5.8 二次函数的应用(1)
二次函数的应用

二次函数的应用二次函数是高中数学中的一个重要概念,也是数学中经常应用的一种函数类型。
二次函数的应用广泛,涵盖了很多领域,包括物理学、经济学、工程学等。
本文将探讨几个二次函数的应用场景,并分析其原理和实际意义。
一、地面抛射运动地面抛射运动是我们生活中常见的一种物理现象,比如投掷物体、打击物体等。
在不考虑空气阻力的情况下,地面抛射运动的轨迹可以用二次函数描述。
其函数模型为:h(t) = -gt^2 + v0t + h0其中h(t)表示时间t时刻的高度,g为重力加速度,v0为初速度,h0为初始高度。
二次函数可以帮助我们计算抛体的高度、最高点高度、到达地面的时间等重要参数。
对于投掷物体来说,了解这些参数可以帮助我们更好地控制力度和角度,以达到我们想要的结果。
二、经济学中的收益函数在经济学中,我们常常使用收益函数来研究生产经营的效益。
很多实际问题可以用二次函数近似表示,从而分析最大化收益的策略。
假设某个公司的销售收益可以用二次函数模型表示:R(x) = -ax^2 + bx + c其中R(x)表示销售收益,x表示销售量,a、b、c为常数。
我们可以通过对二次函数进行求导,找到其最大值对应的销售量,从而确定最佳的经营策略。
通过研究收益函数,我们可以优化资源配置,提高经济效益。
三、工程中的抛物线设计在工程领域,二次函数常常用于抛物线设计。
比如,在桥梁、建筑物等结构的设计过程中,我们需要考虑各种因素,如力学原理、结构稳定性等。
二次函数能够很好地描述抛物线形状,帮助我们确定结构的合理设计。
例如,在桥梁设计中,通过二次函数的应用,可以确定拱桥的合适形状和尺寸,以满足结构强度和美观性的要求。
另外,在草坪的设计中,也可以利用二次函数描述草地的曲率,使得草坪在自然光线的照射下呈现出优美的效果。
四、物体运动的轨迹分析二次函数也可以用于分析物体在空间中的运动轨迹。
比如,一个碰撞物体的轨迹可以由以下二次函数表示:x(t) = v0t + 1/2at^2y(t) = h0 + v0t + 1/2gt^2其中x(t)、y(t)分别表示物体在水平和竖直方向上的位移,v0为初速度,a为加速度,h0为初始高度,g为重力加速度。
二次函数的应用

二次函数的应用在数学中,二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
二次函数是一种常见且重要的函数类型,在实际生活中有广泛的应用。
本文将介绍二次函数的应用,并通过具体的实例来说明其在不同领域中的作用。
一、二次函数在物理学中的应用二次函数在物理学中常常用于描述运动的轨迹、抛物线的形状以及力学的相关问题。
例如,当一个物体在空中自由落体时,其下落的高度与时间之间的关系可以用二次函数来描述。
假设物体从高度为h的位置自由落下,忽略空气阻力的影响,记时间为t,则物体的高度可以表示为h = -gt^2 + vt + h0,其中g是重力加速度,v是物体的初速度,h0是物体的初始位置。
该二次函数描述了物体下落的抛物线轨迹。
二、二次函数在经济学中的应用二次函数在经济学中的应用非常广泛,可以用于描述成本、收益、利润等与产量或销量之间的关系。
例如,对于某个企业而言,其生产的产品的总成本可以由二次函数表示。
假设该企业的总成本C与产量x之间的关系可以表示为C = a'x^2 + b'x + c',其中a'、b'、c'为常数。
该二次函数描述了生产成本随着产量的增加而递增的曲线,对企业的经营决策具有重要的参考意义。
三、二次函数在工程学中的应用在工程学中,二次函数常常用于描述曲线的形状以及材料的弯曲变形。
例如,对于一座桥梁而言,其横截面的弯曲变形可以用二次函数来表示。
假设桥梁横截面的变形高度与距离之间的关系可以表示为y = ax^2 + bx + c,其中y表示高度,x表示距离。
该二次函数描述了桥梁横截面弯曲变形的形状,对于设计和构建安全的桥梁至关重要。
四、二次函数在生物学中的应用在生物学研究中,二次函数常常用于描述某些生物过程的增长或衰减。
例如,某种细菌的数量随着时间的推移而增长,其增长过程可以用二次函数来描述。
假设细菌数量与时间之间的关系可以表示为N = at^2 + bt + c,其中N表示细菌数量,t表示时间。
二次函数的应用技巧与技巧

二次函数的应用技巧与技巧二次函数是高中数学中重要的概念之一,广泛应用于各个领域。
它的图像呈现出抛物线的形态,具有许多特性和性质,掌握其应用技巧对于解决实际问题非常有帮助。
本文将介绍二次函数的应用技巧与技巧,帮助读者更好地理解和应用二次函数。
一、二次函数的基本形式二次函数的一般形式为:$y=ax^2+bx+c$,其中$a$、$b$和$c$是实数,$a\neq0$。
二次函数与抛物线的形状有关,方程中的$x^2$决定了开口的方向和抛物线的开口程度,而$a$决定了抛物线的开口方向。
基于这个基本形式,我们可以利用一些技巧来应用二次函数。
二、顶点与轴对称对于二次函数$y=ax^2+bx+c$,它的顶点坐标可以通过公式$(-\frac{b}{2a},f(-\frac{b}{2a}))$来确定。
顶点是抛物线的最低点(当$a>0$时)或最高点(当$a<0$时),是抛物线的关键特征。
另外,抛物线还具有轴对称性,其轴对称线的方程为$x=-\frac{b}{2a}$。
利用顶点和轴对称性,可以更好地分析和应用二次函数。
三、零点与因式分解二次函数的零点是指函数图像与$x$轴相交的点,也就是方程$ax^2+bx+c=0$的解。
求解二次方程可以通过因式分解、配方法或求根公式等方法。
当二次方程能够因式分解成$(x-p)(x-q)=0$的形式时,零点就是$p$和$q$。
利用零点可以进一步分析二次函数的图像特点和应用方向。
四、最大值与最小值对于二次函数$y=ax^2+bx+c$,当$a>0$时,函数的最小值发生在顶点,最小值是抛物线的底部值;当$a<0$时,函数的最大值也发生在顶点,最大值是抛物线的顶部值。
五、对称轴和焦点二次函数的对称轴是指抛物线关于轴对称线对称的线段,它与抛物线的开口方向垂直。
焦点是抛物线上到顶点距离相等的点的集合,对称轴与焦点可以帮助我们更好地理解和应用二次函数。
六、应用示例在实际问题中,二次函数的应用非常广泛。
二次函数的简单应用PPT

经济学中收益与成本分析
总收益与总成本模型
01
在经济学中,总收益和总成本往往可以表示为产量的二次函数,
通过分析这些函数可以找出最大利润点。
边际收益与边际成本
02
利用二次函数的导数表示边际收益和边际成本,进而分析企业
的盈利状况。
价格与需求关系
03
在某些情况下,价格与需求之间的关系可以近似为二次函数,
通过分析这种关系可以制定合适的定价策略。
运动学问题中速度与时间关系
1 2
匀加速直线运动
根据匀加速直线运动的速度与时间关系,构建二 次函数模型求解位移、速度等参数。
竖直上抛运动
利用竖直上抛运动的速度、时间和高度之间的关 系,建立二次函数模型分析运动过程。
3
曲线运动中的速度与时间关系
在某些曲线运动中,速度与时间的关系可以近似 为二次函数,从而进行求解和分析。
在给定速度、距离等条件下,通过二次函数模型求解使得时间最短 的运动方案。
06 总结与展望
二次函数简单应用知识点总结
二次函数的对称轴
$x = -frac{b}{2a}$。
二次函数的判别式
$Delta = b^2 - 4ac$,用于 判断二次方程的根的情况。
二次函数的一般形式
$f(x) = ax^2 + bx + c$,其 中 $a neq 0$。
周长问题
对于某些特定形状的几何图形(如抛物线型、椭圆型等),可以通过二次函数表示其周长 ,并讨论周长的性质和最值问题。
综合应用
结合多种几何图形和二次函数的性质,可以解决更复杂的面积、周长等问题,如最优布局 、路径规划等实际问题。
05 二次函数在优化问题中的 应用
二次函数的应用

二次函数的应用二次函数是数学中非常重要的一个概念,它在各个领域中都有广泛的应用。
本文将介绍二次函数在几个常见领域的具体应用,包括物理学、经济学和工程学等。
一、物理学中的应用1. 自由落体运动在物理学中,二次函数被广泛应用于自由落体运动的描述中。
自由落体运动是指在只受重力作用下的物体运动。
根据质点在自由落体运动中的运动方程可知,物体的落地时间t与物体下落高度h之间存在二次函数的关系。
这种关系可以用二次函数公式f(t) = -gt^2 + h 来表示,其中g为重力加速度。
2. 弹性力学在弹性力学中,二次函数常被用来描述弹性体的变形情况。
例如,当一个弹簧受力拉伸或压缩时,其长度与施加在它上面的力之间存在二次函数的关系。
这种关系可以用二次函数公式f(x) = kx^2 来表示,其中k为弹簧的弹性系数。
二、经济学中的应用1. 成本和产量关系在经济学中,二次函数被广泛应用于成本和产量之间的关系模型中。
例如,在某产品的生产过程中,成本通常与产量呈二次函数的关系。
随着产量的增加,成本会逐渐增加,但增速逐渐减缓。
这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。
2. 市场需求二次函数在经济学中还常被用来描述市场需求的变化情况。
例如,对于某个产品的需求量与其价格之间一般存在倒U型的关系,即需求量随着价格的升高或降低逐渐减少。
这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。
三、工程学中的应用1. 抛物线型拱桥在工程学中,二次函数被广泛应用于抛物线型拱桥的设计与建造中。
抛物线型拱桥由一段段的抛物线组成,而抛物线正是二次函数的图像。
通过使用二次函数来描述拱桥的形状,工程师可以更好地控制拱桥的承重和稳定性。
2. 圆环轨道设计二次函数还可以用来设计圆环轨道。
例如,在某高速铁路项目中,为了确保列车的平稳运行和最佳速度分布,工程师使用了二次函数来设计轨道的曲率。
二次函数的应用

二次函数的应用二次函数是数学中的一种重要函数类型,其应用十分广泛。
本文将以实例的形式探讨二次函数在实际生活中的几个应用。
一、抛物线的模型二次函数的图像是抛物线,其常见模型有抛物线的顶点形式和描点形式。
以顶点形式为例,二次函数的一般形式为:f(x) = a(x-h)^2 + k其中a,h,k是常数,(h,k)表示抛物线的顶点。
我们以一道题目为例:某物体以初速度30m/s向上抛出,经过2s达到最高点,求其下落的高度。
解:设物体下落的高度为f(t),t为时间。
根据物理学的运动规律,物体自由落体的公式为:f(t) = -5t^2 + v0*t + h0其中v0为初速度,h0为初始高度。
题目中给出了初速度为30m/s,代入公式得:f(t) = -5t^2 + 30t + h0根据题目要求,物体经过2s达到最高点,即f(2)=0。
代入公式求解得:0 = -5*2^2 + 30*2 + h0= -20 + 60 + h0= 40 + h0可得h0 = -40,即物体的初始高度为-40m。
因此,物体下落的高度可以表示为:f(t) = -5t^2 + 30t - 40我们可以通过二次函数模型得出物体在任意时间t下的高度。
二、最值问题二次函数也常用于求解最值问题。
例如,我们考虑以下问题:用2根长为L的铁丝围成一个矩形,求该矩形的最大面积。
解:设矩形的长度为x,宽度为L-2x(由于必须用2根铁丝围成,所以长度和宽度之和为L)。
矩形的面积可以表示为:S = x(L-2x)= Lx - 2x^2显然,S是一个关于x的二次函数。
要求最大面积,即求函数的最大值。
通过求导的方法,我们可以得到该函数的极值点。
首先,将函数求导得:S' = L - 4x令导数等于0,求解可得极值点:L - 4x = 04x = Lx = L/4将x代入原函数得到最大面积:S = (L/4)(L-2(L/4))= (L/4)(L/2)= L^2/8因此,该矩形的最大面积为L^2/8。
二次函数及其应用

二次函数及其应用二次函数是高中数学中非常重要的一个内容。
它是一种二次方程的图像表现形式,拥有许多优秀的数学性质和广泛的应用领域。
本文将从定义、性质和应用三个方面介绍二次函数的相关内容。
1. 定义和基本性质二次函数是指形如$f(x) = ax^2 + bx + c$的函数,其中$a \neq 0$。
它是二次方程$ax^2 + bx + c = 0$的图像表示,而二次方程则是解决许多实际问题的重要工具。
对于二次函数,我们可以通过下列方式来研究它的性质。
1.1 斜率二次函数的斜率是它在任意一点处的切线的斜率。
我们可以通过求导来得到它的斜率公式:$$f'(x) = 2ax + b$$通过这个公式,我们可以得到二次函数在$x$处的切线斜率为$2ax + b$。
在二次函数的图像上,随着$x$的增加,我们可以看到切线的斜率逐渐变大或变小,这样的变化和二次函数的开口方向有关。
1.2 零点二次函数的零点是指它的函数值为$0$的$x$值。
通过求解二次方程$ax^2 + bx + c = 0$,我们可以得到二次函数的零点公式:$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$这个公式中的$\sqrt{b^2 - 4ac}$称为判别式。
当判别式大于$0$时,二次函数有两个不同的实数根;当判别式等于$0$时,二次函数有一个重根;当判别式小于$0$时,二次函数没有实数根,但有两个共轭复数根。
1.3 对称轴二次函数的对称轴是指将它分成两半后,两半部分关于某一直线对称。
我们可以通过二次函数的顶点和斜率公式来确定它的对称轴:$$x = -\frac{b}{2a}$$这个公式中的$-\frac{b}{2a}$就是二次函数的顶点坐标。
1.4 函数值二次函数的函数值可以通过求解$x$来得到。
对于任意一个$x$,我们可以通过将它代入二次函数公式中来得到它的函数值,例如:$$f(2) = 4a + 2b + c$$2. 应用二次函数是许多实际问题的重要数学工具。
二次函数的应用

21.4二次函数的应用第1课时二次函数的应用(1)时间:9.27教学目标知识与技能:能应用二次函数的图象来分析问题、解决问题,在应用中体会二次函数的实际意义.过程与方法:1.通过将二次函数应用于解决实际问题体验数学在实际生活中的广泛应用,发展数学思维.2.在数学建模中使学生学会交流、合作.情感、态度与价值观:培养学生独立思考和合作探究的能力,在交流、探讨的过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成.学情分析对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
重点难点重点:用二次函数的概念和性质解决实际问题,特别是最大值、最小值问题.难点:建立二次函数的数学模型的方法.教学过程一、创设情境,导入新知1. 二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。
当x= 时,y的最值是。
2.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是 .3. 二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是 . 当a>0时,抛物线开口向,有最点,函数有最值,是;当 a<0时,抛物线开口向,有最点,函数有最值,是。
二、共同探究,获取新知解析例题1:某水产养殖户用长40m的围网,在水库中围一块矩形的水面,投放鱼苗,设此矩形水面的长为xm,面积为Sm2.那么,S与x之间有怎样的函数关系?要使围成的水面面积最大,它的长应是多少米?1.解:设矩形的长为x,那么矩形的宽为(20-x),先取x的一些值,算出矩形的另一边的长度,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当长(x)确定后,矩形的面积(y)也随之确定, y 是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出长,填出相应的宽和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当长为10cm,宽为10m时,围成的矩形面积最大;最大面积为100m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.小明的家门前有一块空地,空地外有一面长10米的围墙,
为了美化生活环境,小明的爸爸准备靠墙修建一个矩形 花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏 (如图所示),花圃的宽AD究竟应为多少米才能使花圃 的面积最大? D C B
A
2.某商店购进一种单价为40元的篮球,如果以单价50元售 出,那么每月可售出500个,据销售经验,售价每提高1元,
销售量相应减少10个。
(1)假设销售单价提高x元,那么销售每个篮球所获得的利 润是_______元,这种篮球每月的销售量是______个(用X的 代数式表示) (2)8000元是否为每月销售篮球的最大利润? 如果是,说明理由,如果不是,请求出最大利润, 此时篮球的售价应定为多少元?
(2010·荆门中考)某商店经营一种小商品,进价为2.5 元,据市场调查,销售单价是13.5元时平均每天销售量 是500件,而销售单价每降低1元,平均每天就可以多售 出100件. (1)假设每件商品降低x元,商店每天销售这种小商品 的利润是y元,请你写出y与x的之间的函数关系式,并注 明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销售这 种小商品的利润最大?最大利润是多少?(注:销售利 润=销售收入-购进成本)
元 y=(60+x-40)(300-10x)
即y=-10(x-5)² +6250 (0≤X≤30) 怎样确定 x的取值 范围
∴当x=5时,y最大值=6250
也可以这样求最大、最小值
b x 5时,y最大值 10 52 100 5 6000 6250 2a
所以,当定价为65元时,利润最大,最大利润为6250元
l 即l是15m时,场地的面积 S最大。(S=225㎡)
4ac b 2 302 S有最大值 225. 4a 4 (1)
• 一般地,因为抛物线y=ax2+bx+c的
b 顶点是最低(高)点,所以当 x 2a
时,二次函数y=ax2+bx+c有最小
4ac b (大)值 4a
y\元
可以看出,这个函数的图 像是一条抛物线的一部分, 这条抛物线的顶点是函数
6250 6000
图像的最高点,也就是说
当x取顶点坐标的横坐标时, 这个函数有最大值。由公
式可以求出顶点的横坐标.
0
5
30
x\元
在降价的情况下,最大利润是多少?请你参考(1)的过程 得出答案。 解:设降价x元时利润最大,则每星期可多卖20x件,实际 卖出(300+20x)件,每件利润为(60-40-x)元,因此, 得利润
某商品现在的售价为每件60元,每星期可卖出
300件,市场调查反映:每涨价1元,每星期少卖出
10件;每降价1元,每星期可多卖出20件,已知商 品的进价为每件40元,如何定价才能使利润最大?
分析: 调整价格包括涨价和降价两种情况 先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品 的利润y也随之变化,我们先来确定y与x的函数关系式。涨 价x元时则每星期少卖 10x 件,实际卖出 (300-10x) 件, 每件利润为 (60+x-40) 元,因此,所得利润 (60+x-40)(300-10x) 为
5.8
二次函数的应用(1)
1. 二次函数y=2(x-3)2+5的对称轴是 顶点坐标是 是 。 。当x= 时,y的最 值
,
2. 二次函数y=-3(x+4)2-1的对称轴是
,
顶点坐标是
值,是 。
。当x=
时,函数有最___
3.二次函数y=2x2-8x+9的对称轴是 点坐标是 值,是 。 .当x=
,顶
时,函数有最_______
答:销售单价为10.5元时,最大利润为6400元。
2
。
某商品现在的售价为每件60元, 每星期可卖出300件,市场调查 反映:如调整价格,每涨价1元, 每星期少卖出10件;每降价1元, 每星期可多卖出20件,已知商品 的进价为每件40元,如何定价才 能使利润最大?
请同学们带着以下几个问题读题 (1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随 之发生了变化?
解:(1)降低x元后,所销售的件数是(500+100x),
y=-100x2+600x+5500 (0<x≤11 )
(2)y=-100x2+600x+5500 (0<x≤11 ) 配方得y=-100(x-3)2+6400 当x=3时,y的最大值是6400元。 即降价为3元时,利润最大。
所以销售单价为10.5元时,最大利润为6400元。
S=-l2+30l 请同学们画出此函数的图象
s 可以看出,这个函数的图 象是一条抛物线的一部分, 这条抛物线的顶点是函数 的图象的最高点,也就是 说,当l取顶点的横坐标时, 这个函数有最大值。
因此,当l b 30 15时 2a 2 (1)
200
100O5源自10 15 20 25 30
y=(300+20x)(60-40-x) =-20(x²-5x+6.25)+6150 =-20(x-2.5)² +6150 (0<x<20) ∴x=2.5时,y最大值=6150
你能回答了吧!
怎样确定 x的取值 范围
由(1)(2)的讨论及现在的销售情况,你知道应该如何定价
能使利润最大了吗?
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值。
问题:用总长为60m的篱笆围成矩形场地,矩形面积S随 矩形一边长l的变化而变化。当l是多少时,场地的面积S 最大? 分析:先写出S与l的函数关系式,再求出使S最大的l的值。 矩形场地的周长是60m,一边长为l,则另一边长为
60 l m,场地的面积: S=l(30-l) 2