半导体的导电特性
半导体的特性

一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。
如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。
导体的电阻率小于10-6cm。
如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。
绝缘体的电阻率大于108cm。
有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。
半导体的电阻率在10-6~108之间。
众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。
我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。
而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。
然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。
半导体在不同情况下,导电能力会有很大差别,有时犹如导体。
在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。
②温度:当温度稍有变化,半导体的导电能力就会有显著变化。
如温度稍有增高,半导体的电阻率就会显著减小。
同理光照也会影响半导体的导电能力。
2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。
(纯度约为99.999999999%。
即杂质含量为10的9次方分之一。
)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。
锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。
由于原子核带正电与电子电量相等,正常情况下原子呈中性。
由于内层电子受核的束缚较大,很少有离开运动轨道的可能。
所以它们和原子核一起组成惯性核。
外层电子受原子核的束缚较小。
叫做价电子。
硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。
第1章 半导体二极管和晶体管

型求出 IO 和 UO 的值。
+ UD -
解:
1、理想模型
UO = V = 6 V
E
IO = E / R = 6 / 6 = 1 (mA)
+
2 V ID
R UR
6KΩ
-
2、恒压降模型
UO = E – UD = 6 0.7 = 5.3 (V) IO = UO / R = 5.3 / 6 = 0.88 (mA)
反向击穿电压 I/mA 反向饱和电流
硅几 A
锗几十~几百 A UBR
硅管的温度稳
IS
O
U/V
定性比锗管好 反向 饱和电流
36
(二)极间电容
第三节、半导体二极管
C
1、PN结存在等效结电容
PN结中可存放电荷,相 当一个电容。
PN
+ ui –
R
– 2、对电路的影响:外加交流电源
+
时,当频率高时,容抗小,对PN
14
第一节、半导体的导电特性
N型半导体
多一个 价电子
4
+5
4
掺杂
4
4
4
15
本征激发
第一节、半导体的导电特性
N型半导体
4
+5
4
掺杂
正离子
电子
4
4
4
多子-------电子 少子-------空穴
N型半导体示意1图6
第一节、半导体的导电特性
P型半导体
多一个 空穴
4
+3
4
掺杂
4
4
4
17
本征激发
第一节、半导体的导电特性
半导体的导电特性

第1章半导体器件基础目的、要求1. 了解半导体的导电特性。
2. 熟悉PN结的形成及其单向导电性。
3. 掌握半导体二极管的伏安特性及主要参数。
4. 学会在实际中判断、测试和选择二极管。
5. 熟悉半导体二极管的基本应用,能用理想二极管模型分析二极管电路。
6. 熟悉常用的一些特殊二极管的特性及应用。
7. 熟悉晶体管的结构、电流控制机理、电流分配关系、伏安特性及主要参数,学会正确地选择和使用晶体管。
主要内容有:半导体二极管、半导体三极管、场效应管及集成电路等,它们是组成各种电子电路的核心。
半导体器件都是由半导体材料经过特殊工艺形成的PN结组成的。
1.1 半导体的导电特性1.1.1 导体、绝缘体和半导体自然界的各种物质就其导电性能来说、可以分为导体、绝缘体和半导体三大类。
导体具有良好的导电特性,常温下,其内部存在着大量的自由电子,它们在外电场的作用下做定向运动形成较大的电流。
因而导体的电阻率很小,只有10-6~10-4Ω·cm。
金属一般为导体,如铜、铝、银等。
绝缘体几乎不导电,如橡胶、陶瓷、塑料等。
在这类材料中,几乎没有自由电子,即使受外电场作用也不会形成电流,所以,绝缘体的电阻率很大,在1010Ω·cm以上。
半导体的导电能力介于导体和绝缘体之间,如:硅、锗等,它们的电阻率通常在10-2~109Ω·cm 之间。
半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。
如纯净的半导体单晶硅在室温下电阻率约为2.14× l03Ω·cm,若按百万分之一的比例掺入少量杂质(如磷)后,其电阻率急剧下降为2× l0-3Ω·cm,几乎降低了一百万倍。
半导体具有这种性能的根本原因在于半导体原子结构的特殊性。
1.1.2 本征半导体的导电特性常用的半导体材料是单晶硅(Si)和单晶锗(Ge)。
所谓单晶,是指整块晶体中的原子按一定规则整齐地排列着的晶体。
p型半导体和n型半导体导电能力

P型半导体和n型半导体导电能力半导体材料是一类在电子学领域中具有重要应用的材料,它具有介于导体和绝缘体之间的导电特性。
而p型半导体和n型半导体是半导体材料中的两种重要类型,它们的导电能力是半导体器件工作的关键。
本文将从p型半导体和n型半导体的导电能力特性入手,探讨它们在电子器件中的应用。
一、p型半导体的导电能力1. 杂质掺杂p型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为正电荷载流子的半导体。
常用的杂质有铝(Al)、硼(B)等。
p型半导体的导电能力主要来源于由掺杂杂质形成的空穴(正电荷载流子)。
2. 导电特性由于p型半导体中的空穴为主导电载流子,因此其导电特性取决于空穴的迁移率和扩散率。
相比n型半导体而言,p型半导体的导电能力较弱,但在一些特定的电子器件中,p型半导体也具有重要的应用价值。
二、n型半导体的导电能力1. 杂质掺杂n型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为负电荷载流子的半导体。
常用的杂质有磷(P)、砷(As)等。
n型半导体的导电能力主要来源于由掺杂杂质形成的自由电子(负电荷载流子)。
2. 导电特性由于n型半导体中的自由电子为主导电载流子,因此其导电特性取决于自由电子的迁移率和扩散率。
相比p型半导体而言,n型半导体的导电能力较强,因此在电子器件中得到广泛的应用。
三、p型半导体和n型半导体的应用1. 集成电路在集成电路中,p型半导体和n型半导体往往交替排列,形成复杂的电路结构。
通过p-n结的形成,可以实现整流、放大、开关等各种功能,为现代电子设备的发展提供了重要的支持。
2. 光电器件在光电器件中,p型半导体和n型半导体可以形成光电二极管、太阳能电池等器件,将光能转化为电能,具有广泛的应用前景。
3. 光电子器件光电子器件利用p型半导体和n型半导体的光电转换特性,实现光信号的检测、放大和处理,被广泛应用于通信、显示、医疗等领域。
p型半导体和n型半导体作为重要的半导体材料类型,其导电能力及应用具有重要的理论和实际意义。
半导体与PN结半导体材料与PN结的特性

半导体与PN结半导体材料与PN结的特性半导体与PN结:半导体材料与PN结的特性半导体是一种介于导体和绝缘体之间的材料,具有在特定条件下能够导电的特性。
与导体相比,半导体的电导率较低,但比绝缘体高,这使得半导体在现代电子器件中发挥着重要的作用。
而PN结是半导体器件中最基本的组成部分之一,它由P型半导体和N型半导体的结合所形成。
本文将详细介绍半导体材料和PN结的特性。
一、半导体材料的特性半导体材料是由一些三价或五价元素构成的晶体结构。
根据元素的导电性质,半导体可分为N型和P型两种类型。
1. N型半导体N型半导体中,杂质原子被掺入半导体晶体中,这些杂质原子具有多余的电子,又称为施主原子。
施主原子释放出的自由电子增加了半导体中的载流子浓度,使其成为导电性质较好的材料。
2. P型半导体P型半导体中,杂质原子具有较少的电子,又称为受主原子。
受主原子缺少的电子形成了空穴,这些空穴能够传导电流,使P型半导体具有导电性能。
半导体的导电特性主要由两个载流子类型决定:自由电子和空穴。
通过对半导体材料进行掺杂可以调控载流子的浓度,从而控制半导体器件的电性能。
此外,半导体材料还具有热电效应、光电效应等特性,在电子学和光电子学领域有着广泛的应用。
二、PN结的特性PN结是由P型半导体和N型半导体通过扩散和结合形成的。
在PN结中,P区和N区形成了一个电势垒,这个电势垒对电子和空穴的运动具有一定的限制。
1. 电势垒PN结的P区和N区的杂质浓度不同,形成了一个P-N结的交界面。
在该交界面附近,由于杂质原子的离子化作用,P区中形成了正离子,N区中形成了负离子,从而在交界面上形成了电势差。
这个电势差形成了电势垒,限制着载流子的运动。
2. 正向偏置当外加电压的正极连接到P区,负极连接到N区时,电势垒的宽度会减小,使得载流子能够穿越过电势垒自由移动,形成电流。
这种情况下,PN结处于正向偏置状态。
正向偏置下的PN结具有导电性质。
3. 反向偏置当外加电压的正极连接到N区,负极连接到P区时,电势垒的宽度会增加,限制了载流子的运动。
半导体的导电特性

半导体
本征半导体 杂质半导体
P型半导体(空穴型) N型半导体(电子型)
常用半导体材料硅和锗的原子结构
价电子:最外层的电子受原子核的束缚最 小,最为活跃,故称之为价电子。 最外层有几个价电子就叫几价元素, 半导体材料硅和锗都是四价元素。
Si+14 2 8 4
Ge+32 2 8 18 4
2. 半导体的内部结构及导电方式:
一是势垒电容CB 二是扩散电容CD
(1) 势垒电容CB
势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压降发生变化时,离子薄层 的厚度也相应地随之改变,这相当PN结中存储的 电荷量也随之变化,犹如电容的充放电。
图 01.09 势垒电容示意图
(2) 扩散电容CD
扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散 到P区的电子,与外电源提供的空穴相复合,形 成正向电流。刚扩散 过来的电子就堆积在P 区内紧靠PN结的附近, 形成一定的多子浓度 梯度。
vi
RL vo
vo
t
例3:设二极管的导通电压忽略,已知
vi=10sinwt(V),E=5V,画vo的波形。
vi 10v
5v
R
t
D
vo
vi
E
vo
5v
t
例4:电路如下图,已知v=10sin(t)(V),
E=5V,试画出vo的波形
vi
解:
t
vD
t
例5:VA=3V, VB=0V,求VF (二极管的导 通电压忽略)
根据理论推导,二极管的伏安特性曲线可用下式表示
V
I IS (e VT 1)
式中IS 为反向饱和电流,V 为二极管两端的电压降 ,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数 ,q 为电子电荷量,T 为热力学温度。对于室温(相 当T=300 K),则有VT=26 mV。
6-1 半导体的导电特性

6-1 半导体二极管半导体元器件是现代电子技术的重要组成部分,是构成各种电子电路的核心,常用的半导体元器件有二极管、晶体管、场效应管等。
半导体元器件由半导体材料制成,因此,学习电子技术应首先了解半导体材料的特性,这将有助于对半导体元器件的学习、掌握和应用。
6-1-1 半导体的导电特性1. 半导体的导电机理导电能力介于导体与绝缘体之间的物质称为半导体,这类材料大都是三、四、五价元素,主要有:硅、锗、磷、硼、砷、铟等,他们的电阻率在10-3~107欧.厘米。
绝对纯净的硅、锗、磷、砷、硼、铟叫做本征半导体。
(1)本征半导体及特点半导体材料的广泛应用,并不是因为它们的导电能力介于导体与绝缘体之间,而是它们具有一些重要特性:1)当半导体受到外界光和热的激发(本征激发)时,其导电能力发生显著的变化;2)若在本征半导体中加入微量的杂质(不同的本征半导体)后,其导电能力显著的增加;半导体的这些特点取决于这类物质的化学特性。
(2)半导体的共价键结构1)半导体的化合价物质的化学和物理性质都与物质的价电子数有密切的关系,半导体材料大都是三、四、五价元素。
硅、锗(四价)、磷、砷(五价)、硼、铟(三价)。
2)化学键物质化学键分离子键、共价键和金属键三种,半导体物质的化学键都属于共价键的晶体结构,同时它们的键长一般很长,故原子核对价电子的束缚力不象绝缘物质那样紧,当价电子获得一定的能量后,就容易挣脱原子核的束缚成为自由电子。
+4+4+4+4+4+4+4+4+4+4可见半导体中的载流子有两种,即自由电子(●)和空穴(○)。
本征半导体的载流子是由本征激发而产生的,其自由电子与空穴是成对出现,即有一个自由电子,就一定有一个空穴,故称电子空穴对。
由于空穴带正电,容易吸引邻近的价电子来填补,从而形成了共有价电子的运动,这种运动无论从效果上,还是从现象上,都好象一个带正电的空穴在移动,它不同于自由电子的运动,故称之为空穴运动。
物质的导电是靠物体内带电粒子的移动而实现的,这种粒子称作载流子。
半导体基础知识

现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的导电特性
根据物质的导电能力可分为导体、半导体和绝缘体三大类,顾名思义半导体的导电能力介于导体绝缘体之间。
硅、锗、硒及大多数金属氧化物和硫化物都是半导体。
半导体的导电特性
热敏性:当环境温度升高时,导电能力显著增强(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。
掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。
1.本征半导体
本征半导体:完全纯净的、不含其它杂质的半导体通称本征半导体。
用得最多的是硅和锗,图1所示是硅和锗的原子结构图,它们都是四价元素,在原子的最外层轨道上都有四个价电子。
(a) 锗Ge (b) 硅Si
图1 硅和锗的原子结构
在本征半导体中,每个原子的一个价电子与另一原子的一个价电子组成一个电子对,并且对两个原子所共有,因此称为共价键。
由共价键结构形成的半导体其原子排列都比较整齐,形成晶体结构,因此半导体又称为晶体,如图2所示。
图2 晶体中原子的排列方式本征半导体的导电机理
在本正半导体的晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓的共价键结构,如图
3所示。
图3 硅单晶中的共价键结构
在共价键结构的晶体中,每个原子的最外层都有八个价电子,因此都处于比较稳定的状态。
只有当共价键中的电子获得一定能量(环境温度升高或受到光照射)后,价电子方可挣脱原子核的束缚成为自由电子,并且在共价键中留下一个空位,称为空穴。
如图4所示。
图4 空穴和自由电子的形成
在一般情况下,本征半导体中自由电子和空穴的数量都比较少,其导电能力很低。
由于本征半导体中的自由电子和空穴总是成对出现,因此在一定温度下,它们的产生和复合将达到动态平衡,使自由电子和空穴维持在一定数目上。
温度愈高,自由电子和空穴的数量愈多,导电性能也愈好。
所以,温度对半导体的性能影响很大。
当半导体外加电压时,在电场的作用下,半导体中将出现两部分电流:一是自由电子作定向运动形成的电子电流;二是有空穴的原子吸引相邻原子中的价电
子填补空穴,而在相邻原子的共价键中留下新的空穴电流,因此,称自由电子和空穴为载流子。
在半导体中,同时存在两种载流子的定向运动是半导体导电方式的电大特点,也是半导体与金属在导电原理上的本质差别。
2.N型半导体和P型半导体
为了增加本征半导体中的自由电子和空穴的数量,提高它的导电能力,通常在本征半导体为掺入微量的杂质(某种元素),这将使掺杂后的半导体(杂质半导体)的导电能力大大增强。
根据掺杂元素的不同,杂质半导体可分为N型和P型两大类。
(1) N型半导体
在硅的单晶体内掺入微量的五价元素(磷或砷)后,磷或砷原子将取代某些硅原子的位置并与相邻的硅原子结成共价键。
由于磷或砷是五价元素,与硅原子结成共价键后,多余的一个电子将成为自由电子,因此,称五价元素为施主原子。
失去一个电子的磷或砷就成为固定的晶格中不能移动的正离子。
本征半导体掺入五价元素的数量决定着自由电子的数量。
由于掺入五价元素的杂质半导体中自由电子的数量比空穴的数量多得多,载流子中自由电子占多数,空穴占少数,因此称这种杂质半导体为N型半导体,如图5所示。
图5 N型半导体的晶体结构图6 P型半导体的晶体结构
(2) P型半导体
如果在硅的单晶体中掺入微量的三价元素(硼或铝),掺入的硼或铝原子将取代某些硅原子的位置,并与相邻的硅原子结成共价键,同时在共价键中出现一个空穴。
当邻近的价电子填补这个空穴后,使三价元素成为带负电子的离子,如图6所示。
由于三价元素接受一个电子,因此称它为受主原子。
掺入三价元素的数量决定空穴的数量,而且这种杂质半导体中空穴的数量比自由电子多得多,载流子中空穴占多数,自由电子占少数,因此称这种杂质半导体为P型半导体。