多肽和蛋白质类药物
生物制药多肽与蛋白质类药物

• c.种子摇瓶培养 在4个1000mL三角瓶中, 分别装入250mL种子培养基,分别接种人干 扰素αⅡb基因工程菌,30℃摇床培养10h,
第28页/共46页
• d.发酵培养基 1%蛋白胨、0.5%酵母提取物、 0.01%NH4Cl、0.05%NaCl,0.6% Na2HPO4、0.001%CaCl2、0.3%KH2PO4、 0.01%MgSO4、0.4%葡萄糖、50mg/ml氨 苄西林、少量消泡剂。
第9页/共46页
• 沉淀4加原体积l/25000量pH=8.0的 0.1mol/L PBS溶解,调至pH=7~7.5,对 PBS(pH=7.3)透析,过夜,离心,收集上清液, 检测,得IFN-B。上清液3中加盐酸使pH值降 至3.0,离心,得沉淀5。沉淀5加入原体积 1/5000量的pH=8、0.1mol/L PBS溶解,加 NaOH调节pH=7~7.5,对PBS(pH=7.3)透 析过夜,离心收集上清液,检测,得IFN-A。 每份灰黄层约能制备100万单价的纯化干扰素。
第10页/共46页
• 此法特点是一次纯化量大,回收率高于60%; 经济,简便,易于普及。效价可达1.2×108 U/ml,比活2.2×106 U/mg(蛋白)。IFNA中干扰素含量占回收干扰素的82%,比活 也比较高。IFN1的比活较低[5×104 U/mg (蛋白)],一般可作外用滴鼻剂或点眼剂等。
第14页/共46页
• 将0.5µg平头末端cDNA用末端转移酶加15 个dC,并将2µg质粒pBB322在PstⅠ位点 线性化,用末端转移酶加15个dG,再将两者 连接,利用这种方法可产生新的PstⅠ位点, 利于从载体上再次切下cDNA。将产生的质 粒转化大肠杆菌HB101后,用微量板培养。 合成引物5′-CCTTCTGGAACTG- 3′,该序 列是IFN-α、β最长的不间断保守序列,用其 作引物可同时调出IFN-α、β。
多肽和蛋白质类药物的发展过程

多肽和蛋白质类药物的发展过程在20世纪60年代至70年代,科学家们开始关注多肽和蛋白质类药物的制备和分离技术。
同时,他们也开始研究多肽和蛋白质类药物的结构与功能之间的关系。
这一时期研究的重点是单一多肽和蛋白质类药物,如单链胰岛素和重组生长激素。
20世纪80年代是多肽和蛋白质类药物发展的一个重要转折点。
随着基因工程技术的发展,科学家们能够通过重组DNA技术生产大量的多肽和蛋白质。
这种技术的应用极大地促进了多肽和蛋白质类药物研究的进展。
在这一时期,重组胰岛素、重组生长激素和重组干扰素等药物相继问世。
20世纪90年代至21世纪初,多肽和蛋白质类药物的研究进入了一个全新的阶段。
科学家们开始发展更加复杂的多肽和蛋白质类药物,如抗体药物。
抗体药物通过靶向疾病相关的分子目标,实现治疗效果。
这种药物以其高度的专一性和生物活性在临床上取得了显著的效果。
近年来,多肽和蛋白质类药物的研究和应用迎来了新的突破。
科学家们通过改变多肽和蛋白质的结构,增强其稳定性和生物活性。
同时,他们还通过改变给药途径和剂型,提高多肽和蛋白质类药物的生物利用度和稳定性。
这些新的技术和方法为多肽和蛋白质类药物的发展提供了更多的可能性。
总的来说,多肽和蛋白质类药物的发展经历了多个阶段。
从最初的分离和制备技术到基因工程技术的应用,再到复杂多肽和蛋白质类药物的研发,多肽和蛋白质类药物在生物医药领域发挥着越来越重要的作用。
未来,随着科学技术的进一步发展,多肽和蛋白质类药物的研究和应用将迎来更大的突破。
多肽与蛋白质类药物

B. 对蛋白质类药物进行结构修饰
多肽、蛋白质类药物分类
3.3.1 反相高效液相色谱
3.3.1 反相高效液相色谱
分离机理:
①用C4~C8烷基作配基,将配基键合在固定基质上作为固定相 ,以水溶性有机溶剂(如甲醇、乙腈、异丙醇)加强酸作流 动相(流动相极性大于固定相)。
②蛋白质分子中既有亲水性基团(-OH,-NH、-COOH、SH 等),也有疏水性基团(如苯环、-CH3、-CH2和-CH等)。
理论上,每公顷红花田可生产出1公斤人胰岛素原料药。
3.2 多肽和蛋白质药物的生产方法
加拿大渥太华大学生物技术研究中心的科研人员也利 用另两种高产作物——烟草和水稻植株生产出了一种 名为“胰岛素样生长因子”(ILGF)的新型降血糖药物 。
据称,ILGF的降糖效果甚至优于常规口服降糖药。 如果ILGF能通过临床试验并成功上市,或将成为前景
3.2 多肽和蛋白质药物的生产方法
加拿大SembioSys生物工程公司利用北美洲普遍栽培的高 产油料作物——红花作为转基因植物“平台”,成功生 产出“红花子来源人胰岛素”,
该胰岛素顺利通过动物实验与Ⅰ~Ⅱ期临床试验,其药 代动力学与药效学试验结果与美国礼来利用大肠杆菌表 述胰岛素基因生产的重组DNA人胰岛素基本一样。
多肽和蛋白质的物化性质
4. 变性 ➢ 天然蛋白质的严密结构在某些物理或化学因素作用下,
其特定的空间结构被破坏,从而导致理化性质改变和生 物学活性的丧失,如酶失去催化活力,激素丧失活性, 称之为蛋白质的变性作用(denaturation)。 ➢ 变性蛋白质和天然蛋白质最明显的区别是溶解度降低
氨基酸、多肽及蛋白质类药物分析方法

氨基酸、多肽及蛋白质类药物分析方法1. 引言氨基酸、多肽及蛋白质类药物是一类重要的生物大分子,广泛应用于医学、生物学和药物研发领域。
分析方法的研发和优化对于确保药物的质量和安全性至关重要。
本文将介绍氨基酸、多肽及蛋白质类药物分析方法的原理、常用技术和应用。
2. 氨基酸分析方法2.1 色谱法色谱法是最常用的氨基酸分析方法之一。
其中,离子交换色谱法(Ion-exchange chromatography)和高效液相色谱法(High-performance liquid chromatography, HPLC)是最常用的技术。
离子交换色谱法基于氨基酸的电荷性质,通过固定相上的阴离子交换树脂将氨基酸分离。
而HPLC则利用溶液中氨基酸的亲水性质,通过不同流动相的梯度洗脱将氨基酸分离。
2.2 光谱法光谱法基于氨基酸的吸光特性,常用的有紫外-可见光谱法(UV-Vis spectroscopy)和红外光谱法(Infrared spectroscopy, IR)。
紫外-可见光谱法利用氨基酸在特定波长下的吸光度差异进行分析,而红外光谱法则通过氨基酸吸收、发射或散射红外光的特性进行定性和定量分析。
3. 多肽分析方法3.1 质谱法质谱法是多肽分析的主要方法之一。
质谱法利用质谱仪对多肽进行分析,可以进行结构鉴定、定性和定量分析。
常用的质谱方法包括基质辅助激光解析电离飞行时间质谱(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, MALDI-TOF-MS)和液相色谱-质谱联用(Liquid Chromatography-Mass Spectrometry, LC-MS)。
3.2 磁共振波谱法磁共振波谱法(Nuclear Magnetic Resonance, NMR)提供了多肽的结构信息。
通过分析多肽所产生的NMR信号,可以揭示多肽的空间构象和相互作用等重要信息。
蛋白质多肽类药物课件

24
.
蛋白多肽类药物的关键问题
▪ 3)吸收特征: 蛋白质药物半衰期短、清除率高、 分子量大透股能力差、易受体内酶和细菌以及体 液的破坏、非注射给药生物利用度低,一般都仅 为百分之几,提高蛋白质药物吸收的方法一般有 化学修饰或制备成前体药物,使用酶抑制剂,吸 收促进剂,选择适宜剂型保护等。
25
.
LOGO
而提高人体运输氧的能力,提高人体最大摄氧量; 4)rHuEPO主要生理作用是调节红系前体细胞分化为成熟的红细胞,进而
维持外周血红细胞的水平, 临床上主要用于治疗肾衰后引起的贫血。
19
.
rHuEPO的不良反应 常见不良反应:
高血压: 大多发生于慢性肾衰病人,可能是Het快速 增加、血液粘稠度增高、周围血管阻力增加等所致 。
重组人抗凝血酶(ATryn)是2006年批准的、第一个由 转基因动物(羊)生产的重组药物。
11
.
人骨形成蛋白
是最年轻的一组 第一个产品2001年批准上市
12
.
融合蛋白
1)是为数很少的以抑制为作用机理的重组药物,仅有 3个
2)1998年批准的Enbrel(Amgen): 是TNF受体和IgG 的Fc片段的融合蛋白,含934个氨基酸,适应症为 风湿性关节炎
8
.
人造血因子
包括:
重组人促红细胞生成素: 1985年成功表达了重组人促红细胞生成素 (rhEPO,1989年上市第一个重组人促红细胞生成素。
新红细胞生成刺激蛋白(NESP): 美国 Amgen 公司研制的长效 EPO 制剂 , 于 2001 年 6 月底获得欧洲药物评审委员会批准 ,用于慢性肾衰引起的贫 血。NESP 是一种高糖基化 rhEPO 类似物,也是第一个被批准用于临床的 新型促红细胞生成素 ,具rhEPO 相似的作用机制即刺激红系造血。法国学 者Dalle等 ,于2001 年利用基因重组技术合成了一种二聚体 EPO ,由两个 EPO 及一个 9 肽连接而成的融合蛋白。
多肽和蛋白质药物及核酸类药物的生产

化学合成
利用化学合成方法,合成多肽 或蛋白质。
分离纯化
通过各种分离纯化技术,如色 谱、电泳等,将目的多肽或蛋 白质从其他杂质中分离出来。
核酸类药物的生产工艺流程
基因克隆
将目的基因克隆到载体上,构建重组DNA分子。
转录与翻译
将重组DNA分子导入细胞或微生物中,转录并翻 译成目的核酸。
提取与纯化
通过各种提取和纯化技术,如离心、沉淀、色谱 等,将目的核酸从其他杂质中分离出来。
液相合成
直接在液相中合成核酸类药物,但操作较为繁 琐。
修饰与改造
对合成的核酸进行修饰和改造,以提高其稳定性和生物活性。
03 生产工艺流程与质量控制
多肽和蛋白质药物的生产工艺流程
01
02
03
04
基因工程
利用基因工程技术,将目的基 因导入细胞或微生物中,表达
并产生多肽或蛋白质。
细胞培养
通过培养细胞,使细胞大量增 殖并产生多肽或蛋白质。
基因工程方法生产多肽和蛋白质药物通常用于生产具有高生物活性、低免疫原性 和低毒性的蛋白质或多肽药物。这些药物可用于治疗各种疾病,如糖尿病、肝炎 、癌症等。
化学合成法生产多肽和蛋白质药物
化学合成法生产多肽和蛋白质药物是 通过化学反应将氨基酸或其他有机分 子连接在一起形成多肽或蛋白质的过 程。这种方法通常需要多个化学反应 步骤,并且需要精确控制反应条件和 纯化过程。
质量控制成本
为了确保核酸类药物的质量和安全性,需要进行严格的质量控制和检 测,这些质量控制和检测的成本也是生产成本的一部分。
市场前景与竞争格局分析
市场前景
随着生物技术的不断发展,多肽和蛋白质药物及核酸类药物的应用领域不断扩大,市场需求也在不断增长。未来, 随着新药研发的加速和新治疗方法的出现,多肽和蛋白质药物及核酸类药物的市场前景将更加广阔。
药物 生物药剂学分类

药物生物药剂学分类
药物可以按照不同的分类方式进行划分,其中生物药剂学分类是一种常用的方式。
生物药剂学是药物学中的一个重要分支,主要研究生物制剂的制备、质量控制、药效学和药代动力学等方面。
生物制剂是指由生物体或其组织、细胞、代谢产物等制备的药物,具有高度的复杂性和生物活性。
根据生物药剂学的分类方式,药物可以分为以下几类:
1. 蛋白质类药物:蛋白质类药物是由生物体内产生的蛋白质或其衍生物制备而成的药物。
这类药物具有高度的生物活性和特异性,常用于治疗癌症、免疫系统疾病、血液病等。
常见的蛋白质类药物包括重组人生长激素、重组人干扰素、单克隆抗体等。
2. 多肽类药物:多肽类药物是由生物体内产生的多肽或其衍生物制备而成的药物。
这类药物具有高度的生物活性和特异性,常用于治疗糖尿病、肿瘤、心血管疾病等。
常见的多肽类药物包括胰岛素、生长抑素、降钙素等。
3. 基因工程药物:基因工程药物是通过基因重组技术制备的药物,包括重组蛋白、重组抗体、基因治疗等。
这类药物具有高度的特异性和生物活性,常用于治疗遗传性疾病、癌症、免疫系统疾病等。
常见的基因工程药物包括重组人血小板生长因子、重组人粒细胞集落刺激因子、基因治疗药物等。
4. 疫苗:疫苗是一种预防性药物,由病原体或其部分制备而成,用于预防传染病。
疫苗具有高度的特异性和免疫原性,可以激发人体免疫系统产生特异性免疫反应,从而达到预防疾病的目的。
常见的疫苗包括麻疹疫苗、乙肝疫苗、流感疫苗等。
总之,生物药剂学分类是一种重要的药物分类方式,可以帮助人们更好地了解药物的特性和作用,为药物的研发和应用提供科学依据。
多肽与蛋白质类药物-氨基酸多肽蛋白质

二.多肽与蛋白质类药物的制造方法
3.分离纯化
多肽及蛋白质的分离纯化是将提取液中的目的蛋 白质与其他非蛋白质杂质及各种不同蛋白质分离 开来的过程. 常用的分离纯化方法有: (1) 根据蛋白质等电点的不同来纯化蛋白质 在等电点时蛋白质性质比较稳定,其物理性质如 导电性,溶解度,黏度,渗透压等皆最小,因此可利用 蛋白质等电点时溶解度最小的性质来制备蛋白质.
不十分清楚,从活性肽或细胞生长调节因子的角度去研究 它们的物质基础和作用机制,预计可获得成效
主要多肽类药物
1.多肽激素 ① 垂体多肽激素: 促皮质素(ACTH),促黑激素(MSH),催产素(OT) ② 下丘脑激素: 促甲状腺激素释放激素(TRH),生长素抑制激素(GRIF) ③ 甲状腺激素: 甲状旁腺激素(PTH),降钙素(CT)。 ④ 胰岛激素: 胰高血糖素γ,胰解痉多肽γ。 ⑤胃肠胃道激素: 胃泌素,胆囊收缩素一促胰激素(CCK-PZ),缓激肽 ⑥ 胸腺激素: 胸腺素、胸腺肽, 胸腺血清因子
返回目录
(一)蛋白类药物的分类
6.碱性蛋白质
硫酸鱼精蛋白,存在于鱼类成熟的精子中,强碱
性。
7.蛋白酶抑制剂 胰蛋白酶抑制剂,亦称抑肽酶。
8.植物凝集素 PHA、ConA。
返回目录
(二)蛋白类药物作用方式
已从生化药物对机体各系统和细胞生长的调节 扩展到被动免疫、替代疗法、抗凝血剂以及蛋 白酶的抑制物等多种领域
返回目录
(三)应用基因工程技术制备重要的 蛋白类药物
已实现产品工业化的有几十种,并正从微生物 和动物细胞的表达转向基因动植物的表达。
返回目录
(四)蛋白质工程技术的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲状腺激素 胰岛激素
胃肠道激素
胸腺激素
甲状旁腺激素(PTH)、降钙素(CT)
胰高血糖素、胰解痉多肽
胃泌素、胆囊收缩素-促胰酶素(CCK-PZ)、肠泌 素、肠血管活性肽(VIP)、抑胃素(GIP)、缓激 肽、P物质
胸腺素、胸腺肽、胸腺血清因子
4
多肽类药物分类
多肽类细胞生长调 表皮生长因子(EGF),转移因子(TF),心
意方法本身的回收率的高低。
12
纯化方法选择指南
13
END
谢谢大家!
粘蛋白
胃膜素、硫酸糖肽、内在因子等。
胶原蛋白 碱性蛋白质
明胶、阿胶等 硫酸鱼精蛋白
蛋白酶抑制剂
胰蛋白酶抑制剂
凝集素
PHA、ConA
7
多肽与蛋白质类药物的制造方法
重点
提取分离纯化法(重点) 化学合成法
微生物发酵法
蛋白质药物
重点
原料选择
发酵
沉淀
变性 复性
上清
生物 组织 破碎 提取
蛋白质纯化
纯度 活性鉴定
合格
不合格
精品9
原料选择 提取
重点
10
纯化 根据目的蛋白与杂质之间的差异进行纯化。
1.根据蛋白质的pI的不同进行纯化,其方法有:
1)pI沉淀法
2)pI沉淀法与盐析法相结合
3)等电聚焦法
2.蛋白质分子形状和大小的不同进行纯化,其方法有
1)凝胶过滤
2)超滤法
3) 离心法
4)透析法
3.蛋白质的溶解度不同进行纯化,其方法有:
a)盐溶与盐析法
b)结晶法
c)有机溶剂沉淀法
4.蛋白质电离性质不同进行分离:离子交换法 5.蛋白质功能专一性不同进行纯化:亲和层析法 6.蛋白质在溶剂系统中分配不同进行纯化:萃取法 7.蛋白质的选择性吸附的性质进行纯化:吸附法 8.蛋白质的其他特殊性质进行纯化
重离纯化早期使用方法的选择 特点:提取液中的物质十分复杂,目的蛋白浓度较稀。
6
蛋白质类药物分类
蛋白质类细胞 生长调节因子
干扰素α、β、γ(IFN),白细胞介素1~7(IL),神 经生长因子(NGF),肝细胞生长因子(HGF),血 小板衍生的生长因子(PDGF),肿瘤坏死因子 (TNF),集落刺激因子(CSF), 组织纤溶酶原激活因子 (tPA),促红细胞生成素(EPO),骨发生蛋白 (BMP)。
方法选择原则:低分辨能力到高分辨能力,而且负荷量较 大为合适。
2.各种分离纯化方法的使用顺序 原则:相同性质的纯化方法一般不重复使用。纯化方法顺序先 后的安排上要考虑到有利于减少工序,提高效率。
3.分离纯化后期的保护性措施
4.对每一步骤方法的优劣进行综合评价 每一个分离纯化步骤方法的好坏,除了
从分辨本领和重现性二方面考虑外, 还注
本节内容
多肽与蛋白质类药物概述 多肽与蛋白质类药物的制造方法 重要的多肽与蛋白质类药物的制备
2
3
多肽类药物分类
多肽激素
垂体多肽激素
促皮质素(ACTH)、促黑激素(MSH)、脂肪水解 激 素(LPH) 催产素(OT),加压素 (AVP)等
下丘脑激素
促甲状腺激素释放激素(TRH)、生长素抑制激素 (GRIF)、促性腺激素释放激素(LHRH)
节因子
钠素(ANP)等。
含有多肽成分的其 它生化药物
骨宁、眼生素、血活素、氨肽素、妇血宁、脑 氨肽、蜂毒、蛇毒、胚胎素、 助应素、神经 营养素、胎盘提取物、花粉 提取物、脾水解 物、肝水解物、心脏激素等。
5
蛋白质类药物分类
蛋白质激素
垂体蛋白质激素
生长素(GH),催乳激素(PRL),促甲状腺素 (TSH),促黄体生成激素(LH),促卵泡激素 (FSH)。
促性腺激素
人绒毛膜促性腺激素(HCG),绝经尿促性腺激素 (HMG),血清性促性腺激素(SGH)。
胰岛素及其他蛋白质 激素
胰岛素,胰抗脂肝素,松弛素,尿抑胃素。
血浆蛋白质
白蛋白,纤维蛋白溶酶原,血浆纤维结合蛋白(FN),免 疫丙种球蛋白,抗淋巴细胞免疫球蛋白,Veil’s病免疫 球蛋白,抗-D免疫球蛋白,抗-HBs免疫球蛋白,抗血 友病球蛋白,纤维蛋白原,抗凝血酶Ⅲ,凝血因子Ⅷ, 凝血因子Ⅸ。