谐波减速器
谐波减速器原理

谐波减速器原理谐波减速器是一种新型的减速传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点,因此在工业自动化领域得到了广泛的应用。
谐波减速器的原理是利用谐波振动的特性来实现减速传动,下面我们来详细介绍一下谐波减速器的原理。
谐波减速器由柔性轮、刚性轮和梅花轮组成。
柔性轮和刚性轮之间通过梅花轮连接,柔性轮和刚性轮之间的齿轮传动实现了减速作用。
柔性轮和刚性轮的齿数之比就是谐波减速器的传动比。
谐波减速器的原理是通过柔性轮和刚性轮之间的相对运动来实现减速传动。
当柔性轮和刚性轮之间存在相对运动时,由于柔性轮的弹性变形特性,会产生谐波振动。
谐波振动是一种特殊的振动形式,它具有频率高、振幅小的特点。
利用谐波振动的特性,谐波减速器可以实现高精度的减速传动。
谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动。
在实际应用中,通过控制柔性轮和刚性轮之间的相对运动,可以实现不同的传动比。
这使得谐波减速器具有了很大的灵活性,可以满足不同应用场合的需求。
谐波减速器的原理是利用谐波振动来实现减速传动,因此在设计和制造过程中需要考虑谐波振动的特性。
首先,需要对柔性轮和刚性轮的材料和结构进行合理设计,以确保在工作过程中能够产生稳定的谐波振动。
其次,需要对谐波减速器的传动比进行精确计算和控制,以满足实际应用的需求。
总的来说,谐波减速器是一种利用谐波振动来实现减速传动的新型传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点。
谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动,通过合理设计和精确控制,可以满足不同应用场合的需求。
谐波减速器在工业自动化领域有着广泛的应用前景,将为工业生产带来更高效、更稳定的传动解决方案。
谐波减速器工作原理

谐波减速器工作原理
谐波减速器是一种常用的机械传动装置,它通过利用弹性变形的原理将输入速度和输出速度之间的比例关系进行转换。
谐波减速器的工作原理如下:
1. 谐波发生器:谐波减速器的输入轴与谐波发生器相连,谐波发生器通常是一个内齿圈和一个柔性齿条组成的装置。
当输入轴旋转时,谐波发生器会产生谐波振动。
2. 谐波传动:谐波振动会通过内齿圈传递到输出轴,内齿圈上的前导齿和柔性齿条之间的啮合关系会引起传动的变形和滑移。
这样,谐波传动将输入轴的旋转运动转换成了输出轴的运动。
3. 减速效果:由于在谐波传动过程中存在变形和滑移,所以输出轴的转速会比输入轴的转速慢。
根据前导齿和柔性齿条的结构设计,可以实现不同的减速比。
谐波减速器具有结构简单、传动效率高、减速比大、可靠性强等优点,广泛应用于工业生产和机械设备中。
它适用于需要准确控制速度和力矩的场合,如机床、准确度要求高的机械装置等。
谐波减速器工作原理

谐波减速器工作原理
谐波减速器是一种高精度、高刚度、高传动效率的新型减速器,其主要特点是
具有结构简单、传动精度高、传动效率高等优点。
谐波减速器的工作原理是通过谐波振动实现传动的,下面将详细介绍谐波减速器的工作原理。
首先,谐波减速器由柔性循环器、刚性循环器和柔性齿轮组成。
在工作时,输
入轴通过柔性循环器将动力传递给刚性循环器,刚性循环器再将动力传递给输出轴,从而实现减速传动。
柔性循环器和刚性循环器之间的相对运动产生了谐波振动,从而实现了高精度的传动。
其次,谐波减速器的工作原理是基于谐波振动的特性。
谐波振动是指在一个物
体受到外力作用时,其振动频率等于外力作用频率的整数倍。
在谐波减速器中,柔性循环器和刚性循环器之间的相对运动产生了谐波振动,这种谐波振动的特性使得谐波减速器具有了高精度的传动特性。
最后,谐波减速器的工作原理还涉及到谐波发生器和谐波齿轮的设计。
谐波发
生器是谐波减速器中的核心部件,它通过特殊的结构设计和材料选择,使得谐波减速器具有了高刚度和高传动效率。
谐波齿轮是谐波减速器中的关键部件,它通过特殊的齿形设计和精密加工,使得谐波减速器具有了高精度的传动特性。
总的来说,谐波减速器的工作原理是基于谐波振动的特性,通过谐波振动实现
了高精度、高刚度、高传动效率的传动。
谐波减速器在工业生产中具有广泛的应用前景,对于提高生产效率、降低能耗、改善产品质量具有重要意义。
希望通过本文的介绍,能够更加深入地理解谐波减速器的工作原理,为其在工程应用中发挥更大的作用提供帮助。
谐波减速器 原理

谐波减速器的基本原理1. 引言谐波减速器是一种精密的机械装置,广泛应用于工业机械领域。
它通过利用谐波振动的特性,将高速旋转输入轴的动力转换为低速输出轴的动力,并且能够提供高扭矩输出。
本文将详细解释与谐波减速器原理相关的基本原理。
2. 谐波振动谐波振动是指在一个物体受到周期性外力作用时,产生与外力频率相同但振幅较小的振动。
这种振动可以通过在系统中引入弹性元件和质量不平衡来实现。
3. 谐波传递装置谐波传递装置是谐波减速器中最关键的部分,它由柔性齿轮、刚性齿轮和变形器构成。
3.1 柔性齿轮柔性齿轮是一种由弹性材料制成的齿轮,具有很好的柔度和耐磨性。
它通常由多个弹片组成,每个弹片都有两个端面和一组齿。
这些弹片通过螺栓连接在一起,形成一个整体。
3.2 刚性齿轮刚性齿轮是一种由硬材料制成的齿轮,具有较高的强度和耐磨性。
它通常由一个或多个齿轮组成,每个齿轮都有一组齿。
3.3 变形器变形器是谐波传递装置中的关键部分,它由柔性齿轮和刚性齿轮交替排列而成。
变形器的作用是将输入轴上的旋转运动转换为输出轴上的旋转运动,并且实现速度减小和扭矩增大。
4. 工作原理谐波减速器的工作原理可以分为三个步骤:振动、传递和输出。
4.1 振动当输入轴上施加一个周期性外力时,柔性齿轮会发生弯曲变形,并产生谐波振动。
这种振动会通过变形器传递到刚性齿轮上。
4.2 传递在传递过程中,柔性齿轮和刚性齿轮之间会发生摩擦,由于柔性齿轮的弹性,它们之间会产生一定的变形。
这种变形会导致刚性齿轮上的齿与柔性齿轮上的齿之间产生接触,从而实现能量传递。
4.3 输出在输出端,通过连续的振动和传递过程,输入轴上的旋转运动被转换为输出轴上的旋转运动,并且实现了速度减小和扭矩增大。
5. 特点与优势谐波减速器具有以下特点和优势:5.1 高精度谐波减速器采用了柔性齿轮和刚性齿轮交替排列的结构,能够提供高精度的传动效果。
其精度通常可以达到0.1弧分。
5.2 大扭矩由于谐波减速器采用了谐波振动的原理,可以实现高扭矩输出。
谐波减速器原理

谐波减速器原理
谐波减速器是一种新型的减速传动装置,它采用了谐波振动原理,通过谐波发生器和柔性齿轮来实现减速传动。
谐波减速器具有
体积小、传动比大、精度高等优点,广泛应用于机械制造、航空航天、轨道交通等领域。
接下来,我们将详细介绍谐波减速器的原理。
首先,谐波减速器的核心部件是谐波发生器和柔性齿轮。
谐波
发生器是由一组柔性弹性体构成的,它能够产生谐波振动。
柔性齿
轮则是由内外两层齿轮组成,内层齿轮固定在输入轴上,外层齿轮
则与内层齿轮之间通过柔性弹性体相连。
当谐波发生器产生谐波振
动时,柔性齿轮会受到振动力的作用,从而实现减速传动。
其次,谐波减速器的工作原理是利用谐波振动的非线性特性来
实现减速传动。
在谐波发生器产生谐波振动的作用下,柔性齿轮会
发生形变,使得内外层齿轮之间产生相对运动,从而实现减速传动。
由于谐波振动的非线性特性,谐波减速器可以实现高传动比的减速,且具有较高的传动精度。
最后,谐波减速器的优点在于传动比大、精度高、体积小等特点。
传统的减速器往往需要多级传动才能实现较大的传动比,而谐
波减速器可以通过单级传动就实现较大的传动比,从而减小了整个
传动装置的体积。
同时,谐波减速器的传动精度也较高,可以满足
一些对传动精度要求较高的场合。
总之,谐波减速器是一种新型的减速传动装置,它利用谐波振
动原理实现减速传动,具有体积小、传动比大、精度高等优点,适
用于机械制造、航空航天、轨道交通等领域。
希望通过本文的介绍,能够更加深入地了解谐波减速器的原理和优点。
谐波减速器在机器人中的应用

谐波减速器在机器人中的应用谐波减速器是机器人中常用的一种减速装置,它可以将高速低扭矩的电机输出转换为低速高扭矩的输出,从而满足机器人的精度要求和动力要求。
本文将从谐波减速器的原理、优点和在机器人中的应用等方面进行阐述。
一、谐波减速器的原理谐波减速器是一种非常精密的机械装置,它的主要构件包括驱动轮、谐波轮、柔性轮和输出轮。
其中,驱动轮与谐波轮相连,谐波轮中心装有柔性轮,柔性轮与输出轮相连。
当驱动轮带动谐波轮转动时,柔性轮的弹性变形会引起输出轮的转动,从而实现减速的作用。
谐波减速器的工作原理是利用谐波振动的原理,通过变形的柔性轮将驱动力转换为输出力。
具体来说,谐波减速器的谐波轮上有许多凸起的齿轮,而柔性轮则有相应数量的凹槽。
当驱动轮带动谐波轮旋转时,凸起的齿轮会压缩柔性轮,从而使柔性轮变形。
随着谐波轮继续旋转,柔性轮又会恢复原状,这时齿轮就会进入下一个凹槽,重复以上的过程。
通过这样的变形和恢复,谐波减速器就可以将驱动轮的高速低扭矩输出转换为低速高扭矩的输出。
二、谐波减速器的优点相对于其他减速装置,谐波减速器具有以下优点:1. 高精度:谐波减速器的工作原理是利用谐波振动的原理,通过变形的柔性轮将驱动力转换为输出力,所以它的精度非常高,通常可以达到0.1度以下。
2. 高扭矩密度:谐波减速器的输出轮直接与柔性轮相连,不需要传递动力的中间轴,因此具有较高的扭矩密度,可以满足机器人的高动力要求。
3. 超小尺寸:谐波减速器结构紧凑,体积小,重量轻,可以自由安装在机器人的关键部位,提高机器人的灵活性和精度。
4. 高可靠性:谐波减速器的设计简单,几乎没有摩擦和磨损,寿命长,运行稳定可靠。
谐波减速器在机器人中应用非常广泛,其中最典型的就是机械臂的关节传动。
机械臂是工业机器人的重要组成部分,它由多个关节组成,需要精确的控制和高扭矩的输出。
谐波减速器可以满足机械臂的高精度和高扭矩要求,同时体积小、重量轻,可以自由安装在机械臂的关键部位,提高机械臂的灵活性和精度。
谐波减速器工作原理

谐波减速器工作原理谐波减速器是一种新型的高性能减速器,它利用谐波传动原理实现高精度、高扭矩的减速效果。
谐波减速器的工作原理主要包括谐波振动原理和谐波传动原理两个方面。
谐波振动原理是谐波减速器工作的基础。
谐波振动是指在一个物体上受到外力作用时,物体内部各点的振动频率是整数倍关系的振动现象。
在谐波减速器中,通过谐波振动原理可以实现高精度的传动效果。
当输入轴通过柔性轴联接到柔性轮上时,由于输入轴和柔性轮之间存在微小的空隙,当输入轴旋转时,柔性轮会产生微小的振动,这种微小的振动会被放大并传递到输出轮上,从而实现减速效果。
谐波传动原理是谐波减速器实现高扭矩传动的关键。
在谐波减速器中,通过谐波传动原理可以实现高扭矩的传动效果。
谐波传动是指通过谐波振动将输入轴的运动传递到输出轮上的一种传动方式。
在谐波减速器中,通过谐波传动原理可以实现高扭矩的传动效果。
当输入轴旋转时,柔性轮产生的微小振动会被放大并传递到输出轮上,从而实现高扭矩的传动效果。
谐波减速器的工作原理可以总结为:通过谐波振动原理实现高精度的传动效果,通过谐波传动原理实现高扭矩的传动效果。
谐波减速器以其高精度、高扭矩的特点,在工业自动化、机器人、航空航天等领域得到了广泛的应用。
总的来说,谐波减速器的工作原理是利用谐波振动原理实现高精度的传动效果,利用谐波传动原理实现高扭矩的传动效果。
谐波减速器以其独特的工作原理和优越的性能,成为了现代工业领域不可或缺的重要设备。
随着科技的不断发展,谐波减速器的工作原理也将不断得到完善和提升,为工业生产带来更大的便利和效益。
谐波减速器作用

谐波减速器作用谐波减速器是一种常见的机械传动装置,它具有紧凑结构、高传动精度和大扭矩输出等特点,在工业生产中起到了重要作用。
本文将从谐波减速器的工作原理、结构特点以及应用领域等方面进行介绍。
一、工作原理谐波减速器主要由柔性齿轮和刚性齿轮组成。
当输入轴旋转时,柔性齿轮通过弹性变形使传动齿轮产生相对运动,从而实现减速效果。
其工作原理类似于人体骨骼系统中的肌肉和骨骼之间的协调配合,通过柔性元件的变形来传递力量和运动。
二、结构特点1. 紧凑结构:谐波减速器的结构设计非常紧凑,体积小、重量轻,可以在有限的空间内实现大扭矩输出。
2. 高精度:谐波减速器的传动精度非常高,一般可以达到0.1弧分左右,适用于对传动精度要求较高的场合。
3. 大扭矩输出:谐波减速器的输出扭矩较大,可以满足不同工况下的需求。
4. 高效率:谐波减速器的传动效率较高,一般可以达到90%以上。
5. 可逆性:谐波减速器具有可逆性,即可以实现正反转。
三、应用领域由于谐波减速器具有结构紧凑、传动精度高等特点,因此广泛应用于各个领域。
以下是谐波减速器的几个典型应用领域:1. 机床行业:谐波减速器常用于数控机床、雕铣机、切割机等设备中,可以提高设备的精度和稳定性。
2. 机器人领域:谐波减速器广泛应用于工业机器人、服务机器人等领域,可以实现机器人的精确定位和灵活运动。
3. 包装设备:在包装设备中,谐波减速器可以提高包装速度和精度,提高生产效率。
4. 自动化生产线:谐波减速器可以应用于各种自动化生产线中,实现传动和定位控制。
5. 太阳能发电:谐波减速器可以用于太阳能跟踪系统中,帮助太阳能板实现精确跟踪,提高能量转换效率。
谐波减速器作为一种重要的机械传动装置,在工业生产中发挥着重要作用。
其紧凑的结构、高传动精度和大扭矩输出等特点,使其广泛应用于机床行业、机器人领域、包装设备、自动化生产线以及太阳能发电等领域。
未来随着技术的不断发展,谐波减速器在更多领域将发挥更大的作用,为生产和生活带来更多便利和效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筒形底端联接式:
结构简单,联接方便,制造容易,刚性较大,应用较 普遍。
筒形花键联接式:
轴向尺寸较小,扭转刚性好,传动精度较高,联接方 便,承载能力较大。
轴向尺寸较小,结构简单,制造方便,但载荷沿齿宽 分布不均匀。
筒形销轴联接式:
筒形底端联接式图例:
筒形花键联接式图例:
筒形销轴联接式图例:
波发生器主动, 单级减速,结构 简单,传动比范 围较大,效率较 高,可用于中小 型 减 速 器 , i ZG Z R
3.波发生器固定—刚轮输出:
柔轮主动,单 级微小减速, 传动比准确, 适用于高精度 微调传动装置, i=1.002~1.015。
i
H RG
ZG ZR
双波单级谐波齿轮减速器
主要问题:
1、减速器的主要构成;
2、减速器的运动型式(指出哪 个部件固定、主动和从动轴);
3、波发生器的结构型式;
4、柔轮采用何种输出方式。
四、谐波发生器传动比的计算
1、公式推导(1):
以刚轮固定,柔轮输出为例,推导传 动比的计算公式。 当刚轮固定时,nG=0。如果反过来看, 即将柔轮当做输入,刚轮当做输出, 则:
1、公式推导(2):
i
H gb
n g nH nb nH
n g nH 0 nH
i gH
Zb 1 Zg
2.波发生器常见的结构型(1):
波发生器是迫使柔轮发生弹性变形的 重要元件,按变形的波数不同,常用 的有双波和三波两种。双波发生器的 结构型式主要有滚轮式、凸轮式、偏 心盘式和行星式。
波发生器种类图例(1):
凸轮式
滚轮式
偏心盘式
2.波发生器常见的结构型(2):
双滚轮式:
结构简单,制造方便,形成波峰容易,但 柔轮变形未被积极控制,承载能力较低, 多用于不重要的低精度轻载传动。
谐波齿轮传动及谐波减速器
主讲 周兰
一、谐波齿轮传动的基本构成及特点
1.构成:
谐波齿轮传动是谐波齿轮行星传动的 简称。是一种少齿差行星传动。通常 由刚性圆柱齿轮G、柔性圆柱齿轮R、 波发生器H和柔性轴承等零部件构成。 柔轮和刚轮的齿形有直线三角齿形和 渐开线齿形两种,以后者应用较多 。
谐波齿轮传动构成图例:
i gH
Zb Z g Zb Z g Zb 1 Zg Zg Zg
实际上,运动是从波发生器输入的,减速器的传 动比为: Zg 1 iHg i gH Zb Z g
五、柔轮、波发生器 常见的结构型式
1.柔轮常见的结构型式:
柔轮的结构型式与谐波传动的结构类型选择 有关。柔轮和输出轴的联结方式直接影响谐 波传动的稳定性和工作性能。
工作原理图例:
波发生器的旋转方 向与柔轮的转动方 向相反。
柔轮与刚轮齿面的啮合过程:
三、单级谐波齿轮常见的 传动形式和应用
1.刚轮固定—柔轮输出:
波发生器主动, 单级减速,结构 简单,传动比范 围较大,效率较 高,应用极广, i=75~500。
i
G HR
ZR ZG Z R
2.柔轮固定—刚轮输出:
多滚轮式:
柔轮变形全周被积极控制,承载能力较高, 多用于不宜采用偏心盘式或凸轮式波发生 器的特大型传动。
波发生器种类图例(2):
3.谐波传动主要零件常用材料:
柔轮:
30CrMnSi、35CrMnSiA、40CrNiMoA 45、40Cr
刚轮
凸轮或偏心盘
45
六、谐波发生器的典型结构
2.特点(1):
谐波齿轮传动既可用做减速器,也可 用做增速器。柔轮、刚轮、波发生器 三者任何一个均可固定,其余二个一 为主动,另一个为从动。 传动比大,且外形轮廓小,零件数目 少,传动效率高。效率高达92%~96%, 单级传动比可达50~4000。
2.特点(2):
承载能力较高:柔轮和刚轮之间为面接 触多齿啮合,且滑动速度小,齿面摩损 均匀。 柔轮和刚轮的齿侧间隙是可调:当柔轮 的扭转刚度较高时,可实现无侧隙的高 精度啮合。 谐波齿轮传动可用来由密封空间向外部 或由外部向密封空间传递运动。
二、工作原理
1.齿差:
谐波齿轮传动中,刚轮 的 齿 数 zG 略 大 于 柔 轮 的 齿 数 z R, 其 齿 数 差 要 根 据波发生器转一周柔轮 变形时与刚轮同时啮合 区域数目来决定。即 zGzR=u。目 前多用 双波和 三波传动。错齿是运动 产生的原因
ZG ZR
2.变形:
波发生器的长度比未变形的柔轮内圆直径 大:当波发生器装入柔轮内圆时,迫使柔 轮产生弹性变形而呈椭圆状,使其长轴处 柔轮轮齿插入刚轮的轮齿槽内,成为完全 啮合状态;而其短轴处两轮轮齿完全不接 触,处于脱开状态。由啮合到脱开的过程 之间则处于啮出或啮入状态。 当波发生器连续转动时:迫使柔轮不断产 生变形,使两轮轮齿在进行啮入、啮合、 啮出、脱开的过程中不断改变各自的工作 状态,产生了所谓的错齿运动,从而实现 了主动波发生器与柔轮的运动传递。