)阳光一(朵)荷花一(个)圆盘一(片)花瓣一(张)荷叶一(个)莲蓬一(阵)清香一(个)好梦一(条)衣裙一(个)公园一(阵)微风一(个)鸭蛋一(位)农夫一(座)小桥一(头)狼一(只/群)天鹅一(幅)景象一(条)运河一(座)长城一(条)丝带一(个)奇迹一(架)飞机一(条)巨龙一(座)小岛一(个)鸟窝一(首)诗篇七、近义词总结晾——晒拾起——捡起喜爱——喜欢平时——平常愿望——希望追逐——追赶自豪——骄傲如果——假如舒服——舒适在乎——在意疲倦——疲劳休息——歇息才能——才干能干——精明知道——明白不朽——永久结结实实——壮壮实实欣喜——欣慰闻名中外——世界闻名美丽——漂亮喜爱——喜欢肯定——一定特意——特地愿望——希望严厉——严肃答应——同意教育——教导的确——确实奇怪——奇特疲劳——疲倦争辩——争论显露——显现在意——在乎喜欢——喜爱著名——有名似乎——好像也许——可能固然——虽然闻名中外——举世闻名非常—特别故意—有意孤单—孤独漂亮—美丽雪白—洁白惊奇—惊讶出世—出生立刻—马上凶恶—凶猛担心—担忧着急—焦急迟疑—犹豫议论—讨论疼爱—喜爱奇怪—奇特告别—辞别突然—忽然渐渐地—慢慢地浑身—全身果然—果真单独—孤独灭绝——灭亡依然——仍然遮住——挡住以为——认为小心——当心修理——修补赞叹——赞扬全神贯注——聚精会神争论——争吵请教——讨教欣赏——赞赏耐心——细心严厉——严格佩服——敬佩解释——解说八、反义词总结赢——输好——坏彼——此拾起——丢弃打开——合上永远——短暂认真——马虎答应——拒绝睁开——闭合也许——一定遥远——临近坚强——脆弱显露——隐藏喜欢——讨厌粗糙——精致疲劳——精神陆续——中断天堂——地狱灿烂——黯然陡峭——平坦瘦——胖粗——细开始——结束坐——站(立)伸——缩自卑——自信粗糙——光滑高兴——难过软弱——坚强寒冷——暖和消失——出现躲藏——寻找假——真淘气——乖巧开心——难过热闹——冷清开始—结束讨厌—喜欢热闹—冷清.聪明—愚蠢相信—怀疑凶恶—温和漂亮—丑陋惩罚——奖励故意——无意疑惑不解—恍然大悟一丝不苟—马马虎虎九、特殊的词语形式总结(1)AABB:千千万万结结实实花花绿绿高高兴兴进进出出弯弯曲曲说说笑笑许许多多大大小小干干净净清清楚楚整整齐齐安安静静纷纷扬扬开开心心严严实实挨挨挤挤郁郁葱葱许许多多安安静静清清楚楚明明白白纷纷扬扬(2)ABAB:金黄金黄火红火红雪白雪白碧绿碧绿瓦蓝瓦蓝商量商量讨论讨论研究研究学习学习(3)ABCC:金光闪闪议论纷纷兴致勃勃喜气洋洋气喘吁吁果实累累银光闪闪得意洋洋怒气冲冲气势汹汹白发苍苍来去匆匆(4)又X又X:又大又圆又大又红又高又大又唱又跳又香又甜又说又笑又宽又长又细又长又尖又长又黑又臭(5)不X不X:不大不小不多不少不长不短不上不下(6)无X无X :无边无际无法无天无时无刻无穷无尽无情无义无影无踪无边无际无亲无故无穷无尽无情无义无缘无故(6)越X越X :越来越快越来越好越来越美越来越多越跑越快越飞越高越走越慢越说越响越开越盛越长越胖越写越快(7)X来X去:荡来荡去跑来跑去走来走去跳来跳去走来走去飞来飞去划来划去转来转去(8)很X很X:很高很高很红很红很美很美很亮很亮(9)一X一X:一上一下一左一右一前一后一大一小(10)ABB:亮晶晶绿油油白茫茫黑乎乎黄澄澄金灿灿绿莹莹冷冰冰光秃秃雾蒙蒙热腾腾胖乎乎毛茸茸乐呵呵喜洋洋软绵绵一颗颗一串串(11)XX的:尖尖的圆圆的红红的闪闪的青青的绿绿的白白的黑黑的方方的十、填上合适的词总结1、填上合适的词(“的”+事物)(炎热)的夏天(凉爽)的秋天(光滑)的卵石(美丽)的贝壳(有趣)的故事(快乐)的孩子(晴朗)的日子(蓝色)的大海(勇敢)的燕子(诚实)的屠格涅夫(可怜)的小鱼(雄伟)的长城(壮丽)的景象(动人)的诗篇(勤劳)的人民(晴朗)的日子(花木灿烂)的春天(瓜果遍地)的秋色(金光闪闪)的大金帅苹果(晶莹透明)的葡萄(奇特)的石头(有趣)的名字(陡峭)的山峰(翻滚)的云海(闻名中外)的风景区(大大的)嘴巴(灰灰的)羽毛(瘦瘦的)身子(长长的)脖子(厚厚的)冰(漂亮的)影子(雪白的)羽毛(美丽的)天鹅(难看的)鸭子(孤单的)丑小鸭(淡淡的)清香(碧绿的)大圆盘(嫩黄色的)小莲蓬(美好的)梦(美丽的)荷花(闻名中外)的石榴园(嫩嫩)的枝条(嫩绿)的叶子(火红)的石榴花(可爱)的小喇叭(郁郁葱葱)的绿叶(甜津津)的味道(酸溜溜)的味道(酸酸甜甜)的味道(令人兴奋)的喜讯(波涛汹涌)的海面(活蹦乱跳)的鱼虾(自由飞翔)的海鸥(乌云密布)的天空(有趣)的生活(晶莹)的水珠(白茫茫)的大海(雪白)的浪花(可爱)的海鸥(遇难)的船只(庞大)的恐龙(温暖)的气候(火红)的太阳(著名)的学者(慈祥)的面容(爱学习)的杨时(漫天飞舞)的大雪(茂密)的森林(苍翠)的绿茵(辽阔)的牧场(清清)的小溪(洁白)的云彩(灿烂)的阳光(动听)的琴声(努力)的音乐家(热心)的小男孩2、填上恰当的词(“地”+动作)(坚强)地飞(亲切)地问(认真)地回答(大声)地争辩(细细)地品尝(快速)地滑行(渐渐)地离开(慢慢)地凋谢(急切)地扒开(高兴)地笑(渐渐)地成熟(欢乐)地飞翔(轻轻)地吹(小心)地挤(神秘)地消失(用力)地撞击(大胆)地推测(默默)地背书(静静)地等待(悄悄)地说话(刻苦)地学习(全神贯注)地弹琴(轻轻)地告诉(暗暗)地赞叹3、动作+事物(拾)贝壳(吹)喇叭(讲)故事(摸)大象(扇)翅膀(晒)太阳(读)课文(许)愿望(打)雪仗(摘)苹果(捉)小鱼(翻)跟头(收)作业(采)蘑菇(借)威风(找)借口(守)信用(开)玩笑(讲)道理(宣布)命令(乘坐)飞机(扑打)野兔(反击)老鹰(张开)爪子(弹出)后腿(扇动)翅膀(想出)巧计(完成)任务(修补)缺口(奔赴)现场(凝固)血液(举)例子(踢)足球(穿)鞋子滚(铁环)扔(垃圾)擦(汗水)洗(衣服)做(游戏)十一、好词佳句总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学模拟试题注意事项:1、本试卷共6页,三大题,满分120分,考试时间为120分钟。

2、第I 卷上选择题和填空题在第II 卷的答题栏上答题,在第I 卷上答题无效。

第I 卷一、选择题(每小题3分,共24分) 1、下列说法正确的是( )A.0是无理数B.绝对值是它本身的数是0C.若a 是无理数,则a 是实数D.π2是一个分数2、如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( )A.3B.4C.5D.6主视图 左视图 俯视图3、如果代数式 a +1ab有意义,那么直角坐标系中点A(a 、b)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限4、如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是( )A. 4π3B.2πC.4πD.无法确定 第4题 5、关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限这些运动员跳高成绩的中位数和众数分别是( )A.1.65 1.70B.1.70 1.65C.1.70 1.70D.3 57、如图是一台54英寸的大背投彩电放置在墙角的俯视图,设∠DAO=α,彩电后背AD 平行于前沿BC,且与BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是( )A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.以上答案都不对8、过⊙O内一点M的最长弦为10cm,最短弦为8cm,第7题则OM的长为( )A.9cmB.6cmC.41 cmD.3cm二、填空题(每小题3分,共18分)9、分解因式:x3-9x=10、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°则∠2=第10题第11题第13题11、如图,矩形花园的长为6m,宽为4m,阴影部分种有鲜花,其它部分植有草皮,小鸟任意落在矩形花园内,则小鸟落在鲜花丛中的概率是。

12、已知关于x的方程x+ax-2=-1的根大于0,则a的取值范围是。

13、如图所示,∠1=∠2=∠3,则图中相似三角形共有对。

14、已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于(1,0) (5,0)两点,若一个动点P自OA的中点M出发,先到达x轴上的某点E,再到达抛物线的对称轴上某点F,最后运动到点A,则使点P运动的总路径最短的点E、点F的坐标分别是:E____________,F 。

2013年中考数学模拟试题请的把第I 卷选择题答案填在下面相对应的位置上请把第I 卷填空题答案填在下面相对应的位置上9.________________; 10. ________________; 11. ________________; 12. _______________; 13. ________________; 14. ________________;第II 卷三、解答题15、(5分)计算|-3|-(-3)2 +2tan45°-(12)-1x -12≤1①16、(5分)解不等式组 ,并写出不等式组的正整数解。

x -2<4(x+1)②17、(5分)已知2x 2+2xy+y 2-2x+1=0,求12x+y +1x -y的值。

18、(6分)如图所示,O 是正六边形(正六边形由六个大小相同的等边三角形拼成)ABCDEF 的中心,请你在两个图中添加适当的阴影部分(用斜线表示),使之是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形(不增加任何线段)。

19、(6分)如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。

(1)求证:AF=GB 。

(2)当 时,△EFG 为等腰直角三角形。

(添加一个适当的条件)20、(6分)如图所示,点P 在经过B(0,-2),C(4,0)的直线上,且纵坐标为-1,Q 点在y=k x (k>0)的图象上,且S △OMQ =32 ,PQ ∥y 轴,求Q 点的坐标。

21、(7分)如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处,再测得点C 的仰角为45°,已知OA=100米,山坡坡度为12,且O 、A 、B 在同一条直线上,求电视塔OC 的高度以及此人所在位置点P 的铅直高度。

(测倾器的高度忽略不计,结果保留根号)22、(8分)如图,已知⊙O 的半径OA ⊥OB ,C 是OB 上的一点,AC 交⊙O 于D ,E 为OB 延长线上一点,且EC=ED 。

(1)求证:ED 是⊙O 的切线。

(2)若△BCD ∽△DCE ,OC=1,求⊙O 的半径。

23、(9分)有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图)。

小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张。

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率。

24、(9分)某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中(1)试求y与x之间的函数表达式。

(2)设公司试销该产品每天获得毛利润为s(元),求s与x之间的函数表达式(毛利润=销售总价-成本总价)(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?25、(12分)如图,直角坐标系内的梯形AOBC(O为原点),AC∥OB,AO⊥OB,AC=1,AO=2,BO=5。

(1)求经过O、C、B三点的抛物线的解析式;(2)延长AC交抛物线于点D,求线段CD的长;(3)在第(2)小题的条件下,动点P、Q分别从O、D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD 交BC于点M,连结PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形。

2013年中考数学模拟试题参考答案一、选择题:C B A B A A AD 二、填空题9、x 3-9x=x(x+3)(x -3) 10、35° 11、12 12、a<2且a ≠2 13、4对 14、E(2,0) F(3,34 ) 三、解答题15、0 16、-2<x ≤3,正整数解为1,2,3。

17、x=1, y=-1 12x+y +1x -y=3218、19、(1)证明∵四边形ABCD 是平行四边形 ∴AB//CD ,AD=BC又∵CF 平分∠BCD ∴∠BCF=∠DCF∵AB//CD ∴∠DCF=∠BFC ∴∠BCF=∠BFC ∴BF=BC同理AG=AD ∴BF=AG ∴AF=GB(2)四边形ABCD 是矩形时,△EFG 为等腰直角三角形。

20、解:设直线BC 的表达式为y=kx+b(b ≠0)则 b=-2∴y=12 x -2 ∴P(2,-1) 4k+b=0又∵S △OMQ =32 , K>0 ∴K=3∴反比例函数表达式为y=3x又PQ ∥轴 ∴点Q 的横坐标为-2 ∴Q(2,32 ) 21、解:作PE ⊥OB 于点E ,PF ⊥CO 于点F 在Rt △AOC 中,AO=100 ∠CAO=60° ∴CO=AO ·tan60°=1003 (米) 设PE=x 米∵tan ∠PAB=PE AE =12 ∴A E=2x 在Rt △PCF 中∠CPF=45°CF=100 3 -x PF=OA+AE=100+2x PF=CF ∵100+2x=100 3 -x解得x=100(3-1)3米答:电视塔OC 高为100 3 米,点P 的铅直高度为100(3-1)3米 22、(1)证明:连结OD ,∵OD=OA ,EC=ED ,∴∠ODA=∠A ,∠EDC=∠ECD 又∵∠ECD=∠OCA ,∴∠EDC=∠OCA 又∵OA ⊥OB ,∴∠EOA=90°∠A+∠OCA=∠EDC+∠ODA=∠EDO=90° ∴OD ⊥ED 又∵OD 为⊥⊙O 的半径,∴ED 是⊙O 的切线。

(2)设OD=x ∵∠EOA=90°,∴∠ADB=45° 又∵△BCD ∽△DCE ,∴∠E=∠ADB=45° 在Rt △EDO 中,OD 2+ED 2=OB 2又∵∠E=45°,ED=EC=OD=x ,OC=1 ∴ x 2+x 2=(x+1)2解这个一元二次方程x 2-2x -1=0,得x=1+ 2 或x=1- 2 (负值不适合,应舍去),所以,⊙O 的半径为1+ 2 。

23、解:(1)如图(2)摸出两张牌面图形都是中心对称图形的纸牌的概率是416=14。

24、解:(1)设y与x之间的函数表达式为y=kx+b(k≠0)把x=40, y=500; x=50 y=400,分别代入上式40k+b=500 k=-10得∴50k+b=400 b=900∴y=-10x+900∵表中其他对应值都满足y=-10x+900∴y与x之间的函数关系为一次函数,表达式为Y=-10x+90 (30≤x≤80)(2)毛利润S=(x-30)·y=(x-30)(-10x+900)=-10x2+1200x-27000(3) ∵S=-10(x-60)2+9000 a=-10<0∴x=60时,S最大=9000元此时每天销量为y=-10×60+900=300件∴当销售单价定为60元/件时,该公司试销这种产品每天获利最大,最大毛利润为900元,此时每天的销售量为300件。

25、解:(1)由题意可知,O(0,0),C(1,2),B(5,0)。

设经过O、C、B三点的抛物线的解析式为y=ax2+bx+c。

则可得,a=-12x2+52x。

(2)当y=2时,则-12x2+52x=2,解得x1=1,x2=4,∴CD=4-1=3。

(3)延长QM交x轴于点N。

①若MP⊥OB,则四边形AOPQ是矩形。

∴AQ=OP,∴4-t=t,∴t=2②PM⊥BM,则△PNM∽△MNB。

∴MN2=PN·BN。

∵CQ ∥NB ,∴△CQM ∽△BNM则有MN 2-MN =1+t 3-t,MN 2 =1+t 4 ,MN=t+12 。

∵PN=5-(1+t)-t=4-2t, BN=1+t ,∴(t+12 )2=(4-2t)(t+1)。

相关文档
最新文档