常用传感器工作原理(磁电式)

合集下载

磁电式传感器测量转速原理

磁电式传感器测量转速原理

磁电式传感器测量转速原理1.介绍磁电式传感器是一种常用于测量转速的传感器,通过检测磁场的变化来计算物体的转速。

它具有结构简单、精度高、响应快等优点,在许多领域都得到广泛应用。

2.磁电式传感器的工作原理磁电式传感器通过利用磁场感应现象来测量转速。

当传感器与被测物体相互作用时,磁场的变化会产生电压信号,从而实现转速的测量。

3.磁电式传感器的结构3.1 磁敏元件磁电式传感器的核心部件是磁敏元件,它可以将磁场变化转换为电压信号。

常用的磁敏元件包括霍尔元件和磁致伸缩(Magnetostrictive)元件。

3.2 信号调理电路信号调理电路用于放大和整形由磁敏元件产生的微弱电压信号,以便后续的处理和分析。

它可以提高传感器的灵敏度和稳定性。

3.3 输出接口输出接口将处理后的电压信号转换为转速值或其他形式的信息输出,便于用户进行监测和控制。

4.磁电式传感器测量转速的步骤4.1 确定测量位置在安装磁电式传感器之前,需要确定被测物体上用来测量转速的位置。

通常选择物体上的凸起或特定的标记点作为测量点,以确保测量的准确性和稳定性。

4.2 安装磁电式传感器根据测量位置确定的要求,正确安装磁电式传感器。

通常需要将传感器固定在物体上,并保持一定的距离,以便磁场的变化能够被传感器准确地检测到。

4.3 连接电路将磁电式传感器的输出端口与信号调理电路相连接,确保信号能够被正确的接收和处理。

4.4 校准和调试在使用磁电式传感器进行转速测量之前,需要进行校准和调试,以确保测量结果的准确性和可靠性。

校准过程中,可以通过与其他精密测量设备进行对比,来调整传感器的灵敏度和输出。

5.磁电式传感器测量转速的应用5.1 汽车工业在汽车工业中,磁电式传感器被广泛用于测量车辆引擎的转速。

它可以帮助监测引擎的工作状态,提高车辆的性能和燃油利用率。

5.2 机械制造磁电式传感器在机械制造过程中也有很多应用。

它可以用于测量机器工作部件的转速,以监测和控制机器的运行状态。

磁电式传感器工作原理

磁电式传感器工作原理

磁电式传感器工作原理
磁电式传感器是一种通过测量磁场变化来检测物体位置或运动的传感器。

它基于磁电效应,利用材料在外加磁场下产生的电势差来实现测量。

磁电式传感器通常由磁敏元件和测量电路组成。

磁敏元件可以是磁电材料,如铁电材料、铁磁材料或半导体材料,也可以是磁敏效应材料,例如霍尔元件。

磁敏元件的特性是在磁场的作用下,会产生电势差。

当磁敏元件处于一个磁场中时,磁场的变化会导致磁敏元件内部的电荷重新分布,从而产生电势差。

通常情况下,磁敏元件的两端接有电极,形成一个电势差的输出。

这个输出电势差可以被测量电路检测并转换为相应的电信号,用于表示磁场的强度或物体的位置。

根据磁场变化的方式,磁电式传感器可以分为两种类型:绝对值传感器和增量式传感器。

绝对值传感器可以直接测量磁场的强度,从而确定物体的绝对位置或角度。

常见的绝对值传感器有霍尔传感器和磁电传感器。

霍尔传感器利用霍尔效应测量磁场的强度,可以检测物体的位置、角度或磁场的方向。

磁电传感器则利用磁电效应测量磁场的强度,常用于测量物体的位移或线性位置。

增量式传感器则通过测量磁场的变化来确定物体的运动或相对位置。

常见的增量式传感器有磁电编码器和霍尔增量传感器。

磁电编码器利用磁场的变化来确定物体的运动方向、距离和速度,广泛应用于机械运动控制领域。

霍尔增量传感器则利用霍尔效应测量磁场的变化,可以检测物体的相对位移或角度变化。

总的来说,磁电式传感器通过利用磁电效应测量磁场的变化,实现了对物体位置或运动的检测。

不同类型的磁电式传感器可以应用于不同的场合,实现准确、可靠的测量。

磁电式传感器的工作原理

磁电式传感器的工作原理

磁电式传感器的工作原理
磁电式传感器是一种常用的用于测量和检测磁场的传感器。

其工作原理基于磁性材料在外加磁场作用下产生的磁电势。

磁电式传感器通常由两个主要部分组成:磁敏感元件和信号处理电路。

磁敏感元件是通常由铁磁材料制成的,比如镍、铁、钴等。

这些材料在外加磁场的作用下会发生剩余磁化现象,即使在磁场消失后,仍能保持一定的磁性。

当外加磁场作用在磁敏感元件上时,磁性材料内部的磁矩会发生改变。

这种磁矩的改变会导致磁敏感元件两端产生电势差,即磁电势。

这个电势差与外加磁场的强度成正比,可以通过测量电势差来间接测量磁场的强度。

信号处理电路用于放大和处理由磁敏感元件产生的微弱电势差。

通常,这些电路会对输入的电势差进行放大和滤波,以提高测量的准确性和稳定性。

然后,信号处理电路将处理后的电信号转换为数字信号或模拟信号,供其他设备使用或进行进一步的数据处理。

总而言之,磁电式传感器通过利用磁敏感元件在外加磁场作用下产生的磁电势,实现对磁场强度的测量和检测。

其工作原理简单可靠,广泛应用于各种领域,比如工业控制、汽车电子、电力系统等。

磁电传感器的原理和应用

磁电传感器的原理和应用

磁电传感器的原理和应用前言磁电传感器是一种能将磁场信号转换成电信号的传感器,广泛应用于各种领域。

本文将介绍磁电传感器的原理和应用。

一、磁电传感器的原理磁电传感器的工作原理基于磁效应,主要包括霍尔效应、磁电阻效应和磁敏电容效应。

1. 霍尔效应霍尔效应是最早被发现和广泛应用的磁电效应之一。

当电流通过一块导电材料时,若将其放在磁场中,磁场就会对电子流的平衡状态产生影响,从而引起一侧电子浓度的变化,产生电压差。

这个电压差被称为霍尔电压。

2. 磁电阻效应磁电阻效应是指材料在外加磁场下,其电阻发生变化的现象。

常见的磁电阻效应有巨磁电阻效应(GMR)和隧道磁电阻效应(TMR)。

它们的本质是通过控制材料中磁性局域区域的磁结构来改变电阻值。

3. 磁敏电容效应磁敏电容效应是指材料在磁场下,电容值发生变化的现象。

这种效应通常是通过改变材料中的磁性局域区域的电容性质来实现的。

二、磁电传感器的应用磁电传感器由于其高灵敏度、响应速度快、易于集成等特点,在许多领域得到了广泛的应用。

1. 汽车工业磁电传感器在汽车工业中起到了重要的作用。

例如,在车辆换挡控制中,霍尔效应传感器被用于检测离合器和制动踏板的位置,从而实现自动换挡;在刹车控制中,磁敏电容效应传感器被用于检测刹车片的磨损程度,提供刹车片更换的提示。

2. 电子设备磁电传感器广泛应用于各种电子设备中。

例如,在手机中,磁敏电容效应传感器被用于检测翻盖状态和磁盖位置,实现手机的自动睡眠和唤醒功能;在音频设备中,磁电阻传感器被用于控制音量调节,实现用户友好的操作体验。

3. 工业自动化磁电传感器在工业自动化领域中发挥着重要的作用。

例如,在生产线上,磁敏电容效应传感器被用于检测零件的位置和运动状态,实现精准的定位和控制;在机械加工过程中,磁电阻传感器被用于检测工件的尺寸和形状,实现自动化的加工过程控制。

4. 医疗器械磁电传感器在医疗器械领域中应用广泛。

例如,在磁共振成像(MRI)中,磁电阻传感器被用于检测磁场强度和方向,提供精准的成像结果;在心脏起搏器中,霍尔效应传感器被用于检测心脏的电信号,实现有效的心脏节律调整。

(第6章)磁电式传感器

(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

磁电式传感器的原理及应用

磁电式传感器的原理及应用

磁电式传感器的原理及应用引言磁电式传感器是一种常见的传感器类型,广泛用于测量和检测磁场、电流、位移等物理量。

本文将介绍磁电式传感器的工作原理以及一些应用领域。

工作原理磁电式传感器是基于磁电效应工作的,磁电效应是指在外加磁场下材料产生的电磁感应效应。

磁电式传感器一般由磁电材料和传感器结构组成。

磁电材料是传感器的核心部分,它具有磁场敏感性,能够将外加磁场转化为电信号。

常见的磁电材料有磁电晶体、磁电陶瓷等。

传感器结构一般采用薄膜形式,具有高灵敏度和快速响应的特点。

具体来说,磁电式传感器的工作原理如下:1.当外加磁场作用于磁电材料时,磁电材料内部的晶格结构会发生改变。

2.这种晶格结构的改变会引起材料内部的电荷分布发生变化。

3.电荷分布的变化会产生一个电场,进而产生电压差。

4.通过测量电压差的大小,可以确定外加磁场的强度。

应用领域磁电式传感器在许多领域都有广泛的应用,下面列举了一些常见的应用领域:1. 磁场测量磁电式传感器可以用于测量磁场的强度和方向。

例如,在地磁测量中,磁电式传感器可以用来检测地磁场的变化,帮助我们研究地球的磁场分布和变化规律。

2. 电流测量由于电流在传感器周围会产生磁场,磁电式传感器可以用来测量电流的大小和方向。

这在电力系统中非常重要,可以用于电流监测和故障检测。

3. 位移测量磁电式传感器还可以用来测量物体的位移。

通过将磁电传感器与磁体结合使用,可以实现非接触式的位移测量。

这在自动化控制、机器人技术等领域有着广泛的应用。

4. 电子设备磁电式传感器可以用于电子设备中的位置检测、方向检测等功能。

例如,在手机中,磁电式传感器能够检测手机的方向,从而实现屏幕的自动旋转功能。

5. 医疗领域磁电式传感器在医疗领域也有着重要的应用。

例如,可以用于心脏磁场的监测和分析,帮助医生进行心脏病的诊断和治疗。

总结磁电式传感器是一种基于磁电效应工作的传感器,具有广泛的应用。

本文介绍了磁电式传感器的工作原理,以及在磁场测量、电流测量、位移测量、电子设备和医疗领域中的应用。

磁电式传感器课件

磁电式传感器课件

34
2. 工作原理
空穴
电子
磁场H = 0:
(a)
P
→ →→
i
←←←
N 电流
少量电子和空穴

复合区 H=0
I 区、r区复合
(b) P
i
H+
N 电流
正向磁场 H+ : 电子和空穴偏向 r 区, 电流因复合增大而减小
(c)
P
i
H-
N 电流
反向磁场 H- : 电子和空穴偏向 I 区, 电流因复合减少而增大
这种传感器工作磁场恒定,线圈和磁铁两者间 产生相对运动,切割磁场线而产生感应电势。
动圈式
动铁式
4
恒磁通式磁电传感器的结构原理图
e WBLvsin
e WBLvsin
e WBAsint
5
(二)变磁通式磁电式传感器(磁阻式)
线圈和磁铁部分都是静止的,与被测物连 接而运动的部分是用导磁材料制成的,在运动 中,它们改变磁路的磁阻,因而改变贯穿线圈 的磁通量,在线圈中产生感应电动势。
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
结构: 稳压器、霍尔片、 差分放大器,施 密特触发器和输
地 2 出级等部分组成。
24
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
工作原理:
有磁场:UH >开启阈值,
高电平,VT导通 开状态
磁场减弱:UH <断开阈值,
地 2 低电平,VT截止 关状态
45
谢谢!
46
2. 已知某霍尔元件尺寸为长L=10mm,宽 b=3.5mm,厚d=1mm。沿L方向通以电流 I=1.0mA,在垂直于L×b方向上加均匀磁场 B=0.3T,输出霍尔电势UH=6.55mV。求该霍尔 元件的灵敏度系数KH和载流子浓度n是多少?

磁电感应式传感器工作原理

磁电感应式传感器工作原理
1.
图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f n = .60 N
磁阻式磁电传感器使用方便,结构简单, 磁阻式磁电传感器使用方便,结构简单,在不同场合下可用来 测量转速、偏心量、振动等,产生感应电动势的频率作为输出 产生感应电动势的频率作为输出, 测量转速、偏心量、振动等 产生感应电动势的频率作为输出, 而电势的频率取决于磁通变化的频率。
6
§3 磁电式传感器测量电路
e = −N dt
磁电式传感器是利用电磁感应原理,将运动速度、 磁电式传感器是利用电磁感应原理,将运动速度、位移等物理 量转换成线圈中的感应电动势输出。 量转换成线圈中的感应电动势输出。 工作时不需要外加电源, 工作时不需要外加电源,可直接将被测物体的机械能转换为电 量输出。是典型的有源传感器。 量输出。是典型的有源传感器。 特点:输出功率大,稳定可靠,可简化二次仪表, 特点:输出功率大,稳定可靠,可简化二次仪表,但频率响 应低。通常在10— 适合作机械振动测量、 应低。通常在 —100HZ适合作机械振动测量、转速测量。 适合作机械振动测量 转速测量。 传感器尺寸大、 传感器尺寸大、重。 2
dφ e = −N dt
磁通φ的变化率与磁场强度 磁通φ的变化率与磁场强度 B 、磁路磁阻Rm 线圈的运动速度 v 、 有关,改变其中一个因素,都会改变线圈的输出感应电动势。 有关,改变其中一个因素,都会改变线圈的输出感应电动势。
根据以上原理, 根据以上原理,磁电式传 感器在结构上可以分为动 圈式和磁阻式两类。 圈式和磁阻式两类。
4
动圈磁电式传感器的等效电路: 动圈磁电式传感器的等效电路:

线圈
uL = e
1 Z0 1+ + jωCc Z0 RL
≈e
等效电路的输出:
Rc甚小,可忽略,如果不使用特别加长电缆时,Cc可忽略, 甚小,可忽略,如果不使用特别加长电缆时, 可忽略, RL >> Z0 如果 时: uL ≈ e
磁电式传感器的工作原理是可逆的,作为测振传感器, 磁电式传感器的工作原理是可逆的,作为测振传感器,它 工作于发电机状态。 工作于发电机状态。 若在线圈上加以交变激励电压,则线圈就在磁场中运动, 若在线圈上加以交变激励电压,则线圈就在磁场中运动, 称为一个激振器(电动机状态)。 称为一个激振器(电动机状态)。 5
3
§1 动圈式磁电传感器
在永久磁铁产生的恒定磁场内,放置一个可动线圈, 在永久磁铁产生的恒定磁场内,放置一个可动线圈,当线 圈在磁场中作直线运动或旋转运动时, 圈在磁场中作直线运动或旋转运动时,所产生的感应电动 势 e为 :
e = −NBlvsinθ e = −kNBSω
这类传感器的基本形式是 速度传感器,能直接测量 速度传感器, 因此, 线速度或角速度 。因此, 磁电感应式传感器只适用 于动态测量。 于动态测量。
§2 磁阻式磁电传感器
磁阻式传感器其线圈和磁铁彼此不做相对运动,由运动着的物 体(导磁材料)来改变磁路的磁阻,从而引起磁力线增强或减 弱,使线圈产生感应电动势。
测量齿轮由导磁材料制成, 测量齿轮由导磁材料制成,安 装在被测旋转体上, 装在被测旋转体上,随之一起 转动,每转过一个齿, 转动,每转过一个齿,传感器 磁路磁阻变化一次, 磁路磁阻变化一次,线圈产生 的感应电动势的变化频率(r/s) 的感应电动势的变化频率(r/s) 等于测量齿轮上齿轮的齿数N 等于测量齿轮上齿轮的齿数 和转速的n(r/min)乘积。 乘积。 和转速的 乘积
磁电式传感器直接输出感应电势, 磁电式传感器直接输出感应电势,且传感器通常有较高 的灵敏度,所以一般不需要高增益放大器。 的灵敏度,所以一般不需要高增益放大器。但磁电式传 感器是速度传感器,若要获取被测位移或角速度, 感器是速度传感器,若要获取被测位移或角速度,则要 配用积分或微分电路。 配用积分或微分电路。其中虚线框内整形及微分部分电 路仅用于以频率作为输出时。 路仅用于以频率作为输出时。
第3章 常用传感器的工作原理
3.7 磁电式传感器
将被测物理量转换为感应电动势的一种传感器。 将被测物理量转换为感应电动势的一种传感器。 当一个N匝线圈相对处于随时间变化的磁场中, 当一个 匝线圈相对处于随时间变化的磁场中,当穿过 匝线圈相对处于随时间变化的磁场中 它的磁通量φ发生变化时, 它的磁通量φ发生变化时,线圈产生的感应电动势 dφ
7
相关文档
最新文档