细胞生物学第五章跨膜运输习题及答案 done

合集下载

第五章 物质的跨膜运输习题及答案

第五章 物质的跨膜运输习题及答案

细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。

A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。

这种跨膜转运方式称为(B )。

A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。

A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。

A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是(B)。

A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。

A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后(D)。

A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。

那么,该物质进入细胞的可能方式为(A )。

A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。

A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。

细胞生物学_05物质跨膜运输重要参考

细胞生物学_05物质跨膜运输重要参考

钙泵(Ca2+pump)又称为Ca2+-ATP酶, 跨膜蛋白,进化上与Na+-K+泵的α亚基同 源。分布在质膜和肌细胞内质网膜。维持 细胞内较低的Ca2+浓度(胞内浓度107M,胞外10-3M)。
作用机制:原理与钠钾泵相似,每分解一 个ATP,泵出2个Ca2+,将Ca2+输出细 胞或泵入内质网腔中储存起来。
2. 摄取物质:动物细胞摄取胆固醇;鸟卵细胞摄 取卵黄蛋白;肝细胞摄取转铁蛋白;胰岛素进入 细胞;巨噬细胞通过表面受体对免疫球蛋白及其 复合物、病毒、细菌、衰老细胞的识别和摄入、 VB12、铁的摄取。
3. 胞内体:动物细胞内由膜包围的细胞器, 具有酸性环境,是膜泡运输的分选站,主 要作用为运输由胞吞作用新摄入的物质导 溶酶体降解。受体与转运的物质在此分离。
Passive transport
Simple diffusion Osmosis Facilitated transport
Transport
Active transport
Sodium-Potassium Pump
Ca2+ –pump Proton Pump
Cotransport
Symport
Aniport
Exocytosis and endocytosis
5. 1 Passive transport
不需要能量,自发发生 动力来自浓度差别,不需要外界帮助,顺浓
度剃度运输
Active transport
需要能量 低浓度运输导高浓度,逆浓度 转运蛋白参与
5.1.1 Diffusion
Transport Proteins are specific
glucose

第五章物质的跨膜运输习题及答案

第五章物质的跨膜运输习题及答案

细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是C ;A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合;这种跨膜转运方式称为B ;A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是A ;A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠B ;A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是B;A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为C ;A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后D;A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高;那么,该物质进入细胞的可能方式为A ;A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是D ;A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用;2、离子通道有两个显著的特征:离子选择和门控性;3、多数动物病毒进入细胞的主要方式是细胞以内吞作用使病毒进入细胞;但有些有包膜的病毒,以其包膜与细胞膜融合的方式进入细胞;4、在大分子与颗粒性物质跨膜运输中,胞饮泡的形成需要网格格蛋白,而吞噬泡的形成需要微丝及其结合蛋白;三、判断题1、载体蛋白既能进行主动运输,又能进行被动运输,而通道蛋白只能进行被动运输;2、V型质子泵利用ATP水解供能从细胞质基质中将H+逆着电化学梯度泵入细胞器,以维持细胞质基质pH中性和细胞器内的pH酸性,而F型质子泵以相反的方式发挥其生理作用;3、所有胞吞的物质最终都会进入溶酶体被降解;x4、葡萄糖从小肠上皮细胞游离面进入细胞内,然后从基底面出细胞进入血液;动物细胞对葡萄糖的这种吸收过程就是一个典型的跨细胞转运过程;x5、抑制Na+-K+泵的功能,对动物细胞吸收营养没有影响; x6、若硝酸银浓度过大,则对细胞具有很强的毒性;若红细胞被硝酸银毒死后,其在低渗溶液中仍将溶血; x7、对于具有抗药性的肿瘤细胞或疟原虫,其质膜上的ABC转运蛋白比没有抗药性的细胞表达量要高; x8、主动运输都需要消耗能量,且都有ATP提供;x9、在受体介导的胞吞作用过程中,受体一旦被胞吞进入胞内体,最后都会在溶酶体中降解;x10、V型质子泵广泛存在于胞内体和溶酶体等细胞器的膜上,能利用ATP水解功能将质子从这些细胞器转运到细胞质基质;x四、名词解释1、协同运输symporter1、协同运输又称协同转运,是指一种物质的逆浓度梯度跨膜运输依赖于另一种物质的顺浓度梯度的跨膜运输的物质运输方式,不直接消耗能量但是需要间接地消耗能量;协同转运又可分为同向转运和反向转运;同向转运的物质运输方向和离子转移方向相同;2、ABC super family2、ABC超家族,是一类ATP驱动的膜转运蛋白,利用ATP水解释放的能量将多肽及多种小分子物质进行跨膜转运;ABC超家族包含有几百种不同的转运蛋白,广泛分布于从细菌到人类的各种生物中,所有ABC蛋白一般都含有4个核心结构域:两个跨膜结构域T,形成运输分子的跨膜通道;两个胞质测ATP结合域A,具有ATP酶活性3、P type proton pump & V type proton pump3、P型质子泵,是存在于植物细胞、真菌和细菌的细胞质膜上的H+转运通道,将H+泵出细胞,建立和维持跨膜的H+电化学梯度,并用力啊驱动转运溶质摄入细胞,例如,细菌对糖和氨基酸的摄入主要是由H+驱动的同向协同运输完成的;V型质子泵是存在于动物细胞的胞内体膜、溶酶体膜、破骨细胞和某些肾小管细胞的质膜,以及植物、酵母及其他真菌细胞的液泡膜上;转运H+中不形成磷酸化的中间体,其功能是从细胞质基质中泵出H+进入细胞器,保持特定的pH值;二者的关系P型质子泵和V型质子泵都只转运质子,且都属于ATP驱动泵,利用ATP水解释放的能量将H+进行跨膜转运4、载体蛋白carrier protein和通道蛋白channel protein4、二者转运机制不同;载体蛋白与特异底物结合,通过自身构象的改变实现对物质的跨膜转运,既能以被动运输方式又能以主动运输方式转运底物;而通道蛋白以被动运输方式,通过形成选择性或门控性亲水通道实现对特异溶质的跨膜转运;通道蛋白转运速率比载体蛋白高五、问答题1、将蛙卵和红细胞放到纯水中,红细胞将会涨破但蛙卵却能维持常态;两种细胞内有几乎相等的离子浓度,同样的渗透压作用于两者,为什么红细胞在水中破裂而蛙卵却不然1、红细胞在水中破裂而蛙卵细胞却不破裂的原因如下:1红细胞膜上有很多水孔蛋白;水孔蛋白是内在膜蛋白的一个家族,提供了水分子快速跨膜运动的通道;水孔蛋白能使红细胞适应所处环境中血浆渗透压力的变化,通过调节水的运输使红细胞表现为膨胀或皱缩;2红细胞细胞质膜上水孔蛋白的密度很高,每个红细胞表面有200000个水孔蛋白,因而纯水能够迅速进入红细胞而将其涨裂;蛙卵细胞表面很少水孔蛋白,纯水无法大量进入细胞,而使细胞维持原来大小;2、举例说明大分子物质通过受体介导的内吞作用进入细胞的过程;2、1受体介导的内吞作用大分子物质内吞首先同细胞膜上的特异性受体结合,然后内陷形成包被小窝,继而形成包被膜泡进入细胞;这种胞吞作用是高度特异性的,能使细胞摄入大量特定的分子,而不需要摄入很多细胞外液,具有浓缩的效果,提高了物质运输效率;2受体介导的内吞作用的过程举例如细胞对胆固醇的摄取;通常血中胆固醇与蛋白质结合,以低密度脂蛋白LDL的形式存在和运输;当细胞需要胆固醇时,LDL颗粒可与细胞膜上LDL受体特异结合,这种结合可诱使尚未结合的LDL受体向包被小窝处移动来与LDL结合,并引起包被小窝继续内陷,形成包被膜泡;这样与受体结合的LDL颗粒很快被摄入细胞,接着包被小泡迅速地脱去网格蛋白衣被,并与细胞内其他囊泡融合,形成胞内体;在胞内体内的LDL颗粒与受体分开,受体随转移囊泡返回到细胞膜,完成受体的再循环;LDL颗粒则被溶酶体酶水解为游离的胆固醇进入细胞质,用于合成新的细胞膜;。

细胞生物学》题库参考答案第五章(生物学)

细胞生物学》题库参考答案第五章(生物学)

《细胞生物学》题库参考答案第五章物质运输1. 试述协助扩散与简单扩散的区别。

⑴简单扩散(自由扩散)和协助扩散是被动运输的两种形式。

二者转运的动力都来自物质的浓度梯度,不需要细胞提供代谢能量。

⑵二者的主要区别:简单扩散,只有小分子量的不带电或疏水分子以简单扩散的方式跨膜。

不依赖于膜蛋白,所以不具有特异性。

扩散的速度正比于膜两侧该离子的浓度梯度。

协助扩散,与简单扩散不同,分子的协助扩散依赖于特定的内在膜蛋白,常称之为单向转运蛋白质。

分子结合到膜一侧的蛋白质上,该蛋白质发生构象变化将该分子转运到膜的另一侧并释放。

转运蛋白对于某特定分子或一组结构相似分子具有专一性。

2. 试述Na-K泵及钙泵的工作原理。

⑴Na-K泵即Na+-K+ATP酶,一般认为是由2个大亚基、2个小亚基组成的4聚体。

Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。

在膜内侧Na+与酶结合,激活A TP酶活性,使A TP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。

K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被释放,而又与Na+结合。

其总的结果是每一循环消耗一个ATP;转运出三个Na+,转进两个K+。

⑵钙离子泵对于细胞是非常重要的,因为钙离子通常与信号转导有关,钙离子浓度的变化会引起细胞内信号途径的反应,导致一系列的生理变化。

通常细胞内钙离子浓度(10-7M)显著低于细胞外钙离子浓度(10-3M),主要是因为质膜和内质网膜上存在钙离子转运体系,细胞内钙离子泵有两类:其一是P型离子泵,其原理与钠钾泵相似,每分解一个ATP分子,泵出2个Ca2+。

另一类叫做钠钙交换器(Na+-Ca2+ exchanger),属于反向协同运输体系(antiporter),通过钠钙交换来转运钙离子。

细胞生物学第五章课后思考题

细胞生物学第五章课后思考题

细胞生物学第五章课后思考题第五章物质的跨膜运输1. Which of the following statements are correct? Explain your answers. 以下哪种状况是对的?解释你的回答。

A. The plasma membrane is highly impermeable to all charged molecules. 质膜对所有带电荷的分子是高度不通透的。

错。

质膜含有许多带电荷分子提供选择通透性的蛋白质。

相反,缺少蛋白质的纯净脂双层对所有带电荷分子是高度不通透的。

B. Channels must first bind to solute molecules before they can select those that they allow to pass.通道蛋白首先必须与溶质分子结合,然后才能选择它们允许通过的溶质分子。

错。

通道蛋白不结合通过它的溶质。

通道蛋白质的选择性是靠内孔的大小和孔入口处带电荷区域吸引和排斥具有适当电荷的离子而实现的。

C. Transporters allow solutes to across a membrane at much faster rates do channels. 载体蛋白允许溶质穿过膜的速率比通道蛋白的快得多。

错。

载体蛋白比较缓慢。

它们具有类似酶的性质,即它们结合溶质并在它们的功能循环期间需要进行构象的变化。

这限制了转运的最大速率(大约1000个溶质分子/s),而通道蛋白能通过高达1000000个溶质分子/s 。

D. Certain H+ pump are fueled by light energy. 某些H+泵由光来供能。

对。

一些光合细菌的细菌紫膜质利用可见光获得的能量迁移H+。

E. A symport would function as an antiport if its orientation in the membrane were reversed (i.e., if the portion of the molecule normally exposed the the cytosol faced the outside of the cell instead).如果分子在膜内的取向被颠倒(也就是如果分子通常暴露于胞质溶胶的部分改为面向细胞外面),则同向转运将起对向运输的作用。

细胞生物学5(3)

细胞生物学5(3)

第五章物质的跨膜运输与信号传递所谓被动运输是通过 ca. 内吞与外排b. 受体介导的内吞作用c. 自由扩散或易化扩散d. 泵,例如钙泵影响物质在膜上自由扩散的因素有( )。

aa. 在油/水分配系数高的, 易扩散b. 电离度大的, 易扩散c. 水合度大的, 易扩散d. 水、氨基酸、Ca2+ 、Mg2+ 等小分子, 易扩散下列运输过程属于协助扩散的是()I. O2II. 甘油 III. 以缬氨霉素为载体的K+运输IV. 钙泵V. 以短菌杆肽为载体的运输A. I+IIB. I+II+IIIC. III+IVD. III+VE. IV+V下列分子中,不能通过无蛋白脂双层膜的是 da. 二氧化碳b. 乙醇c. 尿素d. 葡萄糖细胞膜上有些运输蛋白形成跨膜的水性通道,允许适当大小的带电荷溶质按以下哪种方式过膜 ba. 主动运输b. 协助扩散c. 简单扩散d. 协同运输小肠上皮细胞吸收葡萄糖是通过( )来实现的。

ba. Na+ -泵b. Na+ 通道c. Na+ -偶联运输d. Na+ 交换运输参与被动运输的重要运输蛋白有I. 载体蛋白( carrier protein ) II. 笼形蛋白 ( Clathrin ) III.通道蛋白( Channel protein ) IV. 边周蛋白( peripheral protein ) V. 门通道蛋白( Gated channel protein )a. I+II+IVb. I+II+IIIc. I+IV+Vd. I+III+V动物细胞质膜上特征性的酶是( )。

da. 琥珀酸脱氢酶b. 磷酸酶c. 苹果酸合成酶d. Na+ -K+ -ATPase。

下列哪种运输方式不消耗细胞内的ATP? ba. 胞吐b. 易化扩散c. 离子泵d. 次级主动运输以下哪些可作为细胞主动运输的直接能量来源 cI. 离子梯度 II. NADH III. ATP IV. NADPHa. IIIb. II+IVc. I+IIId. II+III下列哪些物质运输过程需消耗能量分子 cI. 伴随运输 II. 自由扩散 III. 协助扩散IV. 主动运输V Na+-K+泵a. I+IVb. IV+Vc. I+IV+Vd. I+III+V以下哪一种运输器或运输方式不消耗能量()A. 电位门通道B. 内吞(endocytosis)作用C. 外排(exocytosis)作用D. 协同运输E. 主动运输下列关于信息分子的描述中,不正确的一项是( )。

完整word版本细胞生物学第五至第八章作业含答案

完整word版本细胞生物学第五至第八章作业含答案

第五章物质的跨膜运输1 物质跨膜运输有哪三种门路?ATP 驱动泵可分哪些种类?答:物质跨膜运输有简单扩散、被动运输和主动运输三种门路。

ATP 驱动泵可分P 型泵、 V 型质子泵和 F 型质子泵以及ABC超家族,此中P 型泵包含Na+— K+ 泵、 Ca+泵和P 型 H+泵。

各样 ATP 驱动泵的比较:种类运输物质构造与功能特色P 型H+、Na+、K+ 、Ca+往常有大小两个亚基,大亚基被磷酸化,小亚基调理运输F 型H+有多个跨膜亚基,成立H+ 的电化学梯度,合成ATPV 型H+有多个跨膜亚基,亚基的细胞质部分可将ATP水解,并利用开释的能量将有 H+ 运输到囊泡中形成酸性环境存在部位H+ 泵:存在于植物、真菌和细菌的质膜;Na+/K+ 泵、Ca+泵、H+/ K+ 泵:存在于哺乳动物胃细胞表层质膜细菌的质膜、线粒体内膜、叶绿体的类囊体膜植物、酵母和其余真菌的液泡膜;动物溶酶体和内体的膜;破骨细胞和肾管状细胞平分泌酸性物质的质膜ABC 型离子和各样小分子两个膜构造域形成水性细菌质膜、哺乳动物的内质通道,两个细胞质 ATP 网膜和细胞质膜联合构造域与 ATP 水解及物质运输相偶联2.简述钠钾泵的构造特色及其转运体制。

答: Na+ —K+ 泵位于动物细胞的质膜上,由2 个α和 2 个β亚基构成四聚体。

Na+—K+ 泵的转运体制总结以下:在细胞内侧α亚基与Na+相联合促使ATP 水解,α亚基上的一个天冬氨酸残基磷酸化惹起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点联合,使其失掉磷酸化,α亚基的构象再次发生变化,将K+ 泵入细胞,达成整个循环。

3、简述葡萄糖载体蛋白的构造特色及其转运体制。

答:葡萄糖载体蛋白,简称为 GLUT ,是一个蛋白质家族,包含十多种葡糖糖转运蛋白,他们拥有高度同源的氨基酸序列,都含有 12 次跨膜的α螺旋。

GLUT 中多肽跨膜部分主要由疏水性氨基酸残基构成,但有些α螺旋带有 Ser 、Thr 、Asp 和 Glu 残基,他们的侧链能够同葡萄糖羟基形成氢键。

第五章跨膜运输《细胞生物学》.

第五章跨膜运输《细胞生物学》.

第五章跨膜运输细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。

但是细胞必须与周围环境发生信息、物质与能量的交换,才能完成特定的生理功能。

因此细胞必须具备一套物质转运体系,用来获得所需物质和排出代谢废物,据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%,细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。

细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。

载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。

通道蛋白与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。

第一节被动运输一、简单扩散也叫自由扩散(free diffusing),特点是:①沿浓度梯度(或电化学梯度)扩散;②不需要提供能量;③没有膜蛋白的协助。

某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。

脂溶性越高通透性越大,水溶性越高通透性越小;非极性分子比极性容易透过,小分子比大分子容易透过。

具有极性的水分子容易透过是因水分子小,可通过由膜脂运动而产生的间隙。

非极性的小分子如O2、CO2、N2可以很快透过脂双层,不带电荷的极性小分子,如水、尿素、甘油等也可以透过人工脂双层,尽管速度较慢,分子量略大一点的葡萄糖、蔗糖则很难透过,而膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是高度不通透的(图5-1)。

事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章:物质的跨膜运输与信号传递
1.比较主动运输与被动运输的特点及其生物学意义。

答:被动运输是指通过简单扩散或者协助扩散实现物质有高浓度向低浓度方向的跨膜转运。

动力来自物质的浓度梯度不需要细胞代谢的能量。

被动运输为那些无需耗能跨膜的物质提供了一个快速跨膜的通道。

主动运输是指由载体蛋白介导的物质逆浓度梯度或电化学梯度,从浓度低的一侧香浓度高的一侧进行跨膜转运的方式。

与能量偶联,为细胞提供需要的物质和维持细胞渗透压(Na-K泵制造反向压力)等。

2.小肠上皮细胞膜上的载体蛋白转运葡萄糖,什么时候是协同运输,什么时候是协助扩散?
答:葡萄糖通过Na驱动的同向转运方式进入小肠上皮细胞是协同运输;由GLUT蛋白所介导的细胞对葡萄糖的摄取使葡萄糖进入血液是协助扩散。

3.两类膜转运蛋白工作原理的主要差别如何?
答:两类膜转运蛋白是指载体蛋白和通道蛋白。

载体蛋白(carrier proteins),它既可介导被动运输,又可介导逆浓度梯度或电化学梯度的主动运输,如:氨基酸、核糖等通过载体蛋白选择结合跨膜转运,每种载体蛋白只能与特定的溶质分子结合。

通道蛋白(channel proteins),只能介导顺浓度梯度或电化学梯度的被动运输。

选择性开启离子通道。

通道蛋白所介导的被动运输不需要与溶质分子结合,横跨形成亲水通道,允许适宜大小的分子和带电荷的离子通过。

4.说明Na+-K+泵的工作原理及其生物学意义。

答:钠钾泵:(Na+—K+泵)
❖在细胞内侧a亚基与Na结合促进ATP水解, a亚基上的一个天门冬氨基酸残基磷酸化引起a亚基构象发生变化,将Na泵出细胞;
❖同时细胞外的K与a亚基的另一个位点结合,使其去磷酸化,a亚基构象再度发生变化将K泵进细胞,完成整个循环。

❖每消耗一个ATP分子,泵出3个Na和泵进2个K
5.以动物细胞摄入LDL为例,概述受体介导胞吞的组成结构、运行过程及生理意义。

答:低密度脂蛋白LDL,先与细胞表面的互补性受体相结合,形成受体-配体复合物并引起细胞膜的局部内化作用,先是质膜在网格蛋白的参与作用下内陷形成有被小窝,然后是深陷的小窝脱离质膜形成有被小泡。

即完成胞吞过程(后又脱包被,胞内体作用等)。

其生理意义应该是:作为一种选择性浓缩机制,既保证了细胞大量的摄入特定的大分子,同时又避免了吸入胞外大量的液体。

6.比较两种胞吐突进的特点及功能。

答:两种途径是:组成型和调节性胞吐途径。

(1)组成型的胞吐途径(细胞中普遍存在)
主要是由高尔基体成熟面的网状区(TGN)分泌的囊泡移动到质膜与之融合,以囊泡形式外排。

为质膜更新提供新合成的膜蛋白和膜脂;并分泌外排新合成的可溶性蛋白,在胞外形成质膜外周蛋白、胞内基质、胞外营养成分和信息分子。

(2)调节型的胞吐途径(仅存在于某些特化的分泌细胞)
存在于某些特化的分泌细胞,这些分泌细胞产生的分泌物(eg激素、粘液或消化酶)储存在分泌泡内,当细胞受到胞外信号分子(激素、神经递质)刺激后,分泌泡与质膜融合并将内含物释放出去。

7.试述细胞信号通路上的信号分子、受体、第二信使、分子开关的各种类型及各自特点。

答:信号分子:
(1)亲脂性信号分子:受体多在胞质或胞核中。

(2)亲水性信号分子:受体多在质膜表面。

(3)气体性信号分子:NO。

受体:识别和选择性接受某种配体的大分子
(1)细胞内受体:位于细胞质基质或核基质中,主要识别和小的结合脂溶性信号分子
(2)细胞表面受体:主要有以下三种
1.离子通道偶联受体:存在于神经、肌肉等可兴奋细胞间的突触信号传
递。

2.G蛋白偶联受体(无组织特异性)
3.酶联受体(无组织特异性)
第二信使:第一信使分子(激素或其他配体)与细胞表面受体结合以后,在细胞内产生或释放到细胞内的小分子。

常见的第二信使有以下几种:
1.cAMP:激活cAMP信号通路(cAMP激活PKA)
2.IP3和DAG:激活磷脂酰肌醇信号通路(IP3开启内质网Ca2+通道;DAG
和Ca2+共同激活PKC)
3.Ca2+
分子开关:
1.GTPase开关蛋白:结合GTP则活化开启;结合GDP则失活关闭。

2.蛋白激酶:使靶蛋白磷酸化而开启;去磷酸化而关闭。

8.甾类激素是如何通过胞内受体介导的信号通路去调节基因表达?
答:当抑制性蛋白(例如:Asp90)与受体结合后,使其处于非活化状态;而当甾类激素等配体与受体结合时,导致抑制性蛋白脱离,暴露出受体上DNA结合位点而被激活。

受体结合的DNA序列是转录增强子,可增加某些相邻基因的转录水平。

甾类激素诱导的基因活化分两个阶段:
1)初级反应阶段:直接活化少数特殊基因,发生迅速
2)延迟的次级反应:由初级反应的基因产物,再活化其他基因,对初级反应起放大作用。

9.以突触处神经递质作用为例,说明离子通道偶联受体介导的信号通路特点。

答:离子通道偶联受体本身具信号结合点,又是离子通道,其跨膜信号转导无需中间步骤。

神经递质(胞外化学信号)与受体结合而引起通道蛋白变构,导致离子通道开启,使突触后细胞膜出现过膜离子流(如Na+和Ca2+),从而将胞外化学信号转换成胞内电信号,导致突触出后细胞的兴奋。

当胆碱脂酶将神经递质水解后,离子通道关闭,信号传递中断。

(详见教材P242图8-22)
10.概述G蛋白偶联受体介导的信号通路的组成、特点及主要功能。

答:G蛋白偶联受体介导的信号通路整体的传递过程:细胞外配体—→细胞表面受体—→G蛋白(分子开关)—→第二信使—→靶蛋白(酶或离子通道)—→细胞应答
根据第二信使的不同,信号通路可以分为两类:
(1)cAMP信号通路
cAMP的产生有腺苷酸环化酶催化完成,而该酶的活性由激活性激素(肾上
腺素、胰高血糖素)或抑制性激素(前列腺素、腺苷)调控。

激素-→G蛋白偶联受体-→G蛋白-→腺苷酸环化酶-(激素作用)→cAMP-
→cAMP依赖的蛋白激酶A(PKA)
产生PKA后,他可以激活下游的靶酶以及开启基因表达:(前者是快速反应,
后者是慢速反应)
a.活化的PKA—>靶酶蛋白磷酸化—>细胞代谢核细胞行为(如肾上腺素
刺激骨骼肌细胞导致糖原分解)
b.活化的PKA—>基因调控蛋白—>基因转录
(2)磷脂酰肌醇信号通路(IP3和DAG作双信使)
胞外信号-→G蛋白偶联受体
-→G蛋白-→磷脂酶C(PLC)
-→磷脂酰肌醇(PIP2)→三磷酸肌醇-→开启Ca2+通道-→钙调蛋白结合-→细胞反应(两种第二信使)→二酰基甘油-→蛋白激酶C(PKC)-→系列磷酸化级联反应
↓↓激活
使得抑制蛋白的磷酸化调节基因转录
↓脱离
基因调控蛋白
↓活化
基因转录
11.简述受体酪氨酸激酶介导的信号通路的特点。

答:此题内容考试不作要求。

12.体外培养的正常细胞须贴壁生长、分裂,而癌细胞却能悬浮培养,为什么?
答:癌细胞丧失了细胞间的接触性抑制。

(癌细胞的特征等详见第十二章习题)
13.试总结细胞信号通路的主要规律及基本特征。

答:总结一下有如下几点:
(1)受体与配体结合而激活产生生物学效应;
(2)信号通路中的蛋白质活性往往由磷酸化和去磷酸化进行调控:如分子开关。

(3)从细胞信号传导到细胞应答到一系列生理生化反应的发生是经历了一个信号级联放大的过程。

(此题为个人意见仅供参考)。

相关文档
最新文档