重质油加氢
浅析重油加氢技术

运动 , 形成气 、液、同三相床层 , 从而使原料油 、氢气以及催化剂充分 接触而完成加氢裂化反应 。此工艺能够处理残炭值 与金属含量较高 的原
料, 并能深度转化重油。但是此工艺 的操作温度较高,一般在 4 0 0 ~ 4 5 0
合反应 ,避免产生大量焦炭 和低价值产物 ,加氢裂化产物 中不含烯烃 ,
( 1 )固定床一段加氢裂化工艺
一
段加氢裂化一般来说用于 由粗汽油生产液化气 ,由脱沥青油与减
硫 、氮的含量也非常少 ,因此产品的胶质 、色泽与安定性都很好 , 产品
j 蜡油生产柴油 与航空煤油 等。一段加氢裂 的化反应器只有一个 ,原料
℃。
就是组合工艺。 最常见的是重油加氢一 催化裂化组合工艺 , 其液收率与轻 油收率高 , 投资省 ,回报大 。此外 , 依照原料的性质还能够发展重油加
二段加氢裂化 ;另一种是第一段不但进行精制,还进行部分裂化 ,第二 段进行加氢裂化 。 两段加氢裂化工艺对原料的适应性大 , 操作 比 较灵活 。 ( 3 ) 沸腾床加氢裂化 沸腾床加氢裂化工艺是借助于流体流速带动一定颗粒粒度 的催化剂
硫 、氮、金属的脱 除率 ,提高加 工能力 ,在降低装置投资和操作费用方
【 关键 词 】 重 油 加 氢技 术 中图分类号 :T E 6 2 4文献标识码:B 文章编号:1 0 0 9 _ 4 O 6 7 ( 2 0 1 4 ) 2 1 — 7 2 O 1
一
、
概 述
三、重油加氢 裂化技术 的特点
重油加氢裂化技术使用的催化剂具有加氢和裂化两种作用 ,所以该 技术具有原料适应性强 、 转化率商、操作灵活性大、 产 品质量好等特点。 l 、原料适应陛强 :高压加氢裂化的原料可以是焦化馏分油 、催化裂 化循环油 、 常减压渣油 、 脱沥青油等 。同时还能有效 的处理含硫 、 金属 、 残炭 、 氮等杂质含量高的劣质原料油。
渣油加氢 (2)

渣油加氢概述渣油加氢是一种在石油炼制过程中常用的加工技术,通过将重质渣油与氢气进行反应,可以将其中的硫、氮、金属等杂质去除,降低渣油的硫含量,提高产品的质量。
本文将介绍渣油加氢技术的原理、应用及优势。
技术原理渣油加氢是一种催化加氢反应,通过将渣油与催化剂和氢气接触,在一定温度和压力下进行反应,以去除其中的杂质。
加氢反应通常在加氢反应器中进行,反应器内填充有催化剂,渣油和氢气从反应器的顶部进入,经过催化剂的作用,硫、氮等杂质与氢气反应生成相应的气体或液体产物。
应用领域渣油加氢广泛应用于炼油行业,特别是重油加工领域。
以下是渣油加氢的一些常见应用领域:1. 规模化炼油厂在大型炼油厂中,渣油加氢常被视为一项必要的工艺流程,用于处理原油中的重渣和杂质。
通过渣油加氢,可以改善产品的质量、提高炼油的生产效率,并减少对环境的污染。
2. 焦化厂焦化厂主要通过高温分解重油,生成焦炭和焦油。
焦油中含有大量的杂质,如硫、氮等,这些杂质不仅会降低焦油的价值,还对环境造成污染。
渣油加氢技术可以用于焦化厂的焦油加工过程中,去除焦油中的杂质,提高焦油的质量。
3. 石油化工厂在石油化工厂中,渣油加氢被用于处理重油、渣油等原料,以减少其中的硫和金属等杂质。
处理后的产品可以用于生产润滑油、燃料油等各种石油化工产品。
优势渣油加氢技术具有以下优势:•提高产品质量:通过去除渣油中的硫、氮、金属等杂质,可以提高产品的质量,满足市场需求。
•减少环境污染:渣油中的杂质会在燃烧过程中产生大量的氮氧化物、硫氧化物等有害物质,渣油加氢可以减少大气污染物的排放,保护环境。
•提高生产效率:渣油加氢可以改善炼油过程中的产物分布,减少渣油的生成,提高生产效率。
•降低设备腐蚀:渣油中的硫和金属等杂质容易导致设备腐蚀,渣油加氢可以去除这些杂质,延长设备的使用寿命。
总结渣油加氢是石油炼制过程中常用的一种加工技术,通过去除渣油中的硫、氮和金属等杂质,提高产品质量、减少环境污染并提高生产效率。
石油化工加氢裂化工艺简介

石油化工加氢裂化工艺简介重油轻质化基本原理是改变油品的相对分子质量和氢碳比,而改变相对分子质量和氢碳比往往是同时进行的。
改变油品的氢碳比有两条途径,一是脱碳,二是加氢。
1、原料:重质油等2、产品:轻质油(汽油、煤油、柴油或催化裂化、裂解制烯燃的原料)3、基本概念加氢裂化属于石油加工过程的加氢路线,是在催化剂存在下从外界补入氢气以提高油品的氢碳比。
加氢裂化实质上是加氢和催化裂化过程的有机结合,一方面能使重质油品通过裂化反应转化为汽油、煤油和柴油等轻质油品,另一方面又可防止像催化裂化那样生成大量焦炭,而且还可将原料中的硫、氯、氧化合物杂质通过加氢除去,使烯燃饱和。
4、生产流程按反应器中催化剂所处的状态不同,可分为固定床、沸腾床和悬浮床等几种型式。
(1)固定床加氢裂化固定床是指将颗粒状的催化剂放置在反应器内,形成静态催化剂床层。
原料油和氢气经升温、升压达到反应条件后进入反应系统,先进行加氢精制以除去硫、氮、氧杂质和二烯燃,再进行加氢裂化反应。
反应产物经降温、分离、降压和分储后,目的产品送出装置,分离出含氢较高(80%,90%)的气体,作为循环氢使用。
未转化油(称尾油)可以部分循环、全部循环或不循环一次通过。
(2)沸腾床加氢裂化沸腾床(又称膨胀床)工艺是借助于流体流速带动具有一定颗粒度的催化剂运动,形成气、液、固三相床层,从而使氢气、原料油和催化剂充分接触而完成加氢反应过程。
沸腾床工艺可以处理金属含量和残炭值较高的原料(如减压渣油).并可使重油深度转化;但反应温度较高,一般在400~45(ΓC范围内。
此种工艺比较复杂,国内尚未工业化。
(3)悬浮床(浆液床)加氢工艺悬浮床工艺是为了适应非常劣质的原料而重新得到重视的一种加氢工艺。
其原理与沸腾床相类似,其基本流程是以细粉状催化剂与原料预先混合,再与氢气一向进入反应器自下而上流动,催化剂悬浮于液相中,进行加氢裂化反应,催化剂随着反应产物一起从反应器顶部流出。
该装置能加工各种重质原油和普通原油渣油,但装置投资大。
重油浆态床加氢解构全转化技术

重油浆态床加氢解构全转化技术
重油浆态床加氢解构全转化技术是一种能够将重质石油馏分中的高分子碳氢化合物转化为低碳烷烃的高效技术。
本文将介绍该技术的原理、工艺流程及其在石油加工中的应用。
我们需要了解重油浆态床加氢解构全转化技术的原理。
该技术利用了加氢反应器中的催化剂,通过加氢作用将重质石油馏分中的高分子碳氢化合物进行裂解和重组,从而将其转化为低碳烷烃。
加氢反应器中的催化剂能够促使反应发生,并提高反应的选择性和转化率。
接下来,我们将介绍该技术的工艺流程。
首先,将重质石油馏分送入加氢反应器中,同时加入一定量的氢气。
在加氢反应器中,高分子碳氢化合物经过加氢作用裂解成较短的链烷烃。
裂解产物经过分离和升温处理后,再次进入加氢反应器进行重组反应,生成低碳烷烃。
最后,通过冷凝和分离,得到目标产物。
该技术在石油加工中有着广泛的应用。
首先,它可以将重质石油馏分中的高分子碳氢化合物转化为低碳烷烃,提高石油产品的质量和降低环境污染。
其次,该技术可以提高石油加工的能源利用率,减少能源浪费。
此外,重油浆态床加氢解构全转化技术还可以产生一定量的氢气,用于其他化工过程,提高资源利用效率。
总结起来,重油浆态床加氢解构全转化技术是一种能够将重质石油馏分中的高分子碳氢化合物转化为低碳烷烃的高效技术。
通过加氢
反应器中的催化剂,将重质石油馏分裂解和重组,得到低碳烷烃。
该技术在石油加工中有着重要的应用,能够提高产品质量、降低环境污染,并提高能源利用效率。
未来,随着石油资源的日益枯竭和环境保护的要求不断提高,重油浆态床加氢解构全转化技术将会得到更广泛的应用和发展。
加氢裂化工艺流程介绍

加氢裂化工艺流程介绍加氢裂化工艺是一种常用的炼油工艺,它能够高效地将重质原油转化为高附加值的汽油、柴油和航空煤油等产品。
在加氢裂化过程中,原油分子中的碳-碳键和碳-氢键被裂解和重组,从而实现了原油分子结构的调整和产品结构的优化。
本文将对加氢裂化工艺的流程进行详细介绍,以帮助读者更好地了解这一重要的炼油技术。
一、加氢裂化工艺概述加氢裂化是一种将重质原油分子裂解成轻质产品的催化裂化过程,其核心技术是利用催化剂将原油中的大分子烃分子裂解成较小分子,并通过加氢反应降低产品的烯烃和芳烃含量,从而得到高质量的汽油和柴油产品。
加氢裂化工艺通常包括以下主要步骤:1. 原油预处理:原油经过脱盐、脱水、预加热等预处理操作,以提高其在催化裂化反应器中的流动性和热传导性。
2. 加氢裂化反应:原油在高温高压条件下与催化剂接触,发生裂化和加氢反应,生成汽油、柴油和石脑油等轻质产品。
3. 产品分离和处理:裂化产物经过冷凝、分离、脱气、脱硫等操作,得到合格的汽油、柴油和石脑油产品。
4. 催化剂再生:用于加氢裂化反应的催化剂在使用过程中会受到积炭和焦炭的影响,需要进行再生或更换。
1. 原油预处理原油预处理是加氢裂化工艺的首要环节,其目的是去除原油中的杂质、水分和重金属,以及提高原油的流动性和热传导性。
常见的原油预处理设备包括脱盐装置、脱水装置、加热炉和换热器等。
脱盐装置通过物理或化学方法,去除原油中的盐分和杂质,以防止对加氢裂化催化剂的腐蚀和毒化。
脱水装置通过加热和蒸汽提馏等方法,去除原油中的水分,以减少对催化裂化反应器的冲击和腐蚀。
加热炉和换热器则用于对原油进行预加热,以提高其在反应器中的温度,以促进裂化和加氢反应的进行。
2. 加氢裂化反应加氢裂化反应是加氢裂化工艺的核心步骤,也是原油分子裂解和重组的关键环节。
在加氢裂化反应器中,原油通过加热和压缩进入反应器,与催化剂接触进行裂化和加氢反应,生成汽油、柴油和石脑油等轻质产品。
加氢裂化反应器通常采用固定床反应器或流化床反应器,其操作条件包括温度在400-480摄氏度,压力在30-50大气压,空速为1-5小时立方米。
重油浆态床加氢解构全转化技术

重油浆态床加氢解构全转化技术
一、技术介绍
重油浆态床加氢解构全转化技术是一种将重质石油加工成高附加值产
品的技术。
该技术采用了浆态床反应器和催化剂,能够将高硫、高钠、高镍的重油转化为低硫、低钠、低镍的轻质油品。
二、工艺流程
1. 前处理:将原料油经过脱盐、脱水等前处理,去除杂质和水分。
2. 加氢反应:将前处理后的原料油送入浆态床反应器中,与催化剂在
高温高压下进行加氢反应,产生轻质油品和气体。
3. 分离:将加氢反应产生的混合物进行分离,得到轻质油品和气体。
4. 蒸馏:对轻质油品进行蒸馏分离,得到各种不同馏分。
5. 加氢裂化:对部分馏分进行再次加氢裂化,产生更多的轻质油品。
三、催化剂选择
浆态床反应器中使用的催化剂需要具备以下特点:
1. 高活性:能够在较低的温度下催化反应。
2. 耐高温:能够承受高温高压条件下的反应。
3. 抗中毒:能够抵抗原料油中的杂质和硫、钠等元素对催化剂的毒性。
目前常用的催化剂有氧化铝、硅铝酸盐、镍钼等。
四、技术优势
1. 能够将重油转化为轻质油品,提高石油加工产值。
2. 采用浆态床反应器,反应效果好,反应速度快。
3. 催化剂具备耐高温、抗中毒等特点,使用寿命长。
4. 产物低硫、低钠、低镍,符合环保要求。
五、技术应用
重油浆态床加氢解构全转化技术已经广泛应用于石油加工行业。
其产物可以作为汽车燃料或航空燃料,也可以作为基础原料进行进一步加工,生产出更多的精细产品。
该技术对于提高石油加工效率和环保水平具有重要意义。
加氢裂化原理

加氢裂化原理
加氢裂化原理是一种石油加工技术,用于将较重的石油烃转化为较轻的烃类。
它主要通过加入氢气使得重质石油烃发生裂解反应,产生较轻的烃类化合物。
加氢裂化是一种催化裂化过程,需要催化剂的参与。
通常使用铂、钴、镍等金属作为催化剂,以保证反应的高效性和选择性。
裂化过程中,加入的氢气在催化剂的作用下与重质石油烃发生反应,生成较轻的烃类化合物和水。
这种化学反应被称为加氢裂化。
加氢裂化的原理是基于分子结构的裂变。
重质石油烃在催化剂的作用下,通常发生饱和、断裂和重排等反应,从而生成较轻的烃类化合物。
这个过程中,氢气提供了所需的氢原子,帮助重质石油烃发生裂解和转化。
同时,氢气的参与还可以防止催化剂中毒,延长其使用寿命。
加氢裂化广泛应用于石油炼制和石化工业。
通过加氢裂化,可以将重质石油烃转化为轻质烃类,如石脑油、汽油等。
这不仅有助于提高石油产品的产量和质量,还有利于满足市场需求和提高能源利用率。
总之,加氢裂化通过加入氢气和催化剂,将重质石油烃裂解为较轻的烃类化合物。
这种技术在石油加工和石化工业中具有重要作用,为提高能源利用效率和产物质量提供了可行途径。
加氢裂化过程发生的主要反应

加氢裂化过程发生的主要反应加氢裂化是一种重要的石油化工过程,主要用于将重质石油产品转化为轻质石油产品。
在这个过程中,加氢裂化发生了许多主要反应,下面我将为大家详细介绍。
加氢裂化是通过在高温和高压下将石油产品与催化剂接触,使其分子发生断裂并进行重新组合的过程。
这个过程主要涉及到以下几个主要反应。
第一个主要反应是氢解反应。
重质石油产品中的大分子化合物在加氢裂化过程中会被断裂成较小的碳链分子。
在高温高压的条件下,分子内部的化学键容易断裂,并且会产生大量的自由基和碳碳双键,同时释放出大量的氢气。
这个反应可以将重质石油产品分解为较轻的烃类化合物。
第二个主要反应是重组反应。
在加氢裂化过程中,断裂的碳链分子会经过重新组合,形成较短的碳链分子。
这个过程主要是通过碳碳键的重组和氢原子的重新分布来实现的。
重组反应可以将分解出的烃类化合物重新排列,生成较为稳定的烃类化合物。
第三个主要反应是氢转移反应。
在加氢裂化过程中,氢原子会在分子之间进行转移。
这个反应是由于高温高压环境下,分子内部发生了断裂和重组,使得碳链分子中的氢原子位置发生变化。
氢转移反应可以调整碳链分子结构,生成更加稳定的化合物,并且可以调整产物的石油产品分布。
除了上述主要反应外,加氢裂化过程中还会发生一些副反应,例如裂化气的热裂化反应,生成低碳烷烃和烯烃;以及脱氢反应,使产物中的部分分子失去氢原子,形成烯烃。
加氢裂化是一项复杂的工艺,在实际应用中需要仔细控制反应条件、催化剂选择以及反应器设计等因素。
通过理解加氢裂化过程中发生的主要反应,可以指导工程师们提高加氢裂化的效率和产率,同时改善产品质量。
总而言之,加氢裂化过程主要发生了氢解反应、重组反应和氢转移反应等主要反应。
这些反应共同促使重质石油产品分解为较轻的石油产品,并且调整了产物的石油产品分布。
深入了解这些反应对于提高加氢裂化的效率和产率具有重要意义,并且对于石油化工行业的发展也具有重要指导意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不回收,(也可循环使用,排出部分催化剂), 因此无需考虑由于催化剂中毒、堵塞带来的问 题。这种工艺大都采用空筒式反应器,具有良 好的发展前景。
? 目前加拿大 AOSTRA开发的(HC) 3工艺(高 转化率、均相催化和加氢裂化三句的缩写)是 一种悬浮床加氢裂化与固定床加氢精制相结合 的工艺。该工艺除了具有上述悬浮床特点外, 其反应压力( 11~14MPa )明显降低。同时由
第八讲 重质油加氢
概况:重油加工除脱碳外可走加氢的
道路 由于投资及成本(氢耗)较高,加氢占 重油加工的6% 。 我国不必走科威特多巴炼厂全加氢流程, 但加氢也要适当发展。
1983 年世界第十一届石油会议资料:
重油加氢中热加工 83%(其中:
焦化占 71% ,减粘占 12% )
重油催化裂化 6%
脱碳94%
? 渣油加氢工艺较多,目前首选的主要是固 定床和悬浮床(浆液床)加氢工艺。固定床加 氢在处理渣油加氢时,由于催化剂易受堵塞和 中毒,寿命较短,所以该技术一般更适合于加 工金属含量、杂质和粘度不太高的含硫渣油, 而且该技术还存在着空速低(固定床在处理渣 油是空速约为悬浮床的 1/3),渣油转化率低 (一般 <50% ),开工周期短,催化剂装卸难,
? 该工艺是借助于液体流速将一定颗粒度的催化剂 自下而上带动呈一定界面,使氢气、催化剂和原 料充分接触而完成加氢反应过程。反应器内的液 体与催化剂呈返混状态流动,反应产物与气体自 上部逸出。运转期间催化剂可定期自反应器顶部 加入,下部排出,以维持较高活性。
? 该工艺的特点是:
? (1)可处理高金属、高残碳的劣质渣油
以及投资和操作费用高等问题。针对固定床加 氢工艺,该工艺对处理劣质原油(高金属、高 粘度、高残碳的稠油)特别有效。
? 该工艺是采用一种高度分散型的催化剂 (油溶性或水溶性)在高温( 420~470 0C )、 氢压(8~20MPa )和较高的空速下裂化渣油, 一次通过的转化率可达 50~95% 。由于催化剂
二、国内外概况和发展趋势
(一)国外:
? 目前世界上渣油加氢工艺主要有四种类型, 即:固定床、悬浮床、移动床和沸腾床。
? 固定床渣油加氢诸如: RDS、VRDS、 Unicraking/HDS 以及Residfining 等工艺在处理 金属含量以及粘度残碳不太高的含硫或高硫原 油的常压渣油的技术较为成熟 ;悬浮床加氢技术 在最近十年来发展最快,先后出现了诸如: VCC、CANMET、SOC、HDH以及(HC) 3等十多种 工艺过程,其特点是能够处理高金属、高粘度、 高氮、高残碳的劣质原油及稠油的减压渣油。
? 解决上述诸多矛盾的重要技术对策之 一是加速发展重油加氢技术。重油加氢 技术在重质油深度加工,增产中间馏分 油,提高产品质量,增强原油适应性, 提高操作灵活性,实现石油产品综合利 用,以及满足环保法规要求等诸多方面 占有重要地位,起着重要作用。
如何选择辽河稠油加氢的合理加工路线? 我们认为走加氢与脱碳相结合是一条较好 的工艺路线。
?其工艺特点是:
? (1)可加工金属含量高(>200ppm),残碳 高(>20m%)的劣质渣油
? (2)转化率较高(60~90%) ? (3)产品质量好 ? (4)装置结构复杂、投资高、控制水平高。 ? 主要代表性工艺有法国研究的HYVAHLF和
壳牌公司的HYCON工艺。
? 3 、沸腾床(膨胀床)加氢工艺
? 另一方面,稠油产量逐年增加,稠油的质量差, 轻质油收率少。上述的矛盾将愈显突出。
? 如辽河稠油的合理加工就是目前总公司俄待解决的一 个科技问题。辽河油田年产原油约一千五百多万吨,其 中相当一部分是稠油。辽河稠油具有高金属含量、高氮、 低硫、高酸度、高残碳以及轻质油收率低等特点。给加 工带来一系列问题。例如轻油总收率低、焦化生焦量高 达30%以上、柴油十六烷值低、渣油难于直接作为重油 催化裂化原料,因而加工的经济效益不高。随着今后油 价的进一步开放,辽河原油的价格可能比大庆油田有较 大的差距,而稠油的开发成本又逐年增加,这些将给总 公司和辽河油田带来很大的经济损失。随着稠油开采量 的增加,这种矛盾将愈显突出。
C
?K 1
C O (1 ? C )
LHSV
? Co--原油中含S量mol/Kg C--脱硫率 ? LHSV--液相空间速度ml/ml.hr hr-1 K—kg/mol.hr ? 活化能~28kcal/mol
? 他们认为:-dc/dt=kc k不是常数;由于不同 含硫化合物的反应速度不同。
? 是一级反应但k不是常数,k是转化率的函数, 但在反应过程中,k不断下降。
? ①加氢原料 VGO AR VR ? ②脱硫深度:脱到0.1% ? Hydrocraking 加氢裂化(重油转化率高) ? Hydrorefining 加氢处理(重油转化率低) ? Hydrotreating 加氢精制(一般指轻馏分油
加氢)
? ③产物 低S燃料油 发展到重油催化 原料
? ④5380C+原料转化率25~30% 50%
? 担体不用酸性的硅铝,不希望有裂化。渣油与 馏分油不同:不仅比重大, fA提高,而且杂原 子含量多,含重金属,沥青质,杂质多。
? 催化剂有重金属沉积,堵孔,一般用大孔径的 催化剂
? 特点:载体γ --Al2O3,大孔(平均孔径 相对 脱硫率)
? 1.渣油HDS反应级数
? ①根据纯含 S化合物的动力学研究一般为一级 反应
定床精制)大大提高了裂化产品的质量降低了 氢压。现将个反应过程特点分别作一简单介绍:
? 1 、固定床加氢工艺:
? 固定床加氢工艺是流体(原料 +氢气)自上 而下,呈滴流床形式通过装有固体颗粒状催化 剂床层的加氢过程,渣油固定床加氢从 1967年 在日本建成第一套渣油加氢脱硫装置以来,到 目前世界上已有近 40套装置,所加工的原料多 为常压渣油,该过程主要特点是:
? (2)转化率高 (50~90%) ,空速高(>1.0h-1 ) ? (3)脱碳和脱金属率高 (80~90%),由于串联
固定床反应器后其加氢精制效果得以明显增强
? (4)可处理任何劣质原料并且保持长期运转 ? 代表性工艺有 Canmet、VCC及(HC)3等工艺。
?20多年来重油加氢有了很大发展
Canmet、SOC、HDH、Aurabon 、MRH、M-Coke、 HFC、(HC)3等,其中有六种工艺已建成 2575×104 t/a装置。有的已建立大型工业装置。 经过近几年来的发展,该工艺在处理劣质原油 和稠油方面,具有明显的优越性
? 主要表现为:
? (1)操作压力明显降低,可在中压下反应 (8.0~11.0MPa)
? 至于移动床和沸腾床由于技术复杂,投资
成本高,未得到大发展。当前世界渣油加氢过
程发展的另一趋势是,几种工艺过程的互相结 合,例如 Chevron 公司开发的移动床与固定床 结合的OCR技术(移动床脱金属、固定床精制) 使运转周期从 1年延长至2年;(HC) 3过程实际 上是悬浮床与固定床相结合(悬浮床裂化、固
? (1)加氢深度高,脱硫脱氮效果好
? (2)转化率低、空速低
? (3)氢压较高、运转周期短
? (4)处理金属和残碳不太高的常压渣油
? 目前世界上有代表性的固定床渣油加氢装置有 RDS/VRDS,Unicracking/HDS,Resid Fining 等
?2 、移动床加氢工艺
? 为了克服固定床工艺不能加工质量差的原料 以及转化率低运转周期短的缺点,同时又要保 持固定床精制深度高、产品质量好的优点, Shell 公司于 1989 年在荷兰波尼斯炼厂建成了 一套130×104 t/a加工减压渣油的移动床装置。 在该装置中,催化剂自反应器上部送入,下部 排出(可连续或间断进行),排出的催化剂进 行再生。原料与氢气也是从上部进入。移动床 所装催化剂主要是脱金属催化剂,同时再串联 脱硫、脱氮固定床反应器。
于该工艺采用裂化与精制相结合,因而转化率 和产品质量均得以保证,所以具有良好的开发 前景。但该工艺尚未针对辽河稠油的特点进行 细致研究。本项目研究目的在于以辽河稠油为 对象。进行固定床加氢与 (HC),工艺技术的全
面比较,以便开发出适合于辽河稠油特点的稠 油加氢技术。本项研究也为今后开采出的质量 更差的稠油的合理加工提供一条可借鉴的工艺 路线。
重油催化加氢 6% 溶剂脱沥青 5%
国外重质油加氢有两类目的:
1渣油加氢脱硫制低硫燃料油:解决环境污染问题。 2催化料
重油加氢技术开发研究 (项目设计)
? 一、本项目开发的目的
? 重质油轻质化及渣油的深加工是目前石油 炼制最重要的任务之一。重质油轻质化不外乎 采用二条工艺路线,即脱碳和加氢。由于脱碳 路线投资少,见效快,所以在“七五” 、 “八五”期间,国内渣油深加工的主要手段是 重油催化裂化、焦化、减粘等脱碳工艺。这些 工艺存在的问题是产品质量不高、品种少、轻 质油收率低、柴 /汽比不够合理、加工灵活性差 以及不能满足环保法规要求,这种状况难于满 足未来石油产品市场激烈竞争的要求。
? (2)转化率高 (90%)
? (3)精制深度高 (4)氢压高(>15MPa)
? 代表性工艺为 LC-Fining 和H-oil过程。
?4 、悬浮床(浆液床)加氢工艺
? 悬浮床加氢工艺主要的特点是能够处 理质量非常差的原料从而生产出合成原 油或轻油产品。该工艺再早期是采用细 粉状的催化剂(或添加物),目前已发 展到采用油溶性或水溶性催化剂形成均 相反应。在反应中催化剂与原料预先混 合,再与氢气一同进入反应器下部,自 下而上流动,完成加氢裂解过程,然后 催化剂随着反应产物一起从反应器顶部 带出。反应器多为空筒,无特殊结构。
? ③原油变重,变劣及稠油资源增加( 10%)
a.中东油增加 b.稠油增加